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SUMMARY

The ability to derive a whole-genome map of
transcription-factor binding sites (TFBS) is
crucial for elucidating gene regulatory net-
works. Herein, we describe a robust ap-
proach that couples chromatin immunopre-
cipitation (ChIP) with the paired-end ditag
(PET) sequencing strategy for unbiased and
precise global localization of TFBS. We
have applied this strategy to map p53 tar-
gets in the human genome. From a satu-
rated sampling of over half a million PET se-
quences, we characterized 65,572 unique
p53 ChIP DNA fragments and established
overlapping PET clusters as a readout to
define p53 binding loci with remarkable
specificity. Based on this information, we
refined the consensus p53 binding motif,
identified at least 542 binding loci with
high confidence, discovered 98 previously
unidentified p53 target genes that were im-
plicated in novel aspects of p53 functions,
and showed their clinical relevance to p53-
dependent tumorigenesis in primary cancer
samples.

INTRODUCTION

The recent completion of human genome sequencing (Inter-

national Human Genome Sequencing Consortium, 2004)

marked a major milestone in modern biology. The focus

now has turned to the annotation of genomes for functional

content, including gene-coding units and cis-acting regula-
tory elements that modulate gene expression (ENCODE Pro-

ject Consortium, 2004). Gene expression in eukaryotic cells is

controlled by regulatory elements that recruit transcription

factors with specific DNA recognition properties. Thus, the

identification of functional elements such as transcription-fac-

tor binding sites (TFBS) on a whole-genome level is the next

challenge for genome sciences and gene-regulation studies.

Chromatin immunoprecipitation (ChIP) is a powerful tech-

nique for analyzing TFBS in living cells. The technology most

commonly employed to map TFBS in a high-throughput

manner is ChIP-on-CHIP. This strategy has been success-

fully applied for whole-genome localization analysis of

TFBS in yeast (Ren et al., 2000). However, it has not been

readily applicable for comprehensive survey of TFBS in hu-

man and other mammals due to the large size and complex-

ity of these genomes. Recently, substantial progress has

been reported (Kim et al., 2005b), in which high-density-tiling

oligo arrays that cover 25% of the sequenced human ge-

nome were used to map active promoters. Nevertheless,

ChIP-on-CHIP technology for mammalian systems has

been developed on a limited scale. Most applications are

so far restricted to promoter microarrays containing CpG is-

lands or flanking sequences around transcription start sites

and specific chromosome arrays (Horak et al., 2002; Wein-

mann et al., 2002; Cawley et al., 2004; Boyer et al., 2005).

Despite considerable success, these partial genomic arrays

have provided limited information.

Alternatively, immunoprecipitated DNA fragments from

ChIP experiments can be cloned and sequenced (Wein-

mann et al., 2001; Hug et al., 2004). Although ChIP can en-

rich for TFBS-containing DNA fragments, a significant

amount of background DNA will still be present in the immu-

noprecipitated DNA material. With a limited survey of the

cloned ChIP DNA fragment pool, it is difficult to distinguish

between genuine binding sites and noise without further mo-

lecular validation. However, with a larger sampling of the

DNA pool, the sequencing-based approach has the poten-

tial to identify the DNA segments enriched by ChIP. The lim-

itation of standard sequencing is the time and cost of
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sequencing to achieve information saturation. The depth of

coverage can be enhanced by alternative sequencing strat-

egies such as serial analysis of gene expression (SAGE),

which was originally developed for counting transcripts and

was also recently applied to genome scanning for TFBS

and histone modification (Impey et al., 2004; Kim et al.,

2005a; Chen and Sadowski, 2005; Roh et al., 2005). Yet

this monotagging approach suffers from the inherent ambi-

guity of mapping short monotags to the genome and the in-

ability to distinguish true ChIP enrichment from amplified

noise generated during molecular cloning.

To exploit the efficiency of sequencing short tags, to in-

crease the information content, and to enhance the accu-

racy in mapping to the genome, we have developed a

paired-end ditag (PET) method that extracts 36 bp signa-

tures with 18 bp from the 50 end and another 18 bp from

the 30 end of each cDNA clone, concatenates the PETs for

efficient sequencing, and maps the PET sequences to the

genome to demarcate gene-transcription boundaries (Ng

et al., 2005). Conceptually, this strategy has the advantage

over SAGE of higher information content, permitting the de-

finitive mapping of the majority of tags to the genome, and is

at least 30-fold more efficient than standard cloning and se-

quencing approaches. To develop and validate this strategy

for applications in ChIP (which we now call ChIP-PET), we

chose the p53 tumor suppressor, a sequence-specific

DNA binding transcription factor.

