The total complexity of the cells in a line arrangement that are cut by another line is at most 15n/2. The complexity of cells cut by a convex k-gon is O(n α(n,k)). The first bound is tight, but it remains open whether the second is, or whether only linear complexity is possible.
An investigation of 3d visibility problems in which the viewing position moves along a straight flight path, with various assumptions on the complexity of the viewed scene.
Finds boundary representations of CSG objects. Uses techniques from dynamic graph algorithms, including a tree partitioning technique of Frederickson and a new data structure for maintaining the value of a Boolean expression with changing variables in time O(log n / log log n) per update.
This is the report from the ACM Workshop on Computational Topology run by Marshall and myself in Miami Beach, June 1999. It details goals, current research, and recommendations in this emerging area of collaboration between computer science and mathematics.
We introduce the fatness parameter of a 4-dimensional polytope P, (f1+f2)/(f0+f3). It is open whether all 4-polytopes have bounded fatness. We describe a hyperbolic geometry construction that produces 4-polytopes with fatness > 5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes and an improved lower bound on the average kissing number of finite sphere packings in R3. We show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.
Natural neighbor interpolation is a well-known technique for fitting a surface to scattered data, with some nice properties including smoothness everywhere except the data and exact fitting of linear functions. The interpolated surface is formed from a weighted combination of data values at the "natural neighbors" (neighbors in the Delaunay triangulation), with weights related to Voronoi cell areas. We describe a variation of natural neighbor interpolation, using different weights based on Delaunay circle angles, that remains invariant when the data is transformed by Möbius transformations, and reconstructs harmonic functions in the limit of dense data on a circle.
We consider the problem of finding a large color space that can be generated by all units in multi-projector tiled display systems. Viewing the problem geometrically as one of finding a large parallelepiped within the intersection of multiple parallelepipeds, and using colorimetric principles to define a volume-based objective function for comparing feasible solutions, we develop an algorithm for finding the optimal gamut in time O(n3), where n denotes the number of projectors in the system. We also discuss more efficient quasiconvex programming algorithms for alternative objective functions based on maximizing the quality of the color space extrema.
This talk, for the CSE session on combinatorial scientific computing, surveys my work with Marshall Bern on optimal Möbius transformation and Möbius-invariant natural neighbor transformation.
(Slides)
We find an example of a three-dimensional polyhedron, with four edges per vertex, that can not be placed in convex position with all vertices on the surface of a sphere.
The problem is to place as few wedges as possible in the plane such that a desired polygon can be formed as some monotone Boolean combination of the wedges. The motivation is for wireless devices to prove that they are located within a target area by their ability to communicate with a subset of base stations (the wedges). We provide upper and lower bounds on the number of wedges needed for several classes of polygons.
A straight skeleton is defined by the locus of points crossed by the edges and vertices of a polyhedron as it undergoes a continuous shrinking process in which the faces move inwards at constant speed. We resolve some ambiguities in the definition of these shapes, define efficient algorithms for polyhedra with axis-parallel faces, show that arbitrary polyhedra have strictly more complicated straight skeletons, and report on results from an implementation of our algorithm for arbitrary polyhedra.
We consider problems of determining when a curve in the plane is the projection of a 3d surface with no vertical tangents. Several problems of this type are NP-complete, but can be solved in polynomial time if a casing of the curve is also given.
Investigates Voronoi diagrams for a "smoothed distance" in which the distance between two points p and q is inversely weighted by the perimeter of triangle opq for a fixed point o, its relation to dilation of star networks centered at o, and its generalization to minimization diagrams of certain convex functions. When the function to be minimized is suitably well-behaved, its level sets form pseudocircles, the bisectors of the minimization diagram form pseudoline arrangements, and the diagram itself has linear complexity.
A partition of a rectangle into smaller rectangles is "area-universal" if any vector of areas for the smaller rectangles can be realized by a combinatorially equivalent partition. These partitions may be applied, for instance, to cartograms, stylized maps in which the shapes of countries have been distorted so that their areas represent numeric data about the countries. We characterize area-universal layouts, describe algorithms for finding them, and discuss related problems. The algorithms for constructing area-universal layouts are based on the distributive lattice structure of the set of all layouts of a given dual graph.
Merged with "Orientation-constrained rectangular layouts" to form the journal version, "Area-universal and constrained rectangular layouts".
We investigate distance from a pair of sites defined as the sum of the distances to each site minus a parameter times the distance between the two sites. A given set of n sites defines n(n-1)/2 pairs and n(n-1)/2 distances in this way, from which we can determine a Voronoi diagram. As we show, for a wide range of parameters, the diagram has relatively few regions because the pairs that have nonempty Voronoi regions must be Delaunay edges.
