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• A brief intro to R
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• Two useful nonparametric methods: bootstrap and 

permutation
• Power calculation and sample size
• Multiple comparisons
• Beyond basic methods
• Visualization
• Future topics



A Brief Intro to R
• S: open-source 1976: 

created Bell Labs

R: open-source
• 1991: Ross Ihaka and Robert 

Gentleman at the University of 
Auckland

• 1997: The Comprehensive R Archive 
Network (CRAN) was officially 
announced

• Over 10000+ packages. Examples
• 2001: bioconductor
• 2005: ggplot2 package released

S-Plus: commercial 
• 1988: founded and owned 

by a faculty member of UW
• …
• 2008: acquired by TIBCO



A Brief Intro to R

• Install R. You can choose either R or R Studio
• https://cran.r-project.org/

• Install R packages. 
• https://www.r-bloggers.com/2010/11/installing-r-

packages/

• reading and importing data into R
• https://www.r-bloggers.com/2015/04/r-tutorial-on-

reading-and-importing-excel-files-into-r/

https://www.r-bloggers.com/2010/11/installing-r-packages/
https://www.r-bloggers.com/2015/04/r-tutorial-on-reading-and-importing-excel-files-into-r/


Statistical Inference: Estimation

• Example: Novovax vaccine 
• Vaccine efficacy: 90.4%; 
• 95% confidence interval: [82.9, 94.6], P<0.001

• https://www.nejm.org/doi/full/10.1056/NEJMoa2116185?q
uery=featured_home

• https://apps.who.int/iris/bitstream/handle/10665/264550/
PMC2491112.pdf

• https://sphweb.bumc.bu.edu/otlt/mph-
modules/bs/bs704_confidence_intervals/bs704_confidence
_intervals8.html

https://www.nejm.org/doi/full/10.1056/NEJMoa2116185?query=featured_home
https://apps.who.int/iris/bitstream/handle/10665/264550/PMC2491112.pdf
https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_confidence_intervals/bs704_confidence_intervals8.html


Statistical Inference: Prediction



Statistical Inference: Hypothesis Testing

• Which test?

• Which model?





Which test?

• So many tests. For example,
• Parametric: one-sample t-test, two-sample t-test, 

ANOVA
• Nonparametric: Wilcoxon signed-rank test, Mann-

Whitney U-test, Kruska-Wallis test, permutation tests, 
• Chi-squared vs Fisher’s exact test
• Other considerations: one-sided vs two-sided, multiple 

comparisons
• How to decide?

• Scientific question (associated? Greater? Less?)
• Experimental design (independent?)
• Nature of data (continuous? sample size? normal?)

A case study: gender and obesity



Case study: Obesity and Gender

• Q1. Are men and women similar in obesity?
• Q2. Do women tend to be more obese than men
• Q3. Is obesity associated with gender?

wikipedia



Case study: Obesity and Gender

• Q1. Are men and women similar in obesity?
• For simplicity, we focus on a relatively homogenous 

population, such as all adults in US
• What is your choice of response variable? 

• Continuous: BMI
• Categorical:

• Binary: Obesity (BMI>30) vs non-obesity
• Weight status: underweight (<18.5), normal (18.5-24.9), 

overweight (25-29.9), obesity (>30)

• Study design:
• Are observations independent?
• Is the sample size large enough?



Case study: Obesity and Gender

• Q1. Are men and women similar in obesity?
Continuous 
measurements (BMI)

Binary measurement 
(obesity)

Independent 
observations

Two-sample t-test or 
Wilcoxon signed-rank 
test

Chi-squared test or
Fisher’s exact test

Couples (data are 
paired)

Paired t-test (eqt one-
sample t-test), 
Wilcoxon signed-rank 
test

Mc-Nemar’s test or 
binomial sign test

Note: nonparametric or exact tests are underlined. They are recommended for 
small sample sizes.



Case study: Obesity and Gender

• Q2. Do women tend to be more obese than men
• One-sided/tailed vs two-sided/tailed

• Q3. Is obesity associated with gender?
• The answer to question 1 provides partial information
• For observational studies, we prefer to prevent spurious 

association as much as we can by accounting for 
confounding factors. As a result, regression is preferred

• Continuous responses: linear regression. Transformation will be 
conducted if necessary

• Other type of responses: generalized linear regression such as 
logistic regression



One-sample t-test

• Student’s t-distribution

• It was derived in late 19th

century

• It gets its name from a 
British brewer who used 
“Student” as his pen-name 
(1908)

• Gosset developed the t-test 
to test the quality of stout



One-sample t-test
• Standard deviation vs standard error

• Population characteristics (often unknown):
• Population mean: μ, which is 0 in this example.
• Variance: σ2. It is square root, i.e. σ,  is called the standard deviation (SD). 

• Sample characteristics
• Sample mean: 𝑥̅𝑥 = (𝑥𝑥1 + ⋯+ 𝑥𝑥𝑛𝑛)/𝑛𝑛
• Sample variance: 𝑠𝑠2 = 1

𝑛𝑛−1
∑𝑖𝑖=1𝑛𝑛 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2

• �𝜇𝜇 = 𝑥̅𝑥, �𝜎𝜎2 = 𝑠𝑠2

• Variance of the sample mean: 𝑣𝑣𝑣𝑣𝑣𝑣 𝑥̅𝑥 = 𝜎𝜎2

𝑛𝑛
. �𝑣𝑣𝑣𝑣𝑣𝑣 𝑥̅𝑥 =

�𝜎𝜎2

𝑛𝑛
= 𝑠𝑠2

𝑛𝑛

• Standard error (SE) of the sample mean: se 𝑥̅𝑥 = �𝑣𝑣𝑣𝑣𝑣𝑣 𝑥̅𝑥 = 𝑠𝑠
𝑛𝑛

X~ (0,σ)

iid

iid:
independent and 
identically distributed



One-sample t-test

• Consider a population with mean 𝜇𝜇 and standard 
deviation 𝜎𝜎. 

