![]() |
#include <CGAL/all_furthest_neighbors_2.h>
|
| ||||||
|
|
| |||||
computes all furthest neighbors for the vertices of the convex polygon described by the range [points_begin, points_end), writes their indices (relative to points_begin) to o1 and returns the past-the-end iterator of this sequence.
Precondition: The points denoted by the non-empty range
[points_begin, points_end) form the boundary of a convex
polygon (oriented clock- or counterclockwise).
The geometric types and operations to be used for the computation are specified by the traits class parameter t. This parameter can be omitted if RandomAccessIterator refers to a point type from a Kernel. In this case, the kernel is used as default traits class.
Requirement:
#include <CGAL/Cartesian.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/point_generators_2.h>
#include <CGAL/random_convex_set_2.h>
#include <CGAL/all_furthest_neighbors_2.h>
#include <CGAL/IO/Ostream_iterator.h>
#include <iostream>
#include <vector>
typedef double FT;
struct Kernel : public CGAL::Cartesian<FT> {};
typedef Kernel::Point_2 Point;
typedef std::vector<int> Index_cont;
typedef CGAL::Polygon_2<Kernel> Polygon;
typedef CGAL::Random_points_in_square_2<Point> Generator;
typedef CGAL::Ostream_iterator<int,std::ostream> Oiterator;
int main()
{
// generate random convex polygon:
Polygon p;
CGAL::random_convex_set_2(10, std::back_inserter(p), Generator(1));
// compute all furthest neighbors:
CGAL::all_furthest_neighbors_2(p.vertices_begin(), p.vertices_end(),
Oiterator(std::cout));
std::cout << std::endl;
return 0;
}
| 1 | i.e. the furthest neighbor of points_begin[i] is points_begin[-th number written to o] |