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The regulatory information for a eukaryotic gene is encoded in
cis-regulatory modules. The binding sites for a set of interacting
transcription factors have the tendency to colocalize to the same
modules. Current de novo motif discovery methods do not take
advantage of this knowledge. We propose a hierarchical mixture
approach to model the cis-regulatory module structure. Based on
the model, a new de novo motif-module discovery algorithm,
CisModule, is developed for the Bayesian inference of module
locations and within-module motif sites. Dynamic programming-
like recursions are developed to reduce the computational com-
plexity from exponential to linear in sequence length. By using
both simulated and real data sets, we demonstrate that CisModule
is not only accurate in predicting modules but also more sensitive
in detecting motif patterns and binding sites than standard motif
discovery methods are.

Transcription factors (TFs) regulate genes by binding to their
recognition sites. The common pattern of the binding sites

for a TF is called a motif, usually modeled by a position-specific
weight matrix (PWM). Experimental methods such as DNase
footprinting (1) and gel-mobility shift assay (2, 3) have allowed
the determination of some binding sites for selected TFs.
Because these procedures are time-consuming, several compu-
tational methods have been developed for de novo motif dis-
covery, including progressive alignment (4, 5), the expectation-
maximization algorithm (6, 7), the Gibbs sampler (8–12), word
enumeration (13, 14), and the dictionary model (15, 16). The
propagation model (17) and the recursive Gibbs motif sampler
(18) have been developed for locating multiple motifs simulta-
neously. In addition, methods also exist that combine motif
discovery with gene expression data (19–21) or phylogenetic
footprinting (22, 23). These experimental and computational
analyses have given us a good number of useful TF motifs.
However, there are still many important TFs whose motifs
remain to be characterized. What is more, molecular analyses
have established that most eukaryotic genes are not controlled
by a single site but by cis-regulatory modules (CRMs), each
consisting of multiple TF-binding sites (TFBSs) that act in
combination (24–27). It can be argued that motif discovery is but
an intermediate step toward the characterization of CRMs.
Current approaches on module prediction such as those based on
logistic regression (28, 29) or hidden Markov models (30, 31)
depend on the availability of known motifs, i.e., PWMs for
several TFs hypothesized to bind synergistically to regulatory
modules. Clearly, we cannot apply these methods to the situa-
tions where no prior knowledge on the TFs is available, and in
these cases we must resort to de novo motif discovery algorithms.
We hypothesized that greater sensitivity and specificity can be
achieved for motif discovery by considering the colocalization of
different TFBSs and searched for modules and motifs simulta-
neously. It is clear that the task of module discovery and motif
estimation is tightly coupled: on one hand, motif patterns and
binding sites are essential for predicting regulatory modules; on
the other hand, discovery of modules will greatly improve the
performance of motif detection.

In this article, we propose a hierarchical mixture (HMx) model
and develop a fully Bayesian approach for the simultaneous
inference of modules, TFBSs, and motif patterns based on their
joint posterior distribution. We test the approach by using both
simulated and real data sets. Simulation studies show that, by
capturing the combinatorial patterns of cooperating TFBSs, our
algorithm detects modules accurately and is much more precise
than standard motif discovery algorithms are in finding true
binding sites. Similar improvement is observed when the method
is tested on the known CRMs from a number of Drosophila
developmental genes (26, 32, 33) and on the regulatory regions
of a set of muscle-specific genes (28). Our approach for de novo
motif-module discovery is of great current interest. Expression
microarrays (34) and serial analysis of gene expression (35) have
provided powerful means to identify clusters of genes tightly
regulated during various cellular processes. Genes in the same
clusters have a higher likelihood of sharing similar CRMs.
Comparative analysis of multiple genomic sequences can further
identify conserved regions enriched for such modules (36, 37).
Finally, chromatin immunoprecipitation followed by microarray
(ChIP-on-chip) is able to predict the binding locations of a TF
in the whole genome with a resolution of 500–2,000 bp. These
approaches are expected to provide sets of sequences enriched
for CRMs involving an unknown or a partially unknown set of
regulatory TFs. The identification of the CRMs within these
sequences and the clarification of their structures, which are
essential steps in understanding the regulatory networks, will
depend on computational methods such as those proposed in this
article.

