**Algorithms for media**.

D. Eppstein and J.-C. Falmagne.

arXiv:cs.DS/0206033.

Int. Conf. Ordinal and Symbolic Data Analysis, Irvine, 2003.

*Discrete Applied Mathematics*156 (8): 1308–1320, 2008.Falmagne recently introduced the concept of a medium, a combinatorial object encompassing hyperplane arrangements, topological orderings, acyclic orientations, and many other familiar structures. We find efficient solutions for several algorithmic problems on media: finding short reset sequences, shortest paths, testing whether a medium has a closed orientation, and listing the states of a medium given a black-box description.

**The skip quadtree: a simple dynamic data structure for multidimensional data.**

D. Eppstein, M. T. Goodrich, and J. Z. Sun.

*21st ACM Symp. Comp. Geom.,*Pisa, 2005, pp. 296–305.

arXiv:cs.CG/0507049.

*Int. J. Comp. Geom. & Appl.*18(1-2): 131–160, 2008.We describe a data structure consisting of a sequence of compressed quadtrees for successively sparser samples of an input point set, with connections between the same squares in successive members of the sequence. Using this structure, we can insert or delete points and answer approximate range queries and approximate nearest neighbor queries in O(log n) time per operation.

**Upright-quad drawing of \(st\)-planar learning spaces.**

D. Eppstein.

arXiv:cs.CG/0607094.

14th Int. Symp. Graph Drawing, Karlsruhe, Germany, 2006.

Springer,*Lecture Notes in Comp. Sci.*4372, 2007, pp. 282–293.

*J. Graph Algorithms and Applications*12 (1): 51–72, 2008 (special issue for GD'06).We consider graph drawing algorithms for learning spaces, a type of \(st\)-oriented partial cube derived from antimatroids and used to model states of knowledge of students. We show how to draw any \(st\)-planar learning space so all internal faces are convex quadrilaterals with the bottom side horizontal and the left side vertical, with one minimal and one maximal vertex. Conversely, every such drawing represents an \(st\)-planar learning space. We also describe connections between these graphs and arrangements of translates of a quadrant.

**Recognizing partial cubes in quadratic time**.

D. Eppstein.

arXiv:0705.1025.

*19th ACM-SIAM Symp. Discrete Algorithms,*San Francisco, 2008, pp. 1258–1266.

*J. Graph Algorithms and Applications*15 (2): 269–293, 2011.We show how to test whether a graph is a partial cube, and if so embed it isometrically into a hypercube, in time O(n

^{2}), improving previous O(nm)-time solutions; here n is the number of vertices and m is the number of edges. The ideas are to use bit-parallelism to speed up previous approaches to the embedding step, and to verify that the resulting embedding is isometric using an all-pairs shortest path algorithm from "algorithms for media".(slides)

**The Complexity of Bendless Three-Dimensional Orthogonal Graph Drawing**.

D. Eppstein.

arXiv:0709.4087.

*Proc. 16th Int. Symp. Graph Drawing*, Heraklion, Crete, 2008.

Springer,*Lecture Notes in Comp. Sci.*5417, 2009, pp. 78–89.

*J. Graph Algorithms and Applications*17 (1): 35–55, 2013.Defines a class of orthogonal graph drawings formed by a point set in three dimensions for which axis-parallel line contains zero or two vertices, with edges connecting pairs of points on each nonempty axis-parallel line. Shows that the existence of such a drawing can be defined topologically, in terms of certain two-dimensional surface embeddings of the same graph. Based on this equivalence, describes algorithms, graph-theoretic properties, and hardness results for graphs of this type.

(Slides from talk at U. Arizona, February 2008 – Slides from GD08) )

**Learning sequences**.

D. Eppstein.

arXiv:0803.4030.

How to implement an antimatroid, with applications in computerized education.

**Principles of Graph Drawing**.

D. Eppstein.

Talk at Inst. for Mathematical Behavioral Sciences, May 2008.

Talk at Technical University of Eindhoven, September 2008.**Approximate Topological Matching of Quadrilateral Meshes**.

D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf.

*Proc. IEEE Int. Conf. Shape Modeling and Applications (SMI 2008)*, Stony Brook, New York, pp. 83–92.

*The Visual Computer*25 (8): 771–783, 2009.We formalize problems of finding large approximately-matching regions of two related but not completely isomorphic quadrilateral meshes, show that these problems are NP-complete, and describe a natural greedy heuristic that is guaranteed to find good matches when the mismatching parts of the meshes are small.

(Preprint)

**Motorcycle graphs: canonical quad mesh partitioning**.

D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf.

*Proc. 6th Symp. Geometry Processing*, Copenhagen, Denmark, 2008.

*Computer Graphics Forum*27 (5): 1477–1486, 2008.We use a construction inspired by the motorcycle graphs previously used in straight skeleton construction, to partition quadrilateral meshes into a small number of structured submeshes. Our construction is canonical in that two copies of the same mesh will always be partitioned in the same way, and can be used to speed up graph isomorphism computations for geometric models in feature animation.