As a transcription factor, p53 regulates the expression of

genes involved in a variety of cellular functions, including

cell-cycle arrest, DNA repair, and apoptosis (Vogelstein

et al., 2000). In the past decade, numerous efforts have

been made to identify p53-targeted genes through various

gene-expression techniques, including microarray and

SAGE combined with bioinformatics tools (Yu et al., 1999;

Zhao et al., 2000; Kannan et al., 2001; Kho et al., 2004). To

date, a large number of p53-responsive genes have been

identified, mostly based on gene-expression data, yet only

a small subset of these genes had direct binding evidence

(el-Deiry et al., 1992; Yoon et al., 2002; Yin et al., 2003;

Chen and Sadowski, 2005). Individual ChIP assay has been

applied to validate p53 direct targets (Mirza et al., 2003) but

is highly inefficient for identifying p53 targets on a global

scale. Recently, the ChIP-on-CHIP approach was used to

identify p53 binding sites in chromosomes 21 and 22 (Cawley

et al., 2004). However, this experiment represented only 2%

of the human genome and therefore provided only limited

coverage for p53 binding. Herein, we describe the whole-

genome localization of p53 TFBS, show the effectiveness

of ChIP-PET for the identification of novel p53 target genes,

and demonstrate the clinical relevance of a subset of these

genes in tumorigenesis in vivo.

RESULTS

Mapping of p53 ChIP DNA Fragments

by Paired-End diTags

The underlying concept of ChIP-PET analysis is to clone the

immunoprecipitated chromatin fragments into a DNA library
208 Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc.
that captures the original representation of ChIP DNA frag-

ments. The clones of the library are then converted into

paired-end ditags that are concatenated and cloned as the

final ChIP-PET library for sequencing analysis (10–15 PETs

per sequence read). The PET sequences are then mapped

to the genome to define the boundaries of the cloned ChIP

fragments. We expect that the PETs derived from nonspe-

cific fragments will be randomly distributed along the ge-

nome as background (PET singletons), while the PETs orig-

inating from the same locus containing the target binding site

will overlap with each other in a PET cluster when mapped to

the genome (Figure 1; see also Figure S1 in the Supplemen-

tal Data available with this article online).

With this efficient and specific readout, we characterized

the p53 ChIP fragments generated from human HCT116

colorectal cancer cells treated with 5-fluorouracil (5-FU) for

6 hr, a condition known to activate p53 expression and tran-

scription of its downstream targets (Kho et al., 2004). From

approximately 40,000 sequencing reads, we produced

512,876 PET sequences, of which 75% (382,741) were

mapped to single locations in the human genome. The rest

of the PETs were either mapped to multiple locations, as

they might derive from repetitive sequences, or were not

mapped at all to the genome. These 382,741 PETs were fur-

ther grouped as distinct PETs (Figure S2), representing

65,572 PET-identified ChIP DNA fragments ranging from

100–4,000 bp with an average length of 624 bp. Since the

probability of generating identical DNA fragments by sonica-

tion during the ChIP procedure is assumed to be extremely

rare, the original ChIP DNA fragments prior to cloning are

most likely distinct from each other. Therefore, the redun-

dant PETs were regarded as copies amplified from the orig-

inal ChIP fragments during the cloning process, and the non-

redundant distinct PETs were considered to represent the

original ChIP DNA fragments. Based on the degree of PET

redundancy, we estimated the total number of identifiable

PET fragments in the original CHIP DNA material to be

82,659 by the Hill function (Kuznetsov, 2005) (Supplemental

Data I-6). Therefore, by extrapolation, the 65,572 distinct

PETs cover �80% of the entire ChIP DNA-fragment pool

captured in this library (Figure S3).

While the majority (61,270) of the distinct PET fragments

were located in the genome discretely (classified as PET sin-

gletons), 4,302 (7%) PETs were found overlapping with

others and were grouped into 1,766 PET clusters (Table 1).

These PET-cluster-defined genomic loci represent potential

p53 interaction sites in the genome. To assess the probabil-

ity that PET overlapping was due to random chance, we per-

formed a Monte Carlo simulation (Supplemental Data I-6).

We estimated that 27% of the PET clusters with two overlap-

ping members (hereafter referred to as PET-2 for PET clus-

ters with two overlapping members, PET-3 for clusters

with three overlapping members, and so forth), 2.3% of the

PET-3 clusters, and 0.001% of the PET-4 clusters could re-

sult from random sampling (Table 1). This suggested that

about 73% of PET-2 clusters and over 97% of the PET clus-

ters with three or more overlapping members (PET-3+ clus-

ters) most likely represent the real ChIP enrichment events.



Figure 1. Schematic View of ChIP-PET

Analysis

The ChIP DNA fragments were cloned into a plas-

mid vector. Plasmids were then converted into

PETs for concatenation, cloning, and sequenc-

ing. The PET sequences were mapped to ge-

nome to demarcate the boundaries of DNA

fragments. PET singletons were considered

background, while overlapping PETs (PET clus-

ters) were regarded as enrichment by the same

immunoprecipitation events. The overlapping re-

gions (PET overlap) in a PET cluster may, there-

fore, contain TFBS.
Furthermore, based on the frequency distribution of PET

clusters by size (number of members in each PET cluster),

we were able to establish a true PET-cluster curve that is dis-

tinctive from the potential noise curve and estimate the level

of nonspecific PET clustering events (Supplemental Data

I-6). By extrapolating the true PET-cluster curve, we pro-
jected that less than 36% (520 of 1443) of the PET-2 clusters

but over 99% of the PET-3+ clusters might represent true

enrichment by p53 ChIP (Table 1; Figure S4). Thus, using

two statistical analyses, one based on simulation of random-

ness and the other based on the data-distribution curve, we

concluded that PET singletons were most likely background,
Table 1. Enrichment of p53 Binding Loci by PET Clusters