, 𝜎𝜎2/n)



One-sample t-test

• What is t-test?
• Suppose 𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0 (very often 𝜇𝜇0=0)
• What does (𝑥̅𝑥- 𝜇𝜇0) tell you? If we change the unit of the 

measurement, the value will change!
• A better quantity/statistic is the “standardized” version:

𝑡𝑡 =
𝑥̅𝑥− 𝜇𝜇0
𝑠𝑠𝑠𝑠(𝑥̅𝑥)

=
𝑥̅𝑥− 𝜇𝜇0
𝑠𝑠/ 𝑛𝑛

• How to use the t-statistic? We compare an 
observed t value to a reference distribution, i.e., 
the distribution under 𝐻𝐻0.



One-sample t-test

• The NULL distribution (when 𝐻𝐻0 is true)
• Under the assumption of iid and normality, we can 

derive the distribution of the t-statistic under the null 
hypothesis. The distribution is known at t-distribution 
with (n-1) degrees of freedom

• If normality does not hold, which is likely true, for large 
sample sizes, the t-distribution is still a good 
approximation



One-sample t-test

• One-sided/tailed vs two-sided/tailed. 

:parameter value under H0
:sample mean
:sample standard deviation

n : sample size.

pdf of tn-1

s
x

0µ



One-sample t-test
• One-sided/tailed vs two-sided/tailed. 
• E.g., n=10, t=2.4,

https://www.omnicalculator.com/statistics/t-test#p-value-from-t-test

𝐻𝐻0: 𝜇𝜇 = 𝜇𝜇0

𝐻𝐻1: 𝜇𝜇 < 𝜇𝜇0

𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0

𝐻𝐻1: 𝜇𝜇 ≠ 𝜇𝜇0

https://www.omnicalculator.com/statistics/t-test#p-value-from-t-test


One-sample t-test vs Z-test

• The difference between t-test and z-test is the 
choice of the reference/null distribution

• A Z-test uses the standard normal (N(0,1)) as the 
reference distribution

• A t-test uses t as the reference distribution, which is 
more accurate when the sample size is not large (rule of 
thumb: n>25,  30?) 

• What if the histogram is far from a bell shape or the 
sample size is small? Non-parametric (Wilcoxon 
signed-rank test). We will demonstrate a similar 
idea for two-sample t-test

N(0,1)



Paired t-test

• Compare men and women’s bmi using couples

• Apply the one-sample t-test to the d’s to test

• Note that two-sample t-test should not be used here. Why?

Couple ID Husband’s bmi Wife’s bmi Difference

1 28 35 d1=-7

2 25 27 d2=-2

…

49 24 21 d49=3

50 22 26 d50=-4

𝐻𝐻0: 𝜇𝜇𝑑𝑑 = 0



Two-sample t-test: equal variance

• Suppose that we have two independent samples
• X1, …, Xm from 𝑁𝑁(𝜇𝜇𝑋𝑋,𝜎𝜎2)
• Y1, …, Yn from 𝑁𝑁(𝜇𝜇𝑌𝑌,𝜎𝜎2)

• We are interested in 𝐻𝐻0: 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌
• It can be shown that 



Two-sample t-test: equal variance

• Similar to the one-sample t-test, we standardize 
( �𝑋𝑋 − �𝑌𝑌) by its standard error (se), which is
, where

• The t-statistic is 

𝐻𝐻0: 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌



Two-sample t-test: unequal variance

• The assumption of equal variance can be relaxed
• Suppose that we have two independent samples

• X1, …, Xm from 𝑁𝑁(𝜇𝜇𝑋𝑋,𝜎𝜎𝑋𝑋2)
• Y1, …, Yn from 𝑁𝑁(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2)

• We are interested in 𝐻𝐻0: 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌
• We have

where

𝐻𝐻0:𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌



Nonparametric tests

• They are distribution-free
• Some nonparametric tests are ranked-based. For 

example
• Wilcoxon signed-rank test (for one-sample)
• Mann-Whitney U-test (for two-sample)
• Kruska-Wallis test (for >= two samples)
• Spearman’s r (more robust to outliers than Pearson’s r)

• Permutation-based test
• Resampling methods



Mann-Whitney U-test tests

https://www.nature.com/articles/nmeth.2937

• We used to rely on tables
• Nowadays software reports 

p-values obtained from 
either exact or approximate 
distributions



Back to “which test?”

• Q1. Are men and women similar in obesity?
Continuous 
measurements (BMI)

Binary measurement 
(obesity)

Independent 
observations

Two-sample t-test or 
Wilcoxon signed-rank 
test

Chi-squared test or
Fisher’s exact test

Couples (data are 
paired)

Paired t-test (eqt one-
sample t-test), 
Wilcoxon signed-rank 
test

Mc-Nemar’s test or 
binomial sign test

Note: nonparametric or exact tests are underlined. They are recommended for 
small sample sizes.



