Natural neighbor interpolation is a well-known technique for fitting a surface to scattered data, with some nice properties including smoothness everywhere except the data and exact fitting of linear functions. The interpolated surface is formed from a weighted combination of data values at the "natural neighbors" (neighbors in the Delaunay triangulation), with weights related to Voronoi cell areas. We describe a variation of natural neighbor interpolation, using different weights based on Delaunay circle angles, that remains invariant when the data is transformed by Möbius transformations, and reconstructs harmonic functions in the limit of dense data on a circle.
Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.