PET Mapping and Statistic Estimation

Total PETs
PET
Singletons

PET Clusters
PET-3+
ClustersPET-2 PET-3 PET-4 PET-5 PET-6 PET-7 PET-8+

Distinct PETs 65,572 61,270 2,886 471 252 175 168 91 259 1,416

Monte Carlo

simulation

65,572 64,790 770.9 11.1 0.0034 <0.0001 <0.00001 <0.00001 <0.00001

Random
probability (%)

27 2.3 <0.001 <0.0001 <0.0001 <0.0001 <0.0001

PET-defined loci 61,270 1,443 157 63 35 28 13 27 323

Goodness-of-fitting

analysis

3,742 520 159 69 38 22 14 33 335

Enrichment of p53 Binding Motifs in PET Clusters

Genome
Background

PET
Singletons

PET Clusters
PET-3+
ClustersPET-2 PET-3 PET-4 PET-5 PET-6 PET-7 PET-8+

PET-defined loci 63,036a 61,270 1,443 157 63 35 28 13 27 323

p53PET prediction 430 968 219 96 53 25 26 11 24 235

p53PET prediction % 0.68 1.58 15.18 61.15 84.13 71.43 92.86 84.62 88.89 72.76

p53MH prediction 1,117 1,541 196 69 45 23 21 11 21 190

p53MH prediction % 1.77 2.51 13.5 43.95 71.43 65.71 75 84.62 77.78 58.82

The random probability of PET overlapping was calculated based on the simulated numbers versus the observed numbers in each
category of PET clusters.
a The same number (61,270 + 1,766 = 63,036) and sizes (average 630 bp) of genomic DNA segments as the PET-defined loci were ran-
domly extracted from the human genome assembly (hg17) as background.
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the PET-2 clusters were enriched for p53 ChIP DNA frag-

ments but included substantial noise, and the PET-3+ clus-

ters were highly specific for p53 ChIP enrichment.

Verification of PET-Cluster-Identified

p53 Binding Loci

To verify whether the genomic loci determined by PET clus-

ters are associated with p53 interactions, we examined a list

of 66 known p53-responsive genes for the localization of

PET clusters (±100 kb around each curated gene in the

human genome). These genes had been demonstrated to

be activated by genotoxic treatment in HCT116 cells (Kho

et al., 2004) or are well-known p53 targets (Polyak et al.,

1997; Vogelstein et al., 2000). It is expected that some of

these genes would be directly targeted by p53 binding

and some secondary effectors. Forty-one of these sixty-six

genes were localized by PET clusters, including twenty-three

genes by PET-3+ clusters, eighteen by PET-2 clusters (Table

S2), and three by multiple PET clusters. For instance,

CDKN1A is a well-characterized p53 target gene encoding a

cyclin-dependent kinase inhibitor (Kaeser and Iggo, 2002)

with a confirmed p53 binding site in its promoter region.

We found a PET-13 cluster within the first 2,600 bp of the

promoter region, identifying 97 bp of overlap that coincided

with the previously characterized p53 binding site (el-Deiry

et al., 1993) (Figure 2A). Unexpectedly, we also found

a PET-5 cluster located 11,447 bp further upstream of the

CDKN1A transcription start site. The overlapping segment

(153 bp) in the PET-5 cluster also contained a recognizable

p53 binding motif. To specifically validate the localization

of PET clusters in the 50 region of CDKN1A, we scanned

the entire 12,000 bp genomic span using the conventional

ChIP quantitative PCR (ChIP-qPCR) assay. As illustrated in

Figure 2B, both of the p53 binding loci were confirmed,

and the genomic segments showing peak ChIP enrichment

were superimposable on the PET overlapping regions (Fig-

ures 2A and 2B). More examples of PET clusters mapped

to known p53 targets are shown in Figures S5 and S6.

The remaining 25 genes in this list either were not hit by

any PETs or were hit only by PET singletons. Hence, over

62% (41 of 66) of known p53-responsive genes in this list

were localized by PET clusters. This high matching rate of

PET clusters to known p53-responsive genes is statistically

significant (p value = 9e�14), suggesting that genomic loci

determined by PET clusters are substantially enriched with

reliable p53 binding sites. Furthermore, 16 out of the 25

p53-responsive genes not associated with PET clusters

had no binding data in previous studies, suggesting that

these genes are not p53 direct targets but secondary effec-

tors in p53 regulation pathways. For the nine genes that had

previous binding data but were missed by PET clusters, we

conducted ChIP-qPCR assay for the previously known bind-

ing regions and found that the binding loci of three genes

were significantly enriched by p53 ChIP, including one

gene (TRAF4) hit by a PET singleton covering an authentic

p53 consensus motif. The other six were marginally enriched

and not statistically significant above background (Figure S7),

including PIG3 and p53AIP1, known for their low binding
210 Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc.
affinity for p53 protein (Kaeser and Iggo, 2002), and were

therefore not easily detected by PET sequencing or other

measurement. These results indicate that more than 93%

(41 of 44) of p53 targets enriched by ChIP procedure in

this study were identified.