Binary X, binary Y

obesity
gender Non-obese (0) Obese (1) Total

Male 43 (𝑛𝑛𝑚𝑚𝑚, 𝑝𝑝𝑚𝑚𝑚) 9 (𝑛𝑛𝑚𝑚𝑚, 𝑝𝑝𝑚𝑚𝑚) 52 (𝑝𝑝𝑚𝑚)

Female 44 (𝑛𝑛𝑓𝑓𝑓, 𝑝𝑝𝑓𝑓𝑓) 4 (𝑛𝑛𝑓𝑓𝑓,𝑝𝑝𝑓𝑓𝑓) 48 (𝑝𝑝𝑓𝑓)

Total 87 (𝑛𝑛0, 𝑝𝑝0) 13 (𝑛𝑛1, 𝑝𝑝1) 100 (n, 1)

http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-d

Prop of obesity

𝑝𝑝𝑚𝑚𝑚
𝑝𝑝𝑚𝑚𝑚 + 𝑝𝑝𝑚𝑚𝑚

=
𝑝𝑝𝑚𝑚𝑚
𝑝𝑝𝑚𝑚

𝑝𝑝𝑓𝑓𝑓
𝑝𝑝𝑓𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑓

=
𝑝𝑝𝑓𝑓𝑓
𝑝𝑝𝑓𝑓

𝑝𝑝𝑓𝑓𝑓 + 𝑝𝑝𝑚𝑚𝑚

• Useful measurements
• Difference in proportions:
• Relative risk (RR):

• Odds ratio (OR):  

𝑝𝑝𝑓𝑓1
𝑝𝑝𝑓𝑓

− 𝑝𝑝𝑚𝑚𝑚
𝑝𝑝𝑚𝑚

= 
𝑝𝑝𝑓𝑓1𝑝𝑝𝑚𝑚0−𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚

𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚
𝑝𝑝𝑓𝑓1/𝑝𝑝𝑓𝑓
𝑝𝑝𝑚𝑚1/𝑝𝑝𝑚𝑚

= 𝑝𝑝𝑓𝑓𝑓
𝑝𝑝𝑓𝑓

𝑝𝑝𝑚𝑚
𝑝𝑝𝑚𝑚1

=
(𝑝𝑝𝑓𝑓−𝑝𝑝𝑓𝑓0)(𝑝𝑝𝑚𝑚0+𝑝𝑝𝑚𝑚𝑚)

𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚𝑚
= 𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚𝑚+𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚−𝑝𝑝𝑓𝑓0𝑝𝑝𝑚𝑚𝑚

𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚𝑚

= 1 +
𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚 − 𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚

𝑝𝑝𝑓𝑓𝑝𝑝𝑚𝑚𝑚
𝑝𝑝𝑓𝑓𝑓/𝑝𝑝𝑓𝑓0
𝑝𝑝𝑚𝑚𝑚/𝑝𝑝𝑚𝑚0

= 𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚0

𝑝𝑝𝑓𝑓0𝑝𝑝𝑚𝑚𝑚
=1+ 

𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚−𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚

𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚

risks

odds



Binary X, Binary Y: Test Statistics

• To estimate the quantities, we can simply replace p
with n

• Test statistics
• Z-test for difference in proportions:

http://www.sthda.com/english/wiki/two-proportions-z-test-in-r

• RR: 

• OR:

Z =

𝑛𝑛𝑓𝑓𝑓
𝑛𝑛𝑓𝑓

− 𝑛𝑛𝑚𝑚𝑚
𝑛𝑛𝑚𝑚

(𝑛𝑛1𝑛𝑛 )(1−𝑛𝑛1𝑛𝑛 )(1/𝑛𝑛𝑓𝑓+1/𝑛𝑛𝑚𝑚)

log(
𝑛𝑛𝑓𝑓𝑓𝑛𝑛𝑚𝑚0
𝑛𝑛𝑚𝑚𝑚𝑛𝑛𝑓𝑓0

)

1
𝑛𝑛𝑓𝑓𝑓

+ 1
𝑛𝑛𝑓𝑓𝑓

+ 1
𝑛𝑛𝑚𝑚𝑚

+ 1
𝑛𝑛𝑚𝑚𝑚

log(
𝑛𝑛𝑓𝑓𝑓
𝑛𝑛𝑓𝑓

𝑛𝑛𝑚𝑚
𝑛𝑛𝑚𝑚𝑚

)

1
𝑛𝑛𝑓𝑓
+ 1
𝑛𝑛𝑓𝑓𝑓

+ 1
𝑛𝑛𝑚𝑚

+ 1
𝑛𝑛𝑚𝑚𝑚

http://www.sthda.com/english/wiki/two-proportions-z-test-in-r


Binary X, binary Y

• Different terms might be preferred in different 
scenarios. For example, 

• RR is preferred in randomized trials
• OR is preferred in case-control studies because …

• The null hypotheses of them are all equivalent to

• Thus, it is not surprising that they share test 
statistics. For example,

• When sample sizes are small, Fisher’s exact test should 
be used

𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚 − 𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑚𝑚𝑚 = 0

Lady testing tea
https://en.wikipedia.org/wiki/Fisher%27s_exact_test



Chi-squared Tests for Categorical 
Variables
• The idea is to evaluate significance by comparing the 

observed data to the expected under the null hypothesis.
• It turns out that the expected tables for “no difference in 

proportions”, “RR=1”, and “OR=1” are the same

obesity
gender Non-obese (0) Obese (1)

Male 𝑛𝑛𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑚 =
𝑛𝑛𝑚𝑚𝑛𝑛0
𝑛𝑛 𝑛𝑛𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑚 =

𝑛𝑛𝑚𝑚𝑛𝑛1
𝑛𝑛

Female 𝑛𝑛𝑓𝑓𝑓, 𝑒𝑒𝑓𝑓𝑓 =
𝑛𝑛𝑓𝑓𝑛𝑛0
𝑛𝑛 𝑛𝑛𝑓𝑓𝑓, 𝑒𝑒𝑓𝑓𝑓 =

𝑛𝑛𝑓𝑓𝑛𝑛1
𝑛𝑛

Observed and Expected Counts

𝑋𝑋 = ∑𝑖𝑖=1𝐼𝐼 ∑𝑗𝑗=1
𝐽𝐽 (𝑛𝑛𝑖𝑖𝑖𝑖−𝑒𝑒𝑖𝑖𝑖𝑖)2

𝑒𝑒𝑖𝑖𝑖𝑖
~ 𝜒𝜒(𝐼𝐼−1)(𝐽𝐽−1)

2
𝐻𝐻0

, for large sample

I=J=2 in this example



Back to “which test?”