Methods
HMx Model for Cis-Regulatory Modules. Our goal was to search for
the binding sites for K different TFs within the CRMs of a given
set of sequences S. We proposed a two-level HMx model for
CRMs. At the first level, the sequences can be viewed as a
mixture of CRMs, each of length l, and pure background
sequences outside the modules; at the second level, modules are
modeled as a mixture of motifs and within-module background.
Detailed specification of the HMx model is illustrated in Fig. 1.
The background sequences, both the regions outside the mod-
ules and the nonsite segments within the modules, are modeled
by a first-order Markov chain �0.

It is helpful to think of the HMx model as a stochastic
machinery that generates sequences. Suppose the width of the
kth motif is wk and its product multinomial model (PWM) is �k
(k � 1, . . . , K). Starting from the first sequence position, we
made a series of random decisions of whether to initiate a
module or generate a letter from the background model, with
probabilities r and 1 � r, respectively. If a module was started at
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position i, within the region of [i, i � l � 1], we generated
background letters or initiated the kth motif sites, with proba-
bilities q0 and qk (k � 1, . . . , K, ¥k�0

K qk � 1), respectively. If a
site for the kth motif was initiated at position n, we generated wk

letters from its PWM �k and placed them at [n, n � wk � 1].
After we reached the end of the current module at position i �
l � 1, the decision at the next position was reverted back to the
choice between sampling from the background or initiating a
new module. Let M denote the module indicators and Ak denote
the indicators for the binding sites for the kth motif. We used
S(M) to denote the CRMs and S(Mc) to denote the background
outside the modules. To simplify the notation, we let A � {A0,
A1, . . . , AK}, where A0 indicates the nonsite background se-
quences in the modules, � � {�0, �1, . . . , �K}, q � {q0, q1, . . . ,
qK}, and W � {w1, . . . , wK}. The notations for the model are
summarized in Table 1.

Under the HMx model, the complete sequence likelihood with
M and A given is

P�S, M, A��, q, W, r�

� P�M�r�P�S�Mc� ��0, M�P�S�M� , A�M, �, q, W� . [1]

Combining Eq. 1 with the prior distributions for all the param-
eters gives rise to the joint posterior distribution:

P�M, A, �, q, W, r �S�

� P�S, M, A��, q, W, r�����W���q���r���W� , [2]

where conjugate prior distributions are prescribed, i.e., a product
Dirichlet distribution with parameter �k (a wk � 4 matrix) for
(�k�wk), a Dirichlet distribution with parameter � (a vector of
length K � 1) for q, and Beta(a, b) for r. We put a Poisson(w0)
prior on wk (k � 1, . . . , K).

Bayesian Inference. We regarded M and A as missing data and
used the Gibbs sampler (38–40) to perform Bayesian inference.
Gibbs sampling algorithms are widely used for motif finding (8,
9, 17), but our problem was much more complex than traditional
motif discovery because of its hierarchical structure. With a
random initiation, our algorithm (CisModule) iteratively cycles
through the steps of parameter update and module-motif de-
tection (Fig. 2A). (i) Given current modules and motif sites (M
and A), we updated all the parameters � � (�, q, W, r) by

Fig. 1. Specification of the HMx model. (A) Unaligned motif sites (triangles indexed by 1, 2, . . . , 5). (B) The aligned motif sites can be represented by a product
multinomial model or equivalently by a PWM. Each binding site is regarded as a realization of a sequence of independent random variables X1X2. . .Xw, where
each Xi (i � 1, . . . , w) follows a multinomial distribution over the four letters {A,C,G,T} with probabilities �i � [�i(A), �i(C), �i(G), �i(T)]. The whole motif is thus
specified by a set of multinomial probabilities � � [�1, �2, . . . , �w]. (C) The cis-regulatory regions of coregulated genes are enriched for modules (the regions
in the brackets). Each module is a sequence segment x1x2. . .xl in which several types of motifs (A, B, and C), each with its own product multinomial parameter
(�k), can occur. The rates of the occurrence of modules and their motif sites are denoted by r and qk (k � 1, . . . , K), respectively.