For further validation, we randomly selected 40 genomic

loci defined by PET-3+ clusters as target segments for

ChIP-qPCR assay. All 40 loci (100%) showed significant en-

richment (Figure 2C), indicating that these regions are true

p53 binding targets.

Together, based on the high percentage of PET-cluster

hits to known p53 targets, the precise localization of many

previously known p53 binding sites by PET overlapping re-

gions, and the 100% confirmation by ChIP-qPCR assays

of the 40 binding loci identified by PET clusters, we have

convincingly established the use of PET clusters as an effi-

cient and accurate readout for identifying p53 binding loci.

We therefore believe with high confidence that the 323 geno-

mic loci determined by PET-3+ clusters in this study em-

brace true p53 protein binding sites.

Characterization of the p53 Binding Motif

Using the PET-Cluster-Defined Loci

The currently known p53 binding motif is loosely defined

(el-Deiry et al., 1992). Although the degenerate nature of

the p53 DNA binding element may reflect the diversity and

flexibility of p53-mediated responses to numerous cellular

stress signals, this degeneracy complicates the detection

and prediction of p53 binding sites in the whole genome.

The genome-wide identification of p53 binding loci as rep-

resented by the large number of PET clusters in this study

provided an unprecedented opportunity for delving deeper

into the nature of DNA binding by p53. To ask whether

a key motif (or motifs) existed among the PET clusters, we

first randomly picked 39 binding loci as the initial seed set

for motif discovery followed by program training from the

68 PET-6+ cluster sequences. After applying a de novo

motif-discovery algorithm, GLAM (Frith et al., 2004), a single

prominent motif was identified, which undisputedly resem-

bled the known consensus of p53 binding sites (Supplemen-

tal Data I-7). After further expectation-maximization-type op-

timization employing ROVER (Haverty et al., 2004), we

established a highly effective model (hereafter referred to

as the p53PET model) (Figure 3A). The effectiveness of the

p53PET model for prediction of p53 binding sites was tested

using the remaining 284 binding loci localized by PET-3+

clusters, and the performance of p53PET was evaluated in

comparison with the previously reported p53MH model (Hoh

et al., 2002) and the p53PET model with its weight matrix

replaced by the one in the TRANSFAC database (Wingender

et al., 2000). As shown in Figure 3B using receiver operating

characteristic (ROC) curves, it is evident that the p53PET

model achieved much higher sensitivity for detecting p53

binding motifs than the other two models at all specificity

levels. More importantly, the lengths of the spacers between

the two half-sites in these 284 motif sequences are predom-

inantly zero, although a few are 1 bp, and longer spacers

are also observed (Figure 3C). This length distribution



Figure 2. Validation of PET-Cluster-Identified p53 Binding Loci

(A) The whole-chromosome view of p53 ChIP-PETs mapping to chr6. A genomic span of 23 kb that contains the CDKN1A gene and its 50 region is enlarged.

CDKN1A was localized by two PET clusters; one contained 5 PETs, and the other contained 13 PETs. The two PET overlaps were 153 bp and 97 bp and

were located in chr6:36742675–36743642 and chr6:36751902–36754502, respectively. Both PET overlaps contained recognizable p53 binding motifs.

(B) ChIP-qPCR validation in the 50 upstream region of CDKN1A.

(C) p53 ChIP DNA (blue) and control GST ChIP DNA (red) were subjected to ChIP-qPCR analyses to determine the relative enrichment of candidate regions

identified by ChIP clusters.
is much more specific than reported in previous studies,

where spacers were simply said to vary between 0 and

14 bp.
Using the p53PET prediction model, we then analyzed all

PET-localized regions for p53 motif finding. As summarized

in Table 1, the percentages of the predicted p53 binding
Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc. 211



Figure 3. Motif Analysis of p53 Binding

Sites

(A) Sequence logos depicting nucleotide distribu-

tions for the two p53 half-sites based on the

p53PET model.

(B) ROC curve comparison between p53PET,

p53TRANSFAC, and p53MH.