We show how to find a stylized map in which regions have been replaced by rectangles, preserving adjacencies between regions, with constraints on the orientations of adjacencies between regions. For an arbitrary dual graph representing a set of adjacencies, and an arbitrary set of orientation constraints, we can determine whether there exists a rectangular map satisfying those constraints in polynomial time. The algorithm is based on a representation of the set of all layouts for a given dual graph as a distributive lattice, and on Birkhoff's representation theorem for distributive lattices.
Merged with "Area-universal rectangular layouts" to form the journal version, "Area-universal and constrained rectangular layouts".
(Slides)
We survey problems in computational geometry that may be solved by constructing an auxiliary graph from the problem and solving a graph-theoretic problem on the auxiliary graph. The problems considered include the art gallery problem, partitioning into rectangles, minimum diameter clustering, bend minimization in cartogram construction, mesh stripification, optimal angular resolution, and metric embedding.
Considers heuristic modifications to the tree-cotree decomposition of my earlier paper Dynamic generators of topologically embedded graphs, to make the set of fundamental cycles found as part of the decomposition follow the contours of a given geometric model.
Shows both theoretically and experimentally that the number of times a random line crosses a road network is asymptotically upper bounded by the square root of the number of road segments.
Shows that, when the tight span of a finite metric space is homeomorphic to a subset of the plane, it has the geometry of a Manhattan orbifold and can be constructed in time linear in the size of the input distance matrix. As a consequence, it can be tested in the same time whether a metric space is isometric to a subset of the L1 plane.
Surveys hyperconvex metric spaces, tight spans, and my work on Manhattan orbifolds, tight span construction, and optimal embedding into star metrics.
We analyze the security of an online geometric database that allows planar nearest-neighbor queries but that does not wish the entire database to be copied by a competitor. We show that, under several models of how the query answers are returned, the database can be copied in a linear or near-linear number of queries. Our method for the competitor to copy the database is based on simulating Fortune's sweep-line algorithm for Voronoi diagrams, backtracking when the simulation discovers the existence of another point that invalidates earlier parts of the Voronoi diagram construction, and using retroactive data structures to perform the backtracking steps efficiently.
We survey regular labelings for straight-line embedding of planar graphs on grids, rectangular partitions, and orthogonal polyhedra, and the many similarities between these different types of labeling.
An algorithm is data-oblivious if the memory access patterns it makes depend only on the input size and not on the actual input values; data-oblivious algorithms are an important building block of cryptographic protocols that allow algorithmic tasks to be solved by parties who each have some subset of the input data that they do not wish to reveal. We show how to solve several basic geometric problems data-obliviously, including construction of convex hulls, quadtrees, and well-separated pair decompositions, and computation of closest pairs and all nearest neighbors.
Suppose that P is the intersection of n halfspaces in D dimensions, but that the bounded faces of P are at most d-dimensional, for some d that is much smaller than D. Then in this case we show that the number of vertices of P is O(nd), independent of D. We also investigate related bounds on the number of bounded faces of all dimensions of P, and algorithms for efficiently listing the vertices and bounded faces of P.
We study the combinatorial complexity of generalized Voronoi diagrams that determine the closest two point sites to a query point, where the distance from the query point to a pair of sites is a combination of the individual distances to the sites and the distance from one site in the pair to the other.
We study the recursive partitions of rectangles into sets of rectangles, and partitions of those rectangles into smaller rectangles, to form stylized visualizations of hierarchically subdivided geographic regions. There are several variations of varying difficulty depending on how much of the geographic information from the input we require the output to preserve.
We apply competitive analysis to the problem of deciding online which cell phone tower to change to when a phone moves out of the coverage region of the tower it is connected to. We show that, when the coverage regions have constant ply (at most a constant number of them overlap any point of the plane) it is possible to get within a constant factor of the minimum possible number of handovers that an offline algorithm could achieve.
We study the problem of matching geographic regions to points in a regular grid, minimizing the distance between each region's centroid and the corresponding grid point, and preserving as much as possible the relative orientations between pairs of regions.
A combined journal version of "Area-universal rectangular layouts" and "Orientation-constrained rectangular layouts".
We use a method based on intersecting obstacles with line segments in order to uniformly sample from obstacle surfaces in the probabilistic roadmap method for robot motion planning.
We show how to use invertible Bloom filters as part of range searching data structures that determine the differences between the members of two sets that lie in a given query range.
(Slides)
We study problems in which the input is a sequence of points in the plane and we wish to find, for each position in the sequence, the longest contiguous subsequence that begins at that position and has some geometric property. For many natural properties we can find all such maximal subsequences in linear or near-linear time.
