An investigation of 3d visibility problems in which the viewing position moves along a straight flight path, with various assumptions on the complexity of the viewed scene.
Follows up "Polynomial size non-obtuse triangulation of polygons"; improves the number of triangles by relaxing the requirements on their angles. Again mostly subsumed by results of Bern et al described in "Faster circle packing".
Measures how well a sample of points from a set works as a discrete approximation to the continuous measure of shapes in the set, using algorithms based on Overmars and van Leeuwen's dynamic convex hull data structure. Some versions of the problem also involve subroutines for finding the deepest point in an arrangement of quadrants or orthants.
This paper was merged with results of Mitchell to form the journal version, "Computing the discrepancy with applications to supersampling patterns".
Combines "Computing the discrepancy" with experimental results of Mitchell on the discrepancies of various point sets, emphasizing the application of low-discrepancy sets to anti-aliasing in raytraced graphics.
This is the report from the ACM Workshop on Computational Topology run by Marshall and myself in Miami Beach, June 1999. It details goals, current research, and recommendations in this emerging area of collaboration between computer science and mathematics.
Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.