We describe a new algorithm, based on graph matching, for subdividing a triangle mesh (without boundary) so that it has a Hamiltonian cycle of triangles, and prove that this subdivision process increases the total number of triangles in the mesh by at most a factor of 3/2. We also prove lower bounds on the increase needed for meshes with and without boundary.
This follows on to our previous paper on using graph matching to cover a triangulated polyhedral model with a single triangle strip by extending the algorithms to models with boundaries. We provide two methods: one is based on using an algorithm for the Chinese Postman problem to find a small set of triangles to split in order to find a perfect matching in the dual mesh, while the other augments the model with virtual triangles to remove the boundaries and merges the strips formed by our previous algorithm on this augmented model. We implement the algorithms and report some preliminary experimental results.
Considers heuristic modifications to the tree-cotree decomposition of my earlier paper Dynamic generators of topologically embedded graphs, to make the set of fundamental cycles found as part of the decomposition follow the contours of a given geometric model.
Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.