(C) The spacer lengths between the two halves of

p53 binding motifs in PET-3+ clusters.
motifs were very low (0.68%) in the randomly selected geno-

mic segments taken to represent background noise and

similarly low (1.58%) in the PET singletons, reiterating the

fact that most of the PET singletons are experimental noise,

but significantly higher in PET clusters. We also observed a

sharp increase in the p53 motif-containing rate, from

15.18% in PET-2 clusters to 61.15% in PET-3 clusters, and

the escalation continued. This is consistent with our early es-

timates by statistical analysis that, although PET-2 clusters

are enriched for p53 response elements, they also contain

substantial noise, while the PET-3+ clusters are highly reli-

able. Overall, 73% of the PET-3+ clusters possessed recog-

nizable p53 binding sites, which is a significant enrichment

(up to 107-fold) as compared to background, suggesting

again that the specific p53 interaction with the genome is

predominantly through direct binding to a single binding
212 Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc.
motif. We suspect that the 27% non-motif-containing bind-

ing loci identified by PET-3+ clusters might be due to recruit-

ment of p53 to genomic locations through indirect DNA

binding as has been found for the estrogen receptor (Carroll

et al., 2005). Again, compared with p53MH, the p53PET

model showed better prediction results for p53 motif finding,

with greater distinction between background and high-prob-

ability PET clusters (i.e., fewer hits in the background set of

random genomic DNA segments and PET singletons and

greater detection in PET-cluster sequences) (Table 1). De-

spite the relative nonspecificity of PET-2 clusters, using the

new p53PET motif-finding model, we were able to identify

219 PET-2 clusters with high likelihood of p53 interaction re-

gions containing p53 binding motifs. Thus, including the 323

binding loci identified by PET-3+ clusters, we have estab-

lished a total of 542 high-probability p53 binding loci.



While our total number (1,766) of PET clusters is in good

agreement with the 1,600 binding sites as extrapolated

from the p53 localization analysis for chromosomes 21 and

22 using ChIP-on-CHIP (Cawley et al., 2004), the specific

binding sites on these chromosomes had significant non-

overlap between the two experiments. In the two chromo-

somes, 48 loci based on hybridization peaks were identified,

while in this study we had 55 PET clusters. Within these PET

clusters, 5 were PET-3+ clusters (3 of them contain the p53

motif), and 8 were PET-2 clusters that contain idealized

p53 binding motifs (Table S3). By our earlier validation results,

these 13 loci identified by PET clusters (11 containing p53

motifs) were considered high confidence with regards to

p53 binding, including one that was mapped in the first intron

of a known p53-responsive gene (PRODH/PIG6) (Polyak

et al., 1997). Three of the thirteen PET-cluster-determined

loci were also identified by the p53 ChIP-on-CHIP analysis.

One of the common loci was in a gene desert region with

the nearest gene model (C21orf116) 112 kb away from its

50 side, one was localized in an internal intron region of

SMARCB1, and the other was in the first intron of

AB051436. We further applied our optimized p53PET motif-

finding model to the 48 loci derived from ChIP-on-CHIP anal-

ysis and found that only 5 of them had the requisite p53

binding motif. We observed that the PET-derived loci were

significantly more likely to contain a p53 motif (11 of 13, or

85%) than loci identified by ChIP-on-CHIP (5 of 48, or

10%). The most interesting discrepancy in this group is the

binding locus localized by a PET-8 cluster on chromosome

21 (chr21:33660665–33662530) but missed in the ChIP-

on-CHIP study. This locus is 6,672 bp downstream of the

30 side of IFNAR1, which is involved in stress response to viral

infection. Our ChIP-qPCR analysis indeed confirmed that this

locus is a genuine in vivo binding site for p53 under 5-FU in-

duction conditions in HCT116 cells. Similarly, the binding

locus on chromosome 22 (chr22:27702966–27705354) lo-

calized by a PET-5 cluster was also validated. The discrep-

ancy between the two studies could be attributed to different

chemical treatments (5-FU versus bleomycin) and possibly

different stringencies used for determining binding loci.

Using the optimized p53PET motif-finding model, we

scanned the entire human genome and identified 13,885

ab initio p53 binding sites. Although with increased strin-

gency the p53 binding sites predicted by p53PET could be

reduced to a few thousand, the number is still significantly

larger than that experimentally identified. Besides a certain

level of false positives, it is possible that the predicted p53

binding sites represent the total capacity of p53 targeting

in the genome, while the experimentally identified loci in

each study may reflect only a subset of functional p53 sites

in that particular biological condition in a specific cell line.

Identification of Novel p53 Target Genes

Having established that the PET-cluster loci were highly as-

sociated with p53 interactions, the 542 loci determined by

a combined PET-clustering and motif analysis represent

a rich resource for the identification of novel p53 target

genes. Based on their location within 100 kb of transcription
units, we assigned 474 such clusters to 458 known genes

(Table S4). One hundred and fifty-six of the clusters were

50 upstream, forty-six were in the first introns, one hundred

and fifty-two were in internal introns, and one hundred and

twenty were in 30 downstream regions of the genes (Fig-

ure 4A). Significantly, none were found in exonic regions

(p value = 7e�10, Supplemental Data I-6). Over 90% of the

binding sites were within 60 kb of the target genes, with

the highest density of binding sites (338 of 474; 71%) located

within approximately 20 kb of the 50 and 30 flanking regions.