**Straight skeletons of three-dimensional polyhedra**.

G. Barequet, D. Eppstein, M. T. Goodrich, and A. Vaxman.

arXiv:0805.0022.

*Proc. 16th European Symp. Algorithms*, Karlsruhe, Germany, 2008.

Springer,*Lecture Notes in Comp. Sci.*5193, 2008, pp. 148–160.A straight skeleton is defined by the locus of points crossed by the edges and vertices of a polyhedron as it undergoes a continuous shrinking process in which the faces move inwards at constant speed. We resolve some ambiguities in the definition of these shapes, define efficient algorithms for polyhedra with axis-parallel faces, show that arbitrary polyhedra have strictly more complicated straight skeletons, and report on results from an implementation of our algorithm for arbitrary polyhedra.

**Succinct greedy geometric routing using hyperbolic geometry**.

D. Eppstein and M. T. Goodrich.

arXiv:0806.0341.

*Proc. 16th Int. Symp. Graph Drawing*, Heraklion, Crete, 2008

(under the different title "Succinct greedy graph drawing in the hyperbolic plane"),

Springer,*Lecture Notes in Comp. Sci.*5417, 2009, pp. 14–25.

*IEEE Transactions on Computing*60 (11): 1571–1580, 2011.Greedy drawing is an idea for encoding network routing tables into the geometric coordinates of an embedding of the network, but most previous work in this area has ignored the space complexity of these encoded tables. We refine a method of R. Kleinberg for embedding arbitrary graphs into the hyperbolic plane, which uses linearly many bits to represent each vertex, and show that only logarithmic bits per point are needed.

**Isometric diamond subgraphs**.

D. Eppstein.

arXiv:0807.2218.

*Proc. 16th Int. Symp. Graph Drawing*, Heraklion, Crete, 2008.

Springer,*Lecture Notes in Comp. Sci.*5417, 2009, pp. 384–389.

We describe polynomial time algorithms for determining whether an undirected graph may be embedded in a distance-preserving way into the hexagonal tiling of the plane, the diamond structure in three dimensions, or analogous structures in higher dimensions. The graphs that may be embedded in this way form an interesting subclass of the partial cubes.

(Slides)

**Studying (non-planar) road networks through an algorithmic lens**.

D. Eppstein, and M. T. Goodrich.

arXiv:0808.3694.

*Proc. 16th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information Systems (ACM GIS 2008)*, Article 16 (best paper award).

Invited talk at INFORMS 2009, San Diego.We examine US road network data and show that, contrary to the assumptions of much past GIS work, these networks are highly nonplanar. We introduce a class of "multiscale dispersed" networks that better fit the data; these networks are defined by a family of disks of varying sizes such that, if a small number of outliers is removed, the remaining disks cover each point of the plane a constant number of times. As we show, these networks have good graph separators, allowing for efficient algorithms for minimum spanning trees, graph Voronoi diagrams, and related problems.

**Self-overlapping curves revisited**.

D. Eppstein and E. Mumford.

arXiv:0806.1724.

*20th ACM-SIAM Symp. Discrete Algorithms,*New York, 2009, pp. 160–169.

We consider problems of determining when a curve in the plane is the projection of a 3d surface with no vertical tangents. Several problems of this type are NP-complete, but can be solved in polynomial time if a casing of the curve is also given.

**Linear-time algorithms for geometric graphs with sublinearly many crossings**.

D. Eppstein, M. T. Goodrich, and D. Strash.

arXiv:0812.0893.

*20th ACM-SIAM Symp. Discrete Algorithms,*New York, 2009, pp. 150–159.

*SIAM J. Computing*39 (8): 3814–3829, 2010.If a connected graph corresponds to a set of points and line segments in the plane, in such a way that the number of crossing pairs of line segments is sublinear in the size of the graph by an iterated-log factor, then we can find the arrangement of the segments in linear time. It was previously known how to find the arrangement in linear time when the number of crossings is superlinear by an iterated-log factor, so the only remaining open case is when the number of crossings is close to the size of the graph.

**Finding large clique minors is hard**.

D. Eppstein.

arXiv:0807.0007.

*J. Graph Algorithms and Applications*13 (2): 197–204, 2009.Proves that it's NP-complete to compute the Hadwiger number of a graph.

**Planar Voronoi diagrams for sums of convex functions, smoothed distance and dilation**.

M. Dickerson, D. Eppstein, and K. Wortman.

arXiv:0812.0607.

*7th Int. Symp. Voronoi Diagrams in Science and Engineering (ISVD 2010)*, Quebec City, Canada, pp. 13–22.Investigates Voronoi diagrams for a "smoothed distance" in which the distance between two points p and q is inversely weighted by the perimeter of triangle opq for a fixed point o, its relation to dilation of star networks centered at o, and its generalization to minimization diagrams of certain convex functions. When the function to be minimized is suitably well-behaved, its level sets form pseudocircles, the bisectors of the minimization diagram form pseudoline arrangements, and the diagram itself has linear complexity.

Years – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine

Semi-automatically filtered from a common source file.