• Q1. Are men and women similar in obesity?
Continuous 
measurements (BMI)

Binary measurement 
(obesity)

Independent 
observations

Two-sample t-test or 
Wilcoxon signed-rank 
test

Chi-squared test or
Fisher’s exact test

Couples (data are 
paired)

Paired t-test (eqt one-
sample t-test), 
Wilcoxon signed-rank 
test

Mc-Nemar’s test or 
binomial sign test

Note: nonparametric or exact tests are underlined. They are recommended for 
small sample sizes.



Paired Binary Data
• 50 couples and their obesity status
• The null hypothesis is 

• H0: Pr(obese|wife)=Pr(obese|husband), i.e., 
• 𝑝𝑝01 + 𝑝𝑝11= 𝑝𝑝10+ 𝑝𝑝11, i.e., 𝑝𝑝01= 𝑝𝑝10, i.e.,
• H0: 𝑝𝑝01

𝑝𝑝01+𝑝𝑝10
= 𝑝𝑝10
𝑝𝑝01+𝑝𝑝10

= 1
2

• For small sample size, use binomial test 

wife
Husband Non-obese (0) Obese (1)

Non-obese (0) 20 (𝑛𝑛00, 𝑝𝑝00) 15 (𝑛𝑛01, 𝑝𝑝01)

Obese (1) 5 (𝑛𝑛10, 𝑝𝑝10) 10 (𝑛𝑛11,𝑝𝑝11)

𝑋𝑋 = (𝑛𝑛10 −
1
2 (𝑛𝑛10 + 𝑛𝑛01))2 + (𝑛𝑛01 −

1
2 (𝑛𝑛10 + 𝑛𝑛01))2 =

(𝑛𝑛01 − 𝑛𝑛10)2

𝑛𝑛01 + 𝑛𝑛10
~ 𝜒𝜒12
𝐻𝐻0

for large sample

McNemar’s test

R example:
https://rpubs.com/mbh038/614538

https://rpubs.com/mbh038/614538


Two Useful Nonparametric Methods: 
Bootstrap and Permutation (re-randomization)

• Motivating example: Inference of a ratio parameter

• Average of Ratios

• Experiment condition A Sugar (3 tech replicates) Alcohol ratio

• Biological replicate #1 20, 25, 30 (mean=25) 100, 110,120 (mean=110) 25/110

• Biological replicate #2 30, 31, 32 (mean=31) 120, 130,140 (mean=130) 31/130

• … … …

• Biological replicate #10 35, 38, 38 (mean=37) 160, 140, 120 (mean=140) 37/140

• Experiment condition B Sugar (3 tech replicates) Alcohol

• Biological replicate #1 24, 30, 30 (mean=28) 95, 105,115 (mean=105) 28/105

• Biological replicate #2 36, 33, 39 (mean=36) 120, 120,105 (mean=115) 36/115

• … … …

• Biological replicate #20 42, 45, 45 (mean=44) 120, 129, 120 (mean=123) 44/123

average of ratios �𝑅𝑅𝐴𝐴

average of ratios �𝑅𝑅𝐵𝐵



Compare Two Ratios (Average of Ratios)

• Use �𝑅𝑅𝐴𝐴 − �𝑅𝑅𝐵𝐵 to estimate the true difference
• How to quantify uncertainty?

• Method 1: this is a two-sample problem. Use “t.test” in 
R

• Method 2: Use bootstrap to find standard errors and 
confidence intervals, use permutations/re-
randomizations to compute p-values



Bootstrap: example

• The idea of bootstrap is to find the sampling distribution of an 
estimator/statistic by resampling with replacement

• Example:
• Consider �𝑅𝑅𝐴𝐴 − �𝑅𝑅𝐵𝐵, which is an estimator of the underlying the true difference in ratio
• Resample with replacement (stratified based on experimental conditions)
• For each resampled data set, compute �𝑅𝑅𝐴𝐴 − �𝑅𝑅𝐵𝐵
• Do in many times. The results provide an empirical sampling distribution of estimator

https://online.stat.psu.edu/stat555/node/119/



Permutation/re-randomization 
test
• The idea is to find the null distribution of a statistic 

by randomly shuffling labels (such as the cases and 
control labels) 



Bootstrap vs Permutation

• Bootstrap
• Idea: sampling with replacement. Stratification might be needed
• Confidence intervals can obtained easily. For example, by using 

empirical quantiles
• Can also produce p-values. Remark: to produce p-values, 

resampling must be modified in a way that reflects the null 
hypothesis. 

• Permutation
• Idea: shuffling group memberships to produce permuted data
• Produce p-values 
• Easy to implement

• Advanced consideration
• Standardized statistics tend to be more accurate:
• Hall, P. and Wilson, S.R., 1991. Two guidelines for bootstrap 

hypothesis testing. Biometrics, pp.757-762.