To validate and further characterize these candidates for

p53 direct target genes, we obtained gene-expression

data for the same cell line (HCT116) treated under the

same condition (5-FU for 6 hr) using oligonucleotide microar-

rays containing 20,000 gene probes (Kho et al., 2004). Out of

the 458 PET-cluster-associated genes, 275 have corre-

sponding expression data, in which 65 were upregulated

and 57 downregulated in response to 5-FU in p53 wild-

type (+/+) versus p53 mutant (�/�) cells. We therefore con-

sider these 122 genes, characterized by both PET binding

data and expression data, as direct p53 target genes (Table

2). We asked whether upregulated genes had different bind-

ing characteristics from downregulated genes and observed

that a statistically significant proportion of upregulated genes

have their binding loci at 50 proximity and first introns (38 of

65 upregulated genes, p = 7.4e�5; Supplemental Data I-6).

This suggests a potential difference between genes upregu-

lated and genes downregulated by p53 based on binding-

site location (Figure 4A).

The 122 direct targets identified by p53 binding compiled

in Table 2 include 24 known p53-responsive genes, while

the other 98 were not previously associated with p53 re-

sponse. Functional categorization of these genes revealed

a broad spectrum of p53 functions, including cell motility

and migration and receptor-tyrosine-kinase signaling cas-

cades (RTK/PTPase), in addition to well-characterized p53

functions. Strikingly, 20 novel p53 target-gene candidates

are associated with the regulation of cell motility and adhe-

sion. p53 has been implicated in regulation of tumor invasion

and metastasis (Singh et al., 2002). However, it was not clear

which p53 target genes were involved in this cellular pro-

cess. To explore the possibility that p53 regulates metastasis

through transcriptional regulation of cell adhesion and motil-

ity genes, 18 targets in this category were selected to mea-

sure their expression levels in 5-FU-treated cells using real-

time qPCR. Of the tested genes, 15 were indeed modulated

(7 were up- and 8 were downregulated) by p53 activation,

and 3 were not affected. PCDH7 and VIM, which are in-

volved in cell adhesion and cytoskeleton structure, were

both downregulated, whereas ITGAM and Col4A1 were up-

regulated (Figure 4B). Our results point to the possibility that

p53 can suppress metastasis through direct transcriptional

regulation of a new category of molecular targets.

Clinical Relevance of p53 Direct Targets in Primary

Cancer Tissues

It is known that transcriptional regulation in cultured cells

might reflect in vitro artifacts, and tissue-dependent p53
Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc. 213



Figure 4. Location of p53 Binding Loci around Target Genes and Validation by Gene Expression

(A) Four hundred and seventy-four PET clusters were plotted against PET counts of each PET cluster (y axis) and locations (x axis) of corresponding genes

represented by a gene model based on BAX. Locations in 50 and 30 regions are indicated in kilobases, while locations in introns were plotted in proportion to

the gene length of that intron. The gray dots indicate PET clusters mapped to genes that either did not have expression data or showed no change in ex-

pression levels.

(B) Four novel p53 target genes (PCDH7, VIM, Col4A1, and ITGAM) were validated using real-time PCR for expression in 5-FU-treated HCT116 cells. Fold

changes relative to time 0 at indicated time points are plotted with HCT116 as solid blue bars and HCT116 p53�/� as hollow bars. The error bars represent

95% confidence intervals. The locations of PET clusters with respect to their corresponding genes and the motifs (red bars) identified by p53PET are shown.
transcriptional activity has been previously described

(Coates et al., 2003). To further validate the genes identified

by ChIP-PET as bona fide p53 targets, and to determine the

extent of their response to p53 in primary tumors, we studied

their expression patterns in a collection of 251 primary breast

tumors profiled using the Affymetrix U133A and B microar-

rays (Miller et al., 2005). In this set of tumors, the p53

cDNA had been previously sequenced, leading to the iden-

tification of 58 p53 mutant tumors and 193 tumors with

p53 wild-types (Bergh et al., 1995). All except one of the

122 p53 direct target genes were represented by probes

on the Affymetrix array. Using expression data derived

from the 251 breast tumors for 65 p53-activated genes

and 56 p53-repressed genes, respectively, we performed

unsupervised hierarchical clustering, which resulted in two

primary tumor clusters significantly associated with the p53

mutation status (Figures 5A and 5B). A number of p53-upreg-

ulated genes showed higher expression levels in most of the

p53 wild-type tumors relative to the p53 mutant tumors,

consistent with their transcriptional dependence on p53.

Similarly, a number of p53-downregulated genes were ex-

pressed at lower levels in the p53 wild-type tumors relative

to the mutants, consistent with their transcriptional repres-

sion by p53. Furthermore, dysregulation of these target

genes (i.e., lower expression of p53-activated genes and

higher expression of p53-repressed genes) was, in each

case, significantly linked to the development of distant me-

tastasis within 5 years of diagnosis. Pathologically, tumors
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associated with this dysregulation appeared to be more

aggressive as evidenced by their higher tumor grades and

the observation that patients with these tumors had a signif-

icantly lower probability of surviving their cancer (Figures 5C

and 5D). Interestingly, two of the p53-repressed genes

known for their antiapoptotic functions, BCL2A1 and

TNFAIP8, showed the highest correlations with both p53

mutation status and high tumor grades. Although p53 is

known to repress antiapoptotic genes, such as BCL2, to reg-

ulate apoptosis, to our knowledge this is the first report that

BCL2A1 and TNFAIP8 are transcriptionally silenced by p53.