Table 1. Notations used in the HMx model

S Set of sequences (observed data)
M Indicators for a module start
Ak Indicators for a site start for motif k
�0 First-order Markov chain for background
�k Product multinomial parameters (PWM) for motif k
r Probability of a module start
qk Probability of starting a site for motif k
wk Width of motif k

Fig. 2. Algorithm for model fitting and motif-module identification. (A)
Iterative sampling procedure. In parameter update (Left), we are given the
locations of modules and motif sites. Therefore, we align the motif sites of the
same type to update the PWM of that motif. In module and motif detection
(Right), we use stochastic recursions (see Appendix B and text) to sample the
locations of modules and motif sites, conditional on the updated parameter
values. (B) The use of sampled module indicators for module identification.
For each position i in the sequences, compute Pm(i) � the proportion of times
during iterative sampling when position i is within a sampled module. The
positions with Pm(i) � 0.5 (e.g., the regions [a,b] and [c,d]) are our predicted
modules. See Fig. 3A for further discussion.
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sampling from their conditional posterior distributions [��M, A,
S] (see Appendix A). (ii) Given current values of the parameters,
we sampled modules and motif sites from the conditional
distribution [M, A��, S]. Without loss of generality, suppose the
sequence data are S � {x1x2, . . . , xL} � x[1,L]. The computational
bottleneck is the step of module-motif detection. Sampling
modules and sites naively results in a computational complexity
of O((Kll)L/l), which increases exponentially with the total se-
quence length L. By using stochastic recursions we reduced the
complexity to O(KL). First, we performed ‘‘forward summation’’
to compute P(S��) using the recursion (Eq. 5 in Appendix B).
Then ‘‘backward sampling’’ was used to generate the module
indicators as follows. Starting from n � L, at position n, we
decided whether (i) xn was at the last position of a module or (ii)
xn was from the background. The probabilities of these two
events are proportional to the terms An(�) and Bn(�) in Eq. 6
in Appendix B, which are already computed from the forward
summation. Depending on choosing event i or event ii, we moved
to position n � l or n � 1 and repeated the binary decision
process. In this way, we generated all the module indicators.
Once modules were updated, we again used forward summation
(see Eq. 7 in Appendix B) and backward sampling to update motif
indicators within each module. Suppose we have sampled the
motif indicators backward up to position m in the current
module. The sequence segment x[m�wk�1,m] (k � 0, . . . , K) is
drawn as a background letter (k � 0, w0 � 1) or a site for one
of the K motifs with probability proportional to the K � 1 terms
in Eq. 7. Apparently, because sites are sampled for each module
separately, the combinatorial site patterns in the individual
modules can be different.

By using the samples from the joint posterior distribution (Eq.
2), we obtained marginal distributions of the width and number
of sites for each motif by smoothing their sampling histograms by
means of a moving average. Based on the marginal modes that
can be found through enumeration, we estimated ŵk and n̂k (k �
1, . . . , K). The top n̂k ŵk-mers that were most frequently sampled
as sites for the kth motif were aligned as output sites. Further-
more, we inferred the modules by the marginal posterior prob-
ability of each sequence position being sampled as within
modules. The positions where this probability is �0.5 were
output as modules (Fig. 2B).

Strategies on l and K. In the discussion above, module length l and
TF number K were left as user-input parameters. We now discuss
how to determine l and K in case we have no prior knowledge of
them.

An extra conditional sampling by a Metropolis update can be
performed to determine the most likely module length. Let l be
the current module length. We propose a new one, l � � (� �
	10), and accept it with the Metropolis ratio,

r �
P�S�M, l � � , ��

P�S�M, l , ��
�

�� l � ��

�� l�
, [3]

where the prior distribution �(l) is geometric with mean l0
(usually between 100 and 200).

It is often desirable to provide some information about the TF
number K. This can be formulated as a Bayesian model selection
problem. Let HK (K � 1, 2, . . .) denote the hypothesis that there
are K motifs (TFs) and H0 denote the null hypothesis that S is
generated from pure background. With �(HK) � (1�3)K as the
prior, we calculate the posterior odds of HK over H0,

P�HK�S�

P�H0�S�
�

��HK�

��H0�
�

P�S�HK�

P�S�H0�
, [4]

where P(S�H0) is of known form and P(S�HK) can be calculated
by importance sampling (see Appendix C for details). Thus we

can run CisModule with K � 1, . . . , Km, where with Km the
algorithm stops detecting new motifs, and treat the K* � {1, . . . ,
Km � 1} that maximizes the posterior odds (Eq. 4) as our
estimated number of motif types.

Results
We tested CisModule on both simulated and real biological data
sets. Data Sets 1–4 are published as supporting information on
the PNAS web site.