Compare Two Ratios (Average of Ratios)
• set.seed(20220128) #to ensure reproducibility
• #observations 1-10 are from population A; 11-30 are from population B
• y=c(25/110, runif(7, 0.2, 0.3), 31/130, 37/140,
• 28/105, 36/115, runif(17, 0.25, 0.3), 44/123)
• ex.cond=c(rep(1,10), rep(2,20))

• #this is two-sample problem. We can use t-distributions to construct c.i.
• t.test(y[1:10], y[11:30])

• #define the function you want to evaluate
• av.of.ratio=function(y,indices) #the indices argument is needed to bootstrap samples
• {  return(mean(y[indices[1:10]])-mean(y[indices[11:30]])) }

• #use bootstrap to find confidence intervals
• obj1=boot(y, av.of.ratio, R=1000, strata=ex.cond)
• names(obj1)
• boot.ci(obj1, type="perc")

• #visualize the sampling distribution of the statistic
• #tye "?points" to see how to use it
• ?points
• hist(obj1$t, xlab="values from bootstrap samples", main="histogram of bootstrap values")
• points(obj1$t0, 0, pch=17, col=2, cex=2) #the location of the statistic using the observed data

Use Bootstrap to produced 95% confidence interval



Compare Two Ratios (Average of Ratios)



Compare Two Ratios (Average of Ratios)

• #compute p-values using permutations
• set.seed(20220128) #to ensure reproducibility
• org.diff=av.of.ratio(y, 1:30)
• perm.diff=rep(0,10000)
• perm.diff[1]=org.diff
• for(i in 2:10000)
• {
• perm.diff[i]=av.of.ratio(y,sample(1:30))
• }
• mean(abs(perm.diff)>=abs(org.diff)) #two-sided p-value
• hist(perm.diff, xlab="values from 1000 permutations", main="histogram of 

permutated values")
• points(org.diff, 0, pch=17, col=2, cex=2)
• text(org.diff, 5, "observed", col=2)

Use permutations to calculate p-value



Compare Two Ratios (Average of Ratios)



Two Useful Nonparametric Methods: 
Bootstrap and Permutation (re-randomization)

• Motivating example: Inference of a ratio parameter

• Ratio of averages

• Experiment condition A Sugar (3 tech replicates) Alcohol

• Biological replicate #1 20, 25, 30 (mean=25) 100, 110,120 (mean=110)

• Biological replicate #2 30, 31, 32 (mean=31) 120, 130,140 (mean=130)

• … … …

• Biological replicate #10 35, 38, 38 (mean=37) 160, 140, 120 (mean=140)

• Experiment condition B Sugar (3 tech replicates) Alcohol

• Biological replicate #1 24, 30, 30 (mean=28) 95, 105,115 (mean=105)

• Biological replicate #2 36, 33, 39 (mean=36) 120, 120,105 (mean=115)

• … … …

• Biological replicate #20 42, 45, 45 (mean=44) 120, 129, 120 (mean=123)

average of sugar average of alcohol

average of sugar average of alcohol

�𝑅𝑅𝐴𝐴

�𝑅𝑅𝐵𝐵



Compare Two Ratios (Ratio of averages)

• Use �𝑅𝑅𝐴𝐴 − �𝑅𝑅𝐵𝐵 to estimate the true difference
• How to quantify uncertainty?

• Method 1: Use approximation methods to find their 
standard errors (e.g., the “survey” package in R). Then

�𝑅𝑅𝐴𝐴− �𝑅𝑅𝐵𝐵−(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
[𝑠𝑠𝑠𝑠 �𝑅𝑅𝐴𝐴 ]2+[𝑠𝑠𝑠𝑠 �𝑅𝑅𝐵𝐵 ]2

~𝑁𝑁 0,1 , for large sample

• Method 2: Use bootstrap to find standard errors and 
confidence intervals , use permutations/re-
randomizations to compute p-values



Compare Two Ratios (Ratio of averages)

• ### Suppose that ratio of averages makes more sense

• set.seed(123)

• sugar=c(runif(10, 20, 30), runif(20, 25, 35))

• alcohol=c(runif(10, 100, 120), runif(20, 110, 120 ))

• y=data.frame(sugar, alcohol)

• ratio.of.av=function(y, indices)

• {

• booty.sugar=y$sugar[indices]

• booty.alcohol=y$alcohol[indices]

• return( mean(booty.sugar[1:10])/mean(booty.alcohol[1:10]) -

• mean(booty.sugar[11:30])/mean(booty.alcohol[11:30]) )

• }

• obj2=boot(y, ratio.of.av, R=1000, strata=ex.cond)

• boot.ci(obj2, type="perc")

• hist(obj2$t, xlab="values from bootstrap samples", main="histogram of bootstrap values")

• points(obj2$t0, 0, pch=17, col=2, cex=2) #the location of the statistic using the observed data

Use Bootstrap to produced 95% confidence interval



Compare Two Ratios (Ratio of averages)



Compare Two Ratios (Ratio of averages)
• #compute p-values using permutations
• org.diff=ratio.of.av(y, 1:30)
• perm.diff=rep(0,10000)
• perm.diff[1]=org.diff
• for(i in 2:10000)
• {
• perm.diff[i]=ratio.of.av(y,sample(1:30))
• }
• mean(abs(perm.diff)>=abs(org.diff))
• hist(perm.diff, xlab="values from 1000 permutations", main="histogram 

of permutated values")
• points(org.diff, 0, pch=17, col=2, cex=2)
• text(org.diff, 5, "observed", col=2)

Use permutations to calculate p-value



Compare Two Ratios (Ratio of averages)



Type I and Type II errors
• Mistakes in hypothesis testing: the null hypothesis might be 

rejected wrongly or the alternative hypothesis might be 
accepted wrongly

• Type I error (false positive) occurs when the null is true but we 
reject the null. For a test at significance level α,

