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In this article we highlight recent developments in computational functional
genomics to identify networks of functionally related genes and proteins based
on diverse sources of genomic data. Our specific focus is on statistical methods to
identify genetic networks. We discuss integrated analysis of microarray datasets,
methods to combine heterogeneous data sources, the analysis of high-
dimensional phenotyping screens and describe efforts to establish a reliable and
unbiased gold standard for method comparison and evaluation.

Computational functional
genomics

In recent years, increasing quantities of

high-throughput biological data have

become available. Yet even in well

studied model organisms like yeast, the

functions of significant numbers of genes

remain unknown, as do the interactions

between gene products and their con-

tributions to the highly structured

networks of information flow that can

be found in the cell. The inference of such

cellular networks using computational

and statistical methods is a prospering

area of research in computational

biology. Computational analysis of

high-throughput data that assess func-

tional relationships between gene pro-

ducts may be key to inferring cellular

networks and pathways on a large scale.

Such predictions can advance experimen-

tal studies by providing specific hypoth-

eses for targeted experimental testing.

In this article, we highlight general

problems and research strategies in this

area by discussing examples in two

central areas of computational functional

genomics: first, the integration of differ-

ent datasets and diverse sources of

genomic data, and second, approaches

to infer the inner organization of a cell by

probing its reaction to external stimuli

and perturbations. We mostly discuss

methods developed in the context of the

yeast Saccharomyces cerevisiae, because

this model organism is widely used as a

platform for the development of both

high-throughput experimental techniques

and computational methods. Readers

further interested may also find other

reviews1–5 helpful that cover topics out-

side the special focus of this article.

Gene networks from
microarray data

A prominent data source for assigning

gene function is gene expression mea-

surements by microarrays6,7 that provide

a global view of gene activity in a cell.

Biological processes result from the

concerted action of interacting mole-

cules. This general observation suggests

a simple idea, which has already moti-

vated the first approaches to clustering

expression profiles8,9 and is still widely

used in functional genomics. It is called

the guilt-by-association heuristic: if two

genes show similar expression profiles,
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they may follow the same regulatory

regime.

Coexpression or relevance networks

are a simple statistical model derived

from the guilt-by-association heuris-

tic.10,11 They are constructed by comput-

ing a similarity score for each pair of

genes, e.g. the correlation or mutual

information between expression profiles.

If similarity is above a certain threshold,

the pair of genes gets connected in the

graph, if not, it remains unconnected.

Coexpression networks derived in this

way agree well with functional similar-

ity,11 and many coexpression relation-

ships are conserved over evolution.10

This makes the assessment of coexpres-

sion relationships a key building block

for most approaches to infer cellular

networks and pathways.

From coexpression to
mechanistic explanations

A central problem of coexpression ana-

lysis is that even high similarity of

expression tells us little about the under-

lying biological mechanisms. For exam-

ple, from the similarity of expression

profiles alone, we cannot distinguish

between direct and indirect relationships.

To approach this problem, more

advanced statistical models have been

suggested, which build on the concept of

conditional independence.2,12 The idea is

simple: if the relationship between gene

A and gene B is not direct, but mediated

through a gene (or possibly a group of

genes) C, then A and B are independent

given C. In other words: C explains the

correlation between A and B.

A first example for conditional inde-

pendence models is the Gaussian graphi-

cal model,13,14 in which each gene pair is

tested for conditional independence given

the set of all other genes in the data. A

different approach is using low-order

independence models that search for a

single third gene to explain the correla-

tion of A and B. One example for this

kind of modelling is the algorihm

ARACNe, which was used for reverse

engineering of regulatory networks in

human B cells.15

A third type of conditional indepen-

dence models are Bayesian networks.16

They are perhaps the most flexible of all

conditional independence models and

offer the finest resolution of correlation

structure. One example for Bayesian

networks are Module networks17 that

encode modules (sets) of jointly regulated

genes, their common regulators, and the

conditions under which regulation

occurs. Thus, the method gives a global

view of the yeast transcriptional network

and specifies regulatory programs of

condition-specific regulators and their

targets.

Whether sophisticated statistical mod-

els can outperform simple relevance net-

works in terms of prediction accuracy in

real-world problems, where the observa-

tions are very noisy and only a small

number of experimental repetitions are

available, is still an open problem. A

recent study18 compares the accuracy of

relevance networks, Gaussian graphical

models and Bayesian networks to recon-

struct the Raf pathway, a signalling

network in human immune system cells,

for both simulated and laboratory data.

The higher computational costs of esti-

mating statistical models more sophisti-

cated than relevance networks were

found to be only justified when the data

was obtained from gene perturbation

experiments. For data obtained by pas-

sive observations Gaussian graphical

models and Bayesian networks offer no

significant improvement over relevance

networks. Future studies will show

whether these observations are general

or whether they might change with more

and better data.

Integrated analysis of
microarray data sets

One way to augment coexpression based

methods is by including many different

micorarray data sets in the analysis.

Integrated analysis of different data sets

can enable broader understanding of

gene regulation in the context of specific

pathways and can allow the discovery of

coexpression relationships too weak to

be detected in individual experiments.