Simulation Studies. It is known that E2F, YY1, and c�MYC are
potential cooperating factors (41). Thus, in our simulation, motif
sites were generated according to the weight matrices of these
three TFs based on TRANSFAC (42) matrix accession numbers,
V$E2F�03, V$YY1�02, and V$MYCMAX�02, respectively. The
background sequences were generated by a first-order Markov
chain with parameters estimated by �2,000 upstream 1-kb
sequences from the ENSEMBL genome database (www.ensembl.
org). In the first simulation study, each module was 100 bp long
and contained one E2F site, one YY1 site, and one c�MYC site,
randomly placed in the module. One data set consisted of 40
sequences, each 500 bp in length, and 20 modules were randomly
located in these sequences. In the second simulation study, each
data set contained 30 sequences, each 800 bp in length. Twenty
200-bp-long modules of different site combinations were gen-
erated, where four of them contained only three E2F sites, eight
of them contained one E2F site, two YY1 sites, and one c�MYC
site, and the rest contained one E2F site, one YY1 site, and two
c�MYC sites. This different site combination mimics the fact that
one TF (E2F) may work with different partners. For each of the
simulation studies above, 10 data sets were generated indepen-
dently. We applied CisModule to these data sets and fixed the
module length to be 100 and 200 bp, respectively. The number
of motifs K was set as 3 in both studies.

We evaluated our prediction for modules by their total length
and coverage of true sites. The total lengths of our predicted
modules were 2,009 and 4,108 bp on average for the two
simulation studies, corresponding to excess rates of 0.5% and
2.7% over the actual module lengths (2,000 and 4,000 bp),
respectively. The average true site coverage rates of the pre-
dicted modules were 84.3% and 94.0%, which showed that our
module prediction was very informative with a high coverage of
true sites and a low excess in length. In terms of motif discovery,
we compared our predictions with MEME (7) and BioProspec-
tor (BP) (11) on these data sets. We set these algorithms to run
multiple times and output the top 20 motifs they found. From
Table 2 we see that, for all of the cases, CisModule showed the
greatest success rates of discovering the correct motif patterns
and found more true sites with comparable numbers of false
positives. The improvement over MEME and BP was especially
significant for weakly conserved motifs (c�MYC). These results
demonstrate that the HMx model captures the colocalization of
TFBSs and CisModule is capable of using this information to
improve de novo motif discovery.

We repeated the experiments with K � 4, and, for all of the
data sets, CisModule did not predict any new (false) motifs. By
using the posterior odds calculation, CisModule correctly esti-
mated the true motif numbers (K* � 3) for 19 of the 20 data sets.
We also tested our algorithm assuming l unknown. The most
likely module lengths predicted by CisModule were within 30 bp
of the true lengths for 18 data sets.

Homotypic Regulatory Modules in Drosophila. Analyses of experi-
mental data from the early developmental Drosophila gene
enhancers show that these regions are highly enriched of homo-
typic clusters, i.e., multiple binding sites for one TF are tightly
clustered together (32, 33). More than 60 regulatory modules for
20 different genes were collected and the known regulatory
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interactions using published data were annotated (32). We built
three sequence sets, each of which contained all the CRMs for
one of the three most frequent binding motifs in their data sets,
Bicoid (Bcd), Hunchback (Hb), and Krüppel (Kr). Thirty-four
experimentally reported sites are in our data sets: 12 Bcd sites in
three sequences, 14 Hb sites in four sequences, and 8 Kr sites in
two sequences. Because binding sites are not reported in the
remaining sequences, we scanned the data sets for putative
target sites based on the known PWMs for the three TFs (32).
These scanned-based sites served as an alternative basis for our
comparison.

We applied CisModule to the three data sets with K � 1
(because the modules are clusters of binding sites for one TF)
and l � 100. By the module-sampling step, CisModule provides
more information through the marginal posterior probability of
each position being sampled as within modules (Pm in Fig. 2B).
Some examples of the predicted modules with this probability
are illustrated in Fig. 3A. For each data set, we selected all the
sequence positions with this probability greater than a given
value x, denoted by S(x), and calculated the density of S(x),
defined as the ratio of the number of high-score sites (those
within the top 0.5% in scanning) to the size of S(x), for x varying
from 0.1 to 0.8 (Fig. 3B). When x was increased to 0.9, the sizes
of S(x) were too small to calculate the densities. From the figure
it is clear that for x � 0.5 the densities increase with x, i.e., those
sequence positions that are more likely to be sampled within
modules have a higher density of top sites. The densities for x �
0.5 (corresponding to the broken horizontal lines in Fig. 3A) for
all of the three data sets were significantly higher than 0.5% with
P values 
 3E�6. If we further increased x (	0.6), all of the
positions in S(x) were selected from module regions, and thus the
densities were approximately the same for different x.