Pr(Type I error)=Pr( reject H0|H0 is true)= α.
• Type II error (false negative) occurs when the alternative is true 

but we fail to reject the null
• Pr(Type II error)=Pr(fail to reject H0| H0 is not true )
• 1-Pr(Type II error)=Pr(reject H0| H0 is not true) is called the power of a 

test, denoted as β

50Do not 
reject



Test power
• Ways to increase test power

• Increase sample size
• Increase the significance level α
• Increase the difference between the sample estimate and 

the null value
• Decrease the population standard deviation

51

In practice, we increase test power by 
increasing sample size. 

not practical



Power and Sample Size

• Power analysis in R
• pwr: basic functions for power analysis. https://cran.r-

project.org/web/packages/pwr/index.html
• https://statpages.info/#power provides links to online 

calculators
• Beyond basic tests

• Packages have been releases for specific topics. For example, 
for single-cell RNA-seq

• https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s1
2859-019-3167-9

• http://www.bioconductor.org/packages/release/bioc/html/POWS
C.html

• For complicated models, the calculation is often simulation-
based

https://cran.r-project.org/web/packages/pwr/index.html
https://statpages.info/#power
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3167-9
http://www.bioconductor.org/packages/release/bioc/html/POWSC.html


Multiple Comparisons in R

• Post-hoc pairwise comparisons (ANOVA)
• https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics

/pairwise.t.test
• https://stats.oarc.ucla.edu/r/faq/how-can-i-do-post-hoc-pairwise-

comparisons-in-r/
• For a list of p-values, multiple comparisons can be corrected by a 

simple function “p.adjust”
• https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html
• Web-based tools such as https://www.multipletesting.com/analysis
• Bonferroni’s correction for family wise error (the probability of at least 

one false positive)
• Very simple. Instead of using 0.05 as the cutoff, use 0.05/K where K is the 

number of tests performed
• False discovery rate (FDR): the proportion of false positives among the 

discovered ones
• Preferred when there is a large number of tests such as gene expression
• https://www.sdmproject.com/utilities/?show=FDR

https://stats.oarc.ucla.edu/r/faq/how-can-i-do-post-hoc-pairwise-comparisons-in-r/
https://stats.oarc.ucla.edu/r/faq/how-can-i-do-post-hoc-pairwise-comparisons-in-r/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html
https://www.multipletesting.com/analysis
https://www.sdmproject.com/utilities/?show=FDR


Beyond Basic Methods: Linear Models

• Two-sample t-test is a special case of linear 
models/regressionYi

Y1

…

Yn0

Yn0+1

Yn0+2

…

Yn0+n1

𝜇𝜇0

𝜇𝜇1

𝐻𝐻0 : 𝜇𝜇0 = 𝜇𝜇1

Yi Xi

Y1 0

… …

Yn0 0

Yn0+1 1

Yn0+2 1

… …

Yn0+n1 1

𝛽𝛽0

𝛽𝛽0 + 𝛽𝛽1

𝐻𝐻0 : 𝛽𝛽1 = 0



Beyond Basic Methods: linear models
• ANOVA is also a special case of linear 

models/regression
Yi Xi,1 Xi,2

Y1 0 0

… 0 0

Y9 0 0

Y10 1 0

… 1 0

Y21 1 0

Y22 0 1

… 0 1

Y40 0 1

𝜇𝜇0

𝜇𝜇1

𝜇𝜇2

𝛽𝛽0

𝛽𝛽0 + 𝛽𝛽1

𝛽𝛽0 + 𝛽𝛽2

𝐻𝐻0: 𝜇𝜇0 = 𝜇𝜇1 = 𝜇𝜇2

𝐻𝐻0: 𝜇𝜇1 − 𝜇𝜇0 = 𝜇𝜇1−𝜇𝜇0= 0

𝐻𝐻0:𝛽𝛽1 = 𝛽𝛽2 = 0



Why are linear models useful?

• Adjust for covariates, which is particularly 
important in observational studies

• E.g., association between obesity and gender might be 
dependent on other factors, such as ethnicity, countries, 
income, etc

• Study multiple factors/conditions easily
• E.g., cell type and experimental conditions. Missing data 

can be handled naturally

• Account for design effects such as clustering



Beyond Basic Methods

• A generalized form, known as linear mixed-effects models 
(LME), can take data dependency into consideration

• A generalized form, known as generalized linear models 
(GLM), can model non-continuous data. E.g., logistic 
regression

• Generalized linear mixed-effects models (GLMM) include 
both the above extensions
https://www.sciencedirect.com/science/article/pii/S089662732100845X
https://cncm.som.uci.edu/lmem-intro/

https://www.sciencedirect.com/science/article/pii/S089662732100845X
https://cncm.som.uci.edu/lmem-intro/


Data Visualization

• Data visualization should be the first, rather than the 
last, step

• https://www.r-graph-gallery.com
• https://www.r-graph-gallery.com/base-R.html
• https://www.r-graph-gallery.com/ggplot2-package.html
• https://r-charts.com/
• http://www.sthda.com/english/wiki/ggplot2-violin-

plot-quick-start-guide-r-software-and-data-visualization
• https://ggplot2.tidyverse.org/reference/geom_violin.ht

ml

https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/base-R.html
https://www.r-graph-gallery.com/ggplot2-package.html
https://r-charts.com/
http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-and-data-visualization
https://ggplot2.tidyverse.org/reference/geom_violin.html