Such integrated analysis of microarray

datasets is challenging because of differ-

ences in technology, protocols, and

experimental conditions across datasets.

Thus, any microarray integration system

must be robust to such differences, and

should easily adjust to new datasets,

perhaps from technologies yet to be

developed. Furthermore, in examining

microarray results drawn from differing

experimental conditions, it is critical to

consider functional specificity, i.e. which

biological processes are active in which

experiments. The problem of integrating

many high-throughput data sources thus

includes a problem of determining func-

tional relevance. The analysis objective is

two-fold: (1) to reveal genes that are

functionally related, and additionally (2)

to identify the biological circumstances

under which they relate.

To this end, Huttenhower et al.19

propose a Bayesian framework facilitat-

ing the integration of multiple microar-

ray data sets for predicting coexpression

based functional networks of proteins.

Each predicted functional relationship is

provided within the context of a specific

biological process. These biological func-

tions of interest can be provided directly

by a biologist, or they can be derived

automatically from functional catalogs

such as the Gene Ontology20 or MIPS.21

In addition to predicted functional rela-

tionships, the analysis process also pro-

vides a functional association score

indicating how predictive each input

microarray data set is of each biological

function.

The examples of coexpression based

methods we discussed above show the

central role gene expression data plays in

inferring cellular networks. Gene coex-

pression data are an excellent tool for

hypothesis generation, yet microarray

data alone often lack the degree of

specificity needed for accurate gene net-

work prediction. For such purposes, an

increase in accuracy is needed that can be

achieved through incorporation of het-

erogeneous functional data in an inte-

grated analysis.

Integrated analysis of
complementary data sources

Several challenges must be addressed in

integrating diverse data. First, high-

throughput data are typically noisy, and

the nature and degree of this noise varies

widely among experimental techniques

and even among individual datasets

produced by the same experimental

method. Furthermore, results of high-

throughput experiments vary substan-

tially in the genes they cover, meaning

that there are often a number of missing

attributes. A second major challenge

is the heterogeneity of the different
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evidence types. In addition to variations

in reliability, different sources of genomic

data come in different representations:

for instance, interaction data comes in

the form of binary pairwise relationships

while gene expression data are high-

dimensional continuous measurements,

and sequence data are strings of varying

length. This heterogeneity makes it diffi-

cult to find a unifying representation that

allows for data integration.

Data integration by kernel
matrices and Bayesian
networks

Myers et al.22 use a Bayesian network for

data integration, which readily captures

the variation in reliability of different

input types and accommodates missing

information. The final output of the

Bayesian integration is a completely

connected, probabilistic graph of pro-

teins. Each edge connecting two proteins

is weighted by the posterior probability

that these two proteins are functionally

related given all the different data

sources.

A different approach23–25 to data

integration uses (non)linear similarity

measures called kernel functions, which

were shown to be successfully applicable

in a wide range of data analysis pro-

blems.26 For kernel-based data integra-

tion each data type is summarized in a

quadratic kernel matrix that has as

entries the pairwise similarity values

between proteins. Data integration is

then performed by computing a weighted

combination of these individual kernel

matrices, where the weights indicate the

relative importance of each data type. If

two proteins show a combined kernel

value above a certain threshold they get

connected in the inferred network.

Models must be specific for
the biological target context

A robust framework for integration of

diverse data types is only the first step

toward predicting biological networks.

An equally challenging task is: given a

map of protein or gene interactions from

an integration of multiple data types,

how does one group functionally related

proteins together into process-specific

networks? Expert information, such as

proteins already known to be involved in

the process of interest, should be used to

direct the search and prediction process.

Thus, Myers et al.22 adopt a query-based

model that allows a user to specify the

biological area of interest, which can

then be used to extract the relevant

biological predictions. This is a first step

to make pathway prediction methods

applicable in many biological studies:

the computational methods must be user-

driven, or developed in such a way that a

biologist can quickly extract the relevant

information for his or her area of

interest; and secondly, they must be

biologically context-sensitive, meaning

any prediction or search should be

specifically optimized for the target

biological context.

Genetic interactions from
gene perturbation screens

Functional genomics has a long tradition

of inferring the inner working of a cell

through analysis of its response to

various perturbations. Observing cellular

features after knocking out or silencing a

gene can reveal which genes are essential

for an organism or for a particular

pathway.

There are several perturbation techni-

ques suitable for large-scale analysis in

different organisms, including RNA

interference27 and gene knock-outs.28 In

most studies, perturbation effects are

measured by single reporters like viabi-

lity or growth.29,30 Genetic interactions

are then derived from perturbation

screens by comparing the phenotypes of

two single gene perturbations with the

phenotype of the double gene perturba-

tion. One example for a genetic interac-

tion is epistasis, where one gene is

masking the effect of another gene.31

Another genetic interaction is synthetic

lethality, where two genes with a viable

phenotype show a lethal phenotype in a

double perturbation.32,33 Synthetic lethal

interactions can be interpreted as two

genes contributing to two alternative

pathways: the cell can survive if one of

these pathways is blocked, but not if

both are affected.34 Epistasis and syn-

thetic lethality are just two examples of a

broad range of possible genetic interac-

tions. Drees et al.35 define nine modes of

genetic interactions for a quantitative

phenotype that can be described by

inequality constraints between the

phenotypic values. They show that all

modes of genetic interactions can be

identified in agar-invasion phenotypes

of mutant yeast.