(Slides)
We provide fast approximation algorithms for the farthest-first traversal of graph metrics.
We give an efficient algorithm for finding the smallest axis-parallel rectangle covering a given number of points out of a larger set of points in the plane.
We survey problems on finite sets of points in the Euclidean plane that are monotone under removal of points and depend only on the order-type of the points, and the subsets of points (forbidden configurations) that prevent a point set from having a given monotone property.
(CCCG talk slides – CCCG talk video – SCTD talk slides – Updates, errata, and reviews)
We conjecture, based on experiments, that approximating a convex shape by the set of grid points inside it, for a fine enough grid, and then finding the convex layers of the resulting point set, produces curves that are close to those produced by affine curve-shortening, a continuous process on smooth curves.
When matching fingerprints, the data involves planar points each of which has an associated direction. Motivated by this application, we consider point matching problems in which the distance between points combines both their translational distance and the rotation needed to make their directions align. We provide fast and simple approximation schemes for matching oriented point sets under the directed Hausdorff distance with different allowed groups of transformations.
We exhibit a hereditary property of planar point sets (depending only on the order type of a point set) such that under standard assumptions there is no fixed-parameter-tractable algorithm to find a k-point subset with the property. On the other hand, several natural classes of properties have FPT algorithms for this problem, including the properties that are true for all collinear point sets or false for at least one convex polygon.
(Slides)
Given a polygon with holes, it is #P-complete to determine how many triangulations it has.
(UCLA seminar talk slides — SoCG slides)
I survey results on characterizing the graphs formed on planar surfaces according to several natural processes: motorcycle graphs, Gilbert tessellations, and the contact graphs of line segments from needle-like crystal growth and crack formation; the graphs of planar soap bubble foams; and graphs representing the fold patterns of crumpled paper.
A sona drawing is a self-crossing curve in the plane that separates each of a given system of points into its own region. We show that it is hard to find the shortest such curve, and we explore how much shorter than the TSP it can be.
We find convex polyhedra with all faces triangular that cannot be realized with all faces isosceles, and new families of convex polyhedra with congruent isosceles-triangle faces.
We study how few points can be placed in a grid so that all remaining grid points are collinear with two of the placed points.
We investigate shapes whose congruent copies can cover the plane exactly \(k\) times per point, but not a number of times that is a nonzero integer smaller than \(k\). We find polyominoes with this property for all \(k\ge 2\), and convex integer-coordinate polygons with this property for \(k=5\) and for all \(k\ge 7\).
The rank of the Dehn invariant of an orthogonal polygon equals the minimum number of rectangles into which it can be transformed by axis-parallel cuts, translation, and gluing. This allows the minimum number of rectangles to be calculated in polynomial time.
(Slides)
For two-dimensional scenes consisting of mirrors and opaque walls that are either axis-parallel or with slope ±1, with integer endpoints, it is possible to determine the eventual destination of rational light rays in time polynomial in the description complexity of the scene, even though the number of reflections before a ray reaches this destination may be exponential. The solution involves transforming the problem into one involving interval exchange transformations and from there into another problem involving normal curves on topological surfaces.
(Slides)
Which convex polyhedra have the property that there exist two points on the surface of the polyhedron whose shortest path passes through all of the faces of the polyhedron? The answer is yes for the tetrahedron, and for certain prisms, but no for all other regular polyhedra.
For any point set, the numbers of non-crossing paths, non-crossing Hamiltonian paths, non-crossing surrounding polygons, and non-crossing Hamiltonian cycles can be bounded above and below by functions of two simple parameters: the minimum number of points whose deletion leaves a collinear subset, and the number of points interior to the convex hull. Because their bounds have the same form, the numbers of the two types of paths are bounded by polynomials of each other, as are the numbers of the two types of polygons. We use these relations to list non-crossing Hamiltonian paths and polygonalizations in time polynomial in the number of outputs.
Many computational geometry problems can be solved by transforming them into a graph problem on a geometric graph. When the graph has low width, for some form of graph width, this can often lead to efficient classical or parameterized algorithms. We survey the geometric graphs that always have low width, the geometric graphs that can have high width, and the opportunities for parameterization obtained by studying low-width instances of graphs that sometimes have high width.
We show that many constructions for dense geometric graphs produce graphs of unbounded flip-width, frustrating the search for natural classes of graphs that have bounded flip-width but unbounded twin-width.
Non-collinear point sets with integer distances must be finite, for strictly convex distance functions on the plane, for two-dimensional complete Riemannian manifolds of bounded genus, and for geodesic distance on convex surfaces in 3d.
We find algorithms and lower bounds for scheduling a sequence of release times for robots to follow the same path as each other, traversing the path at uniform speeds, and not colliding.
Geometry – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.