R

https://www.r-graph-gallery.com/

https://www.r-graph-gallery.com/


Example: create boxplots using R

• Data: 1200 neurons from 24 mice; 5 conditions/groups

• We will show how to use R to visualize data



Example: create boxplots using R

• Read and check data

ex1=read.csv(url("http://xulab.anat.uci.edu/Downloads_files/Primer_files/Example1.txt")
, head=T)
#Remark 1: https won't work for this version
#Remark 2: read.csv is used because the seperator used in the data is ","
names(ex1)
dim(ex1)
table(ex1$treatment_idx)
table(ex1$midx)
table(ex1$treatment_idx, ex1$midx)
ex1$midx=as.factor(ex1$midx)
ex1$treatment_idx=as.factor(ex1$treatment_idx)



Example: create boxplots using R

• Read and check data

ex1=read.csv(url("http://xulab.anat.uci.edu/Downloads_files/Primer_files/Example1.txt")
, head=T)
#Remark 1: https won't work for this version
#Remark 2: read.csv is used because the seperator used in the data is ","
names(ex1)
dim(ex1)
table(ex1$treatment_idx)
table(ex1$midx)
table(ex1$treatment_idx, ex1$midx)
ex1$midx=as.factor(ex1$midx)
ex1$treatment_idx=as.factor(ex1$treatment_idx)



Example: create boxplots using R

• Read and check data

ex1=read.csv(url("http://xulab.anat.uci.edu/Downloads_files/Primer_files/Example1.txt")
, head=T)
#Remark 1: https won't work for this version
#Remark 2: read.csv is used because the seperator used in the data is ","
names(ex1)
dim(ex1)
table(ex1$treatment_idx)
table(ex1$midx)
table(ex1$treatment_idx, ex1$midx)
ex1$midx=as.factor(ex1$midx)
ex1$treatment_idx=as.factor(ex1$treatment_idx)



Example: create boxplots using R

• Use base graphics

#Use base graphics
mycolors=rep(1:5, c(7,6,3,3,5)) #different colors for different groups
mycolors

boxplot(res~midx, data=ex1, col=mycolors, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
#boxplot with gitters
boxplot(res~midx, data=ex1, col=0, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)



Example: create boxplots using R

• Use base graphics

#Use base graphics
mycolors=rep(1:5, c(7,6,3,3,5)) #different colors for different groups
mycolors

boxplot(res~midx, data=ex1, col=mycolors, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
#boxplot with gitters
boxplot(res~midx, data=ex1, col=0, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)



Example: create boxplots using R

• Use “vioplot” package

# install.packages("vioplot")
library("vioplot")
par(mfrow=c(2,1))
vioplot(res~midx, data=ex1, col=mycolors, xaxt = "n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))

#violin plot with jitters
vioplot(res~midx, data=ex1, col=0, xaxt="n")
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))



Example: create boxplots using R

• Use “vioplot” package

# install.packages("vioplot")
library("vioplot")
par(mfrow=c(2,1))
vioplot(res~midx, data=ex1, col=mycolors, xaxt = "n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))

#violin plot with jitters
vioplot(res~midx, data=ex1, col=0, xaxt="n")
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))



Example: create boxplots using R

• Make fancier plots by ggplot2

#Fancy plots with ggplot2
#install.packages("ggplot2")
#the package needs to be installed if it has not been installed
library(ggplot2)
#we need a package to put multiple plots on the same page
#Remark:the par function works for R base graphics but not for ggplot2
#install.packages("gridExtra")
library(gridExtra)
plot1=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 

geom_violin()
#boxplot within violin plot
plot2=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 

geom_violin()+
geom_boxplot(width=0.1)

grid.arrange(plot1, plot2, ncol=1, nrow=2)



Example: create boxplots using R

• Make fancier plots by ggplot2

#Fancy plots with ggplot2
#install.packages("ggplot2")
#the package needs to be installed if it has not been installed
library(ggplot2)
#we need a package to put multiple plots on the same page
#Remark:the par function works for R base graphics but not for ggplot2
#install.packages("gridExtra")
library(gridExtra)
plot1=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 

geom_violin()
#boxplot within violin plot
plot2=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 

geom_violin()+
geom_boxplot(width=0.1)

grid.arrange(plot1, plot2, ncol=1, nrow=2)



Example: create boxplots using R

• Make fancier plots by ggplot2

#you can obtain the same plot by one-thing-at-a-time
myplot=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx))
myplot
myplot+geom_violin()
plot1=myplot+geom_violin()+geom_boxplot(width=0.1)

#violin + jitter
myplot
myplot+geom_violin()
plot2=myplot+geom_violin()+geom_jitter()
grid.arrange(plot1, plot2, ncol=1, nrow=2)



Example: create boxplots using R

• Make fancier plots by ggplot2

#you can obtain the same plot by one-thing-at-a-time
myplot=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx))
myplot
myplot+geom_violin()
plot1=myplot+geom_violin()+geom_boxplot(width=0.1)

#violin + jitter
myplot
myplot+geom_violin()
plot2=myplot+geom_violin()+geom_jitter()
grid.arrange(plot1, plot2, ncol=1, nrow=2)



Future Topics

• Regression-based methods
• Multivariate analysis
• Single-cell RNA seq
• Spatial transcriptomics
• Integration of different methods



Too much for a Friday?
Happy Friday!



ex1=read.csv(url("http://xulab.anat.uci.edu/Downloads_files/Primer_files/Exam
ple1.txt"), head=T)
#Remark 1: https won't work for this version
#Remark 2: read.csv is used because the seperator used in the data is ","
names(ex1)
dim(ex1)
table(ex1$treatment_idx)
table(ex1$midx)
table(ex1$treatment_idx, ex1$midx)
ex1$midx=as.factor(ex1$midx)
ex1$treatment_idx=as.factor(ex1$treatment_idx)