Recent studies use phenotypes defined

by high-dimensional readouts like gene

expression profiles,28,36 metabolite con-

centrations,37 sensitivity to cytotoxic or

cytostatic agents,38 or morphological

features of the cell.39 Van Driessche

et al.40 use expression time-courses as

phenotypes and partly reconstruct a

developmental pathway in Dictyostelium

discoideum by epistasis analysis. Such

high-dimensional phenotypic profiles

promise a comprehensive view on the

function of genes in a cell, but only

limited work has been done so far to

adapt statistical and computational

methodology to the specific needs of

large-scale and high-dimensional pheno-

typing screens.

Phenotypic profiles offer only
indirect information on gene
interactions

A key obstacle to inferring genetic net-

works from high-dimensional perturba-

tion screens is that phenotypic profiles

generally offer only indirect information

on how genes interact. Cell morphology

or sensitivity to stresses are global

features of the cell, which are hard to

relate directly to the genes contributing

to them. Gene expression phenotypes

also offer an indirect view of pathway

structure due to the high number of non-

transcriptional regulatory events like

protein modifications. For example,

when silencing a kinase we might not be

able to observe changes in the activation

states of other proteins involved in the

pathway. The only information we may

get is that genes downstream of the

pathway show expression changes.

Thus, phenotypic profiles may provide

only indirect information about informa-

tion flow and pathway structure.

A recent approach especially designed

to learning from indirect information

and high-dimensional phenotypes are

Nested Effects Models41 that reconstruct

features of the internal organization

of the cell from the nested structure of

observed perturbation effects. Perturbing

some genes may have an influence on a

global process, while perturbing others

affects sub-processes of it. Imagine, for
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example, a signaling pathway activating

several transcription factors. Blocking

the entire pathway will affect all targets

of the transcription factors, while per-

turbing a single downstream transcrip-

tion factor will only affect its direct

targets, which are a subset of the

phenotype obtained by blocking the

complete pathway. Fig. 1 shows a

schematic plot of how the position

of perturbed genes in a pathway

corresponds to a nested structure of

observed effects. The application of

Nested Effects Models is exploratory

and could provide a good starting

point for more detailed analysis of gene

function.

Method evaluation and gold
standards

Individual high-throughput datasets

are typically noisy, but effective inte-

gration can yield precise predictions

without sacrificing valuable information

in the data. All of these methods

require a gold standard, which is a

trusted representation of the functional

information one might hope to discover.

Such a standard, coupled with an

effective means of evaluation, can be

used to assess the performance of a

method and serves as a basis for

comparison with existing approaches.

Beyond methods for predicting protein

function or interactions, evaluation

against gold standards can be used to

directly measure the quality of a single

genomic dataset, a necessary step in

developing and validating new experi-

mental technology.

Current evaluation
approaches are inconsistent
and biased

Myers et al.42 report a study of proposed

standards and approaches to evaluation

of functional genomic data. They find

that current approaches are inconsistent,

making reported results incomparable

and often biased in such a way that

the resulting evaluation cannot be

interpreted even in a qualitative sense.

The majority of current evaluation

approaches are performed without

regard to which biological processes are

represented in the set of correctly pre-

dicted examples, and thus they are often

unknowingly skewed toward particular

processes. To address these problems,

Myers et al.42 develop an expert-curated

functional genomics standard based on

the Gene Ontology by letting a panel of

experts select GO terms with enough

specificity that predictions based on them

could be used to formulate detailed

biological hypotheses, which could be

confirmed or refuted by laboratory

experiments.

Summary and outlook

Recovering networks of interactions

between genes and gene products is a

key challenge in present-day molecular

biology. To achieve this task, high-

throughput experimental techniques

must be combined with statistical model-

ling and computational analysis. As

more large-scale functional data become

available, integrated analysis techniques

will become more and more important.

To understand the complexity of living

cells we need to build models including

all levels of cellular organisation: we

must draw information from the genome,

the transcriptome and the proteome.

Computational inference on parts of the

system will not provide the mechanistic

insights functional genomics is seeking

for. However, these models will still be

fragmentary if they do not include (and

predict) phenotypical changes of inter-

ventions perturbing the normal course of

action in the cell. Thus, an important

future research direction will be to

combine data sources like protein–

protein interaction or transcription

factor–DNA binding screens, which tell

us directly about the interactions

between biological molecules, with func-

tional data from perturbation screens

that carry only indirect information of

gene and protein interactions.

To develop such methodology, an

expert curated gold standard is necessary

for an accurate understanding of

how well computational methods for

cellular network prediction perform.

Representative evaluation of computa-

tional approaches and high throughput

experimental technologies is imperative

to harness the full potential of biological

data in the post-genome era.
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