As a comparison, we also applied MEME and BP to the data
sets to find the top 20 motifs. From Table 3 we see that
CisModule not only successfully discovered correct motifs in
all three data sets but also found many more experimentally
reported sites than the other two methods did. In total it
reached a sensitivity of 56% for these reported sites. The
numbers of output sites by CisModule were slightly more than
those of scanned-based sites, because some weakly conserved
sites missed by scanning can be detected by CisModule if they
are close enough to other sites. The logo plots (43) for the
three motifs found by CisModule are shown in Fig. 4, which is
published in supporting information on the PNAS web site,
where we see that they are consistent with the known consen-
sus sequences listed in the figure legend. Furthermore, with
the JASPAR database (44, 45), the known Hb motif ranked
number 1 compared with our predicted Hb matrix with a
similarity score of 97�100. (The known motifs for Bcd and Kr
are not collected in the JASPAR database, so we did not

compare these two factors to the database.) We also repeated
the experiments with K � 2. For the Bcd and Kr data sets,
CisModule did not output any new motifs. For the Hb data set,
a weak motif with consensus GCMGGNM showed cooccur-
rence, but the posterior model odds was maximized at K* � 1.
These results agreed with the homotypic cluster phenomenon.

Muscle-Specific Regulatory Regions. Logistic regression was pro-
posed as a predictive model for the regulatory regions for

Table 2. Comparison of CisModule, MEME, and BP for simulated data sets

Motifs

MEME BP CisModule

Ps TP FP Ps TP FP Ps TP FP

E2F (20) 0.6 10.8 3.0 0.8 10.9 4.5 1.0 17.3 2.9
YY1 (20) 1.0 15.3 5.1 0.9 11.2 3.3 1.0 17.1 2.3
c_MYC (20) 0.4 10.0 3.3 0.6 11.8 4.8 0.9 16.7 4.1

E2F (28) 0.9 16.6 3.9 0.9 15.3 4.7 1.0 23.7 4.6
YY1 (24) 1.0 18.6 2.1 0.8 12.4 3.8 1.0 21.5 2.5
c_MYC (24) 0.3 9.3 5.7 0.6 10.3 7.3 1.0 20.5 6.9

Ps is the success rate, i.e., the fraction of the data sets for which the algorithms found the motif pattern. TP and
FP are the average numbers of true sites and false sites predicted by the algorithms over the data sets for which
they successfully found the motif pattern. The upper and lower halves are the results for the first and second
simulation studies, respectively. The TF names are followed by the numbers of true sites in the sequences.

Fig. 3. Module prediction in the Drosophila data set. (A) Marginal posterior
module probability (Pm) plots for example sequences in the three data sets of
Drosophila homotypic modules. Pm is the probability of being sampled as
within modules and it is plotted as a function of the position in the sequences
(the solid curves). The horizontal broken lines correspond to Pm � 0.5, and the
sequence bases with Pm � 0.5 are our predicted modules. The vertical lines are
the motif sites predicted by CisModule. (B) Top site density of S(x) vs. cutoff
value x. The broken vertical line at x � 0.5 corresponds to that of Pm � 0.5 in A.
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muscle-specific expression (28), where five TFs (Mef-2, Myf,
Sp-1, SRF, and TEF) known to control the expression were used
as predictors. The positive training set for the logistic regression
was composed of 29 regulatory sequences sufficient for skeletal-
muscle-specific expression that have been experimentally local-
ized to within 200 bp. We annotated 25 experimentally reported
binding sites, 10 for Mef-2, 7 for TEF, and 8 for SRF. Besides,
by using the weight matrices for the five TFs (figure 1A in ref.
28), we scanned the 29 sequences and detected 19, 12, 23, 13, and
20 putative sites for the five TFs above at a false-positive error
rate of 5E�4, which provided estimates for the numbers of target
sites. Two data sets were constructed by adding 10 and 40
upstream sequences (200 bp each) randomly extracted from the
ENSEMBL database to the 29 positive training sequences. We
tested how resistant the algorithm was to the presence of noisy
sequences (those random upstreams). CisModule was applied to
these data sets with K � 5 and l � 150. We also applied MEME
and BP to the same data sets to output the top 20 motifs they
could find. The logo plots for the motifs found by CisModule are
shown in Fig. 5, which is published as supporting information on
the PNAS web site.