#Use base graphics
mycolors=rep(1:5, c(7,6,3,3,5)) #different colors for different groups
mycolors
parm(mfrow=c(2,1))
boxplot(res~midx, data=ex1, col=mycolors, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
#boxplot with gitters
boxplot(res~midx, data=ex1, col=0, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)

# install.packages("vioplot")
library("vioplot")
par(mfrow=c(2,1))
vioplot(res~midx, data=ex1, col=mycolors, xaxt = "n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))

#violin plot with jitters
vioplot(res~midx, data=ex1, col=0, xaxt="n")
stripchart(res ~ midx, vertical = TRUE, data = ex1, 

method = "jitter", add = TRUE, pch = 20, col = mycolors)
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))

#Fancy plots with ggplot2
#install.packages("ggplot2")
#the package needs to be installed if it has not been installed
library(ggplot2)

#we need a package to put multiple plots on the same page
#Remark:the par function works for R base graphics but not for ggplot2
#install.packages("gridExtra")
library(gridExtra)
plot1=ggplot(ex1, aes(x=midx, y=res, fill=treatment_idx)) +
geom_boxplot() #lengend was included

plot2=ggplot(ex1, aes(x=midx, y=res)) +
geom_boxplot(fill=mycolors) #legend was not included

grid.arrange(plot1, plot2, ncol=1, nrow=2)
#the "fill" argument is tricky. The two methods produce the same plot, except for choice 
of colors

plot1=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 
geom_violin()

#boxplot within violin plot
plot2=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx)) + 
geom_violin()+
geom_boxplot(width=0.1)

grid.arrange(plot1, plot2, ncol=1, nrow=2)

#you can obtain the same plot by one-thing-at-a-time
myplot=ggplot(ex1, aes(x = midx, y = res, fill=treatment_idx))
myplot
myplot+geom_violin()
plot1=myplot+geom_violin()+geom_boxplot(width=0.1)

#violin + jitter
myplot
myplot+geom_violin()
plot2=myplot+geom_violin()+geom_jitter()
grid.arrange(plot1, plot2, ncol=1, nrow=2)

#http://www.sthda.com/english/wiki/ggplot2-violin-plot-quick-start-guide-r-software-
and-data-visualization



####### use the ratio of averages ########
### Suppose that ratio of averages makes more sense
set.seed(123)
sugar=c(runif(10, 20, 30), runif(20, 25, 35))
alcohol=c(runif(10, 100, 120), runif(20, 110, 120 ))
y=data.frame(sugar, alcohol)
ratio.of.av=function(y, indices)
{
booty.sugar=y$sugar[indices]
booty.alcohol=y$alcohol[indices]
return( mean(booty.sugar[1:10])/mean(booty.alcohol[1:10]) -

mean(booty.sugar[11:30])/mean(booty.alcohol[11:30]) )
}
obj2=boot(y, ratio.of.av, R=1000, strata=ex.cond)
boot.ci(obj2, type="perc")
hist(obj2$t, xlab="values from bootstrap samples", 
main="histogram of bootstrap values")
points(obj2$t0, 0, pch=17, col=2, cex=2) #the location of the 
statistic using the observed data

#compute p-values using permutations
org.diff=ratio.of.av(y, 1:30)
perm.diff=rep(0,10000)
perm.diff[1]=org.diff
for(i in 2:10000)
{
perm.diff[i]=ratio.of.av(y,sample(1:30))

}
mean(abs(perm.diff)>=abs(org.diff))
hist(perm.diff, xlab="values from 1000 permutations", 
main="histogram of permutated values")
points(org.diff, 0, pch=17, col=2, cex=2)
text(org.diff, 5, "observed", col=2)

Bootstrap and Permutation Test
Example 1: average of ratios Example 2: ratio of averages

#### inference of a ratio parameter
## use the average of ratios
set.seed(20220128) #to ensure reproducibility
#observations 1-10 are from population A; 11-30 are from population B
y=c(25/110, runif(7, 0.2, 0.3), 31/130, 37/140,

28/105, 36/115, runif(17, 0.25, 0.3), 44/123)
ex.cond=c(rep(1,10), rep(2,20))

#this is two-sample problem. We can use t-distributions to construct c.i.
t.test(y[1:10], y[11:30])

#define the function you want to evaluate
av.of.ratio=function(y,indices) #the indices argument is needed to bootstrap samples
{  return(mean(y[indices[1:10]])-mean(y[indices[11:30]])) }

#use bootstrap to find confidence intervals
obj1=boot(y, av.of.ratio, R=1000, strata=ex.cond)
names(obj1)
boot.ci(obj1, type="perc")

#visualize the sampling distribution of the statistic
#tye "?points" to see how to use it
?points
hist(obj1$t, xlab="values from bootstrap samples", main="histogram of bootstrap values")
points(obj1$t0, 0, pch=17, col=2, cex=2) #the location of the statistic using the observed data

#compute p-values using permutations
set.seed(20220128) #to ensure reproducibility
org.diff=av.of.ratio(y, 1:30)
perm.diff=rep(0,10000)
perm.diff[1]=org.diff
for(i in 2:10000)
{
perm.diff[i]=av.of.ratio(y,sample(1:30))

}
mean(abs(perm.diff)>=abs(org.diff)) #two-sided p-value
hist(perm.diff, xlab="values from 1000 permutations", main="histogram of permutated values")
points(org.diff, 0, pch=17, col=2, cex=2)
text(org.diff, 5, "observed", col=2)
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