The observation that their expression patterns in the breast

tumors correlate highly with p53 status and clinical behavior

(Figure 5B) suggests they may be powerful new biomarkers

for patient prognosis.

Taken together, these findings strongly argue that most of

the novel p53 direct target genes identified by PET clusters

are bona fide p53 direct targets, are regulated by p53 in

different cell types, and are functional in p53-mediated

tumorigenesis. Furthermore, their expression characteristics

in vivo can potentially be used as molecular gauges of tumor

aggressiveness and clinical outcome.

DISCUSSION

The ChIP-PET strategy demonstrated in this study repre-

sents a substantial advance in our ability to identify cis-regu-

latory elements, notably transcription-factor binding sites, on



Table 2. Categories of p53 Target Genes Identified by ChIP-PET Analysis

Apoptosis
Cell Cycle

DNA
Repair
Chr.
Modifier

Cell Growth
Differentiation

Transcription
Regulation

Protein
Catabolism

Signal
Transduction

Cell
Adhesion
Mobility

Biosynthesis
Metabolism

Transport
and Ion
Channel Unknown

BAX PCNA IER5 ATF3 TRIM22 RRAD GPC3 RPS27L STAU FLJ11259

GADD45A RRM2B TGFA MYBL1 CPN1 SNX5 S100A2 TPO STARD4 WIG1

CCNG2 TP53AP1 BCAS3 ADORA2B NEDD4L DKK3 ANK1 ASTN2 EEA1 AB011136

CDKN1A XPC C2orf29 ADRB1 USP34 EIF2AK3 ARHGAP5 CHST12 KCNMA1 AK055226

GML CHD2 FGF2 CBLC USP9X ERBB4 BICD2 CYP4F3 OSBP ANKRD10

PIG6 DDB2 GSPT1 GNAQ GNAI1 CALD1 FTHFSDC1 SLC4A10 ANP32D

SNK HDAC9 KITLG GPR39 NCK2 CDC42EP3 LOC144501 TRPM1 B1

TNFRSF10B MLH1 MDM4 NAB1 NMU COL4A1 NAV3 BC004942

BCL2A1 MSH6 NR6A1 NOTCH1 CTNNA3 PCCA C2orf25

CNAP1 PCAF PPM2C FAT PRKAG2 CDKAL1

RBL1 PRDM1 PTPRE FLJ20972 DDIT4

SMARCB1 TIF1 PTPRM FRMD4A FLJ12484

TNFAIP8 UBP1 PTPRO ITGAM FLJ20045

LTBP1 FLJ22457

MYO1A HIG1

NEO1 LATS2

NID2 MDS009

NLGN1 PHF14

PCDH7 PIAS2

PPFIBP1 PSTPIP2

PTK2 ShrmL

VIM SPAG9

Previously known p53 targets are in italic; novel p53 targets are in roman.
a whole-genome level. Unlike array-based approaches,

ChIP-PET is an open system for identifying any regulatory

binding loci that can be enriched by ChIP and requires only

standard sequencing capacity. The method is therefore

readily applicable for global localization analyses of TFBS in

any genome as long as the whole-genome sequence as-

sembly is available. ChIP-PET is also more precise for

TFBS mapping than the current approaches. We have dem-

onstrated that >80% of known and new p53 binding sites

identified in this study resided in the overlapping regions of

PET clusters, providing a way to narrow the TFBS down to

less than 100 bp. This is made possible by the unique feature

that characterizes the termini of individual PET-identified

fragments. As a result, we can unambiguously distinguish

the original ChIP DNA fragments (distinct PETs) from the am-

plified noise (redundant PETs with multiple copies) regard-

less of how much the amplification might be.

This feature of paired-end ditagging also sets the PET

strategy apart from the recently reported method using

SAGE-like monotags to map TFBS (Impey et al., 2004;
Kim et al., 2005a; Chen and Sadowski, 2005; Roh et al.,

2005). In the monotag approach, each ChIP DNA fragment

is represented by a single tag of 20 bp, and tag counts

(copy number) are used to measure ChIP enrichment;

this approach cannot distinguish overlapped different ChIP

DNA fragments from redundant tags due to amplification

and therefore would significantly increase false positives as

we simulated with the data generated in this study (Fig-

ure S10). In contrast, the PET-cluster readout scheme is

more accurate in identifying binding loci and more specific

in narrowly defining binding sites.