It turns out that all three algorithms successfully found the
Sp-1 motif (GC box). We focus our comparison on the other four
factors. The results are summarized in Table 4, where we
tabulate among all the predicted sites from each method the
number of reported sites (n1), the number of putative sites in
positive sequences that do not overlap with reported sites (n2),
and the number of false-positive sites in random sequences (n3).
The nature of putative sites (n2) is ambiguous because they may
be unreported binding sites or false positives. For Mef-2 and
TEF, CisModule found more reported sites and usually fewer
false-positive sites for different cases. Furthermore, CisModule

was the only algorithm that discovered the SRF motif (with a
phase shift of two bases). None of the methods found the motif
for Myf. From the summary in Table 4 we see that the sensitivity
of CisModule in discovering reported sites (n1) is 88% (22 of 25)
and 68% (17 of 25) for the data sets with 10 and 40 random
sequences, respectively, which is much higher than the sensitivity
of the other two methods. CisModule is also most resistant to the
mixed random sequences with the fewest false-positive predic-
tions (n3). These results confirm the notion that module sam-
pling based on the combinatorial effects of several motifs is more
stable than sampling each motif individually. Taking the data set
with 40 random sequences as an example, we found that 54% of
our predicted modules were from the 29 positive sequences, but
only 34% of the output sites predicted by MEME were from the
positive sets. The predicted modules that do not overlap with
positive sequences are most likely false positives, but the possi-
bility exists that some might be unreported modules.

Discussion
The HMx model assumes that TFBSs are located within some
relatively short sequence segments, the CRMs. The benefit of
this model is that it captures the spatial correlation between
different binding sites. It is clear that the more tightly clustered
the motif sites, the more information the HMx model gains.
Based on the model, a Bayesian module sampler, CisModule, is
developed to simultaneously infer the motif modules and the
binding sites for a set of TFs by means of the Gibbs sampling
approach. The module detection step utilizes the combination of
several motifs, which significantly enhances the sensitivity of the
method.

As is true for all de novo motif discovery algorithms, CisMod-
ule may sometimes be trapped in local modes. To reduce this
possibility, multiple trials are often needed. If some prior
information is available for a particular data set, we can use it to
initiate CisModule. For example, if we know that the sequences
are controlled by one TF, and we are interested in finding the
binding sites for this TF and its cooperating TFs, the weight
matrix for the known TF can be used to prescribe more specific
prior distributions. This will lead to faster convergence to the
correct motif patterns.

An interesting future work would be to incorporate the
information from comparative genomics into CisModule.
Greater prior probabilities for modules and sites can be assigned
to the regions that are highly conserved across species of
appropriate evolutionary distances. This will effectively reduce
the false-positive discovery and is especially important for higher
organisms, whose upstream sequences are long and regulatory
mechanisms are complex. Finally, the model presented here
should be regarded as a first step to the development of realistic
models for de novo motif-module discovery. The HMx model
captures the colocalization tendency of cooperating TFBSs but
not their order or precise spacing. It is possible that additional
refinements to the model may further enhance its utility.

Appendix A: Conditional Posterior Distributions for Parameters
Given M and A, we align the binding sites for each motif and
calculate its wk � 4 count matrix Nk (k � 1, . . . , K). Then each
�k can be sampled from the product Dirichlet distribution with
parameter Nk � �k. We denote the number of modules by �M�,
the number of sites for the kth motif by �Ak�, and �A0� � �M�l �
¥k�1

K �Ak�wk is the total length of nonsite background segments
within the modules. Let �A� � [�A0�, �A1�, . . . , �AK�], then [q�M, A]
follows Dir(�A� � �). Similarly, [r�M] � Beta(�M� � a, L � l�M� �
b), where L is the total length of S. The motif widths can be
updated by a Metropolis step similar to that used in ref. 16.

Table 3. Comparison of CisModule (CMD), MEME, and BP for
CRMs in Drosophila

TF L�N n1�n2 MEME CMD BP

Bcd 11,984�10 12�49 — 7�68 1�10
Hb 24,789�19 14�116 3�50 7�138 —
Kr 12,741�10 8�44 — 5�61 1�14

Total reported sites 34 3 19 2

Each data set is denoted by its regulatory TFs. L and N are the total length
and number of sequences in each data set, respectively. n1 and n2 are the
numbers of experimentally reported sites and scanned-based sites, respec-
tively. — indicates that the algorithm fails to find the motif; if the correct motif
is found, the number of reported sites�the number of predicted sites are
presented in the corresponding entry for each method. The summary of
performance on experimentally reported sites is shown in the last row.

Table 4. Comparison of CisModule (CMD), MEME, and BP for
muscle-specific data sets

Algorithm
Mef-2 (10�19)

n1�n2�n3

TEF (7�20)
n1�n2�n3

SRF (8�13)
n1�n2�n3

Summary (25�52)
n1�n2�n3

BP 2�14�3 3�18�5 — 5�32�8
MEME 8�17�7 1�5�1 — 9�22�8
CMD 9�14�5 7�14�0 6�7�0 22�35�5

MEME 2�9�19 1�3�2 — 3�12�21
CMD 8�16�15 3�10�1 6�7�0 17�33�16

The TF names are followed by the numbers of experimentally reported sites
and scanned-based sites in the sequences. n1�n2�n3 are defined in the text.
(— indicates that the algorithm fails to find the motif.) The upper and lower
halves correspond to the results for the data sets with 10 and 40 random
sequences mixed, respectively. For the data set with 40 random sequences, BP
failed to find any of the three motif patterns and thus is not listed in the table.
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Appendix B: Recursions for Forward Summation
Let fn(�) � P(x[1,n]��) be the probability for the partial se-
quence x[1,n] given that xn is either a background or the end of a
module, then P(S��) � fL(�). Let h(i, m) be the probability of
observing x[i,m] given that it is within a module. Then we have

fn��� � rh�n 
 l � 1, n�fn�l��� � �1


 r�P�xn�xn�1, �0�fn�1��� [5]

� An��� � Bn��� , [6]

where P(xn�xn�1, �0) is the background transition probability. The
initial conditions are f0(�) � 1 and fn(�) � 0 for n 
 0. To
calculate h(i, m), we need to sum over all possible site arrange-
ments within x[i,m],

h�i, m� � �
A

P�x �i,m�, A��, x �i,m� is within a module)

� q0P�xm�xm�1, �0�h�i, m 
 1�

� �
k�1

K

qkP�x�m�wk�1,m���k�h� i , m 
 wk� , [7]

where P(x[m�wk�1,m]��k) is the probability of generating
x[m�wk�1,m] from the kth motif model. The initial conditions of
Eq. 7 are h(i, i � 1) � 1 and h(i, m) � 0 for m 
 i � 1. This is
the same recursion we use in motif site detection. It is still quite
time-consuming in the module detection step to calculate h(i, i �
l � 1) exactly for each possible module starting position i.
Because sites are independently distributed within modules, we
approximate this probability by [h(1, i � l � 1)]�[h(1, i � 1)].

Thus, only one recursive summation is needed for each sequence
in the module-sampling step, which reduces the computational
complexity to O(KL). We have observed in simulations that this
approximation works well and, on average, the predicted motif
sites using the approximation showed 95% overlapping with the
results using the exact summation.

Appendix C: Importance Sampling for Calculating P(S�HK)
in Eq. 4
The marginal sequence likelihood under HK is

P�S�HK� � �
�

�
M,A

P�S, M, A, ��HK�d�

� �
�

P�S, ��HK�d�. [8]

After summing over M and A by the recursive methods described
in Appendix B, we use importance sampling to calculate the
integral in Eq. 8 with a trial distribution Q(�), a diffuse version
of P(��S, M̂, Â, HK), where M̂ and Â are our predictions based
on their marginal posterior distributions. More specifically, in
Q(�), �k 
 ProductDirichlet(�N̂k � �k), where N̂k is the count
matrix based on Âk, q 
 Dir(��Â� � �), r 
 Beta(��M� � a, �(L �
l�M�) � b), and � � 0.25
0.5. Consequently, our estimate for
P(S�HK) is:

�i P�S, ��i��HK��Q���i����1

� i �Q���i����1 .
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