Although the amount of sequencing required (�40,000

sequencing reads) for a comprehensive ChIP-PET experi-

ment is miniscule for most sequencing centers and within

the reach of core facilities in university laboratories, the

cost for each ChIP-PET experiment is substantial. One ap-

proach to increase efficiency is to develop an effective sub-

traction scheme (Chen and Sadowski, 2005) to reduce the

level of background noise so as to decrease the number

of sequencing reads required. Ultimately, the ChIP-PET
Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc. 215



Figure 5. In Vivo Analysis of p53 Target-Gene Expression

Unsupervised hierarchical cluster analysis of 251 breast tumors was performed using the 65 upregulated genes (A) or 56 downregulated genes (B) by p53 in

5-FU-treated HCT116 cells. The formation of two tumor clusters (C1 and C2) and the major tumor branch points are shown in the colored heat map. Red

indicates above-mean expression; green denotes below-mean levels. The degree of color saturation reflects the magnitude of expression value. Black ver-

tical bars represent p53 mutant tumors (p53 mt) or those that gave rise to a distant metastasis within 5 years of diagnosis (DM < 5 yr). Pale blue bars in the

rows of ‘‘p53 mt’’ and ‘‘DM < 5 yr’’ reflect missing data. Green and red bars reflect histological grade I and grade III tumors, respectively. Kaplan-Meier

disease-specific survival (DSS) plots are shown for the two major cluster branches formed in (A) (C) and (B) (D). p values were calculated by the chi-square

test.
approach will be further empowered by new cost-effective

sequencing technologies under rapid development (Margu-

lies et al., 2005; Shendure et al., 2005). In particular, we have

adapted the multiplex sequencing method (Margulies et al.,

2005) for PET-based sequencing analysis to characterize
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mammalian transcriptomes and interrogate complex ge-

nomes (P.N., J.J.S. Tan, K.P.C., H.S. Ooi, Y.L L., M.J. Full-

woods, L. Du, W.-K.S., C.-L.W., and Y.R., unpublished

data) and expect to reduce the sequencing cost to under

$5,000 per ChIP-PET experiment within a year.



After a saturated sampling, we scanned the entire human

genome for p53 TFBS under a given cellular condition,

established a comprehensive map of p53 binding, and

identified 542 loci with high confidence of p53 interaction.

This number is different from what was extrapolated (1,600)

from the p53 ChIP-on-CHIP analysis (Cawley et al., 2004),

and p53 loci on chromosome 21 and 22 localized by these

two different experiments shared minimal overlap. Compar-

ison between the two data sets is difficult because these two

chromosomes are poorly populated with well-characterized

p53 target genes, with the exception of PIG6/PRODH

(22q11.21), which was previously reported to be responsive

to p53 activation (Polyak et al., 1997). In our study, a PET-2

cluster was mapped to the first intron of this gene (Table S3)

and covered a p53 binding motif.

Given that p53 binding sites on chromosomes 21 and 22

identified by the ChIP-PET approach are significantly en-

riched for p53 binding motifs (85% versus 10%) as opposed

to sites assigned by ChIP-on-CHIP, it is likely that the ChIP-

PET methodology is more specific than ChIP-on-CHIP. In

addition, besides potential experimental variations and dif-

ferent techniques used in the two studies, one possible ex-

planation for such a discrepancy between the two results

is that, although the two experiments were done using the

same cells (HCT116), different induction treatments and

time points were employed (5-FU for 6 hr and bleomycin

for 12 hr). Time-course studies have shown clearly that the

binding of p53 to target sites is dynamic and changes signif-

icantly in the first 6 to 12 hr after any exposure to conditions

that induce DNA damage (Crosby et al., 2004). The differ-

ences between the effects of 5-FU and bleomycin could

also be substantial. 5-FU is a nucleoside analog and re-

places replicating nucleic acid with fluorinated uracil, result-

ing in wide-scale coding and structural alterations. Bleomy-

cin nicks DNA and introduces generalized strand breaks. In

fact, these two experiments may merely represent two snap-

shots of potentially very large and fluid bodies of transcrip-

tional networks in response to different p53-activating sig-

nals. Thus, it is perhaps only through sampling of many

combinations of biological settings and p53-activating sig-

nals that we can obtain a truly comprehensive and complete

atlas of p53 genomic activity.

In addition to presenting a global view of p53 TFBS in the

human genome for the first time, this study also provided

a comprehensive list of p53 target genes and their responses

to p53 activation in colorectal cancer cells. Through crossva-

lidation in clinical breast tumors, we identified a comprehen-

sive panel of likely direct targets of p53, many of which ap-

pear to play a role in p53-dependent tumorigenesis in

primary cancer tissues. Functional analysis of these genes

revealed a broad spectrum of novel p53 functions, including

cell adhesion and migration and involvement in receptor-

tyrosine-kinase signaling cascades (RTK/PTPase). Recently,

p53 has been implicated in the regulation of tumor invasion

and metastasis (Tlsty, 1998). Our discovery of 20 previously

unidentified targets involved in cell motility, adhesion, and

migration suggests that a large number of novel p53 targets

could be involved in p53-mediated suppression of tumor
metastasis. For example, PTK2 (known as focal adhesion

kinase, FAK) is known to promote cell invasion and metasta-

sis through integrin-mediated signaling (Lin et al., 2004) and

is overexpressed in invasive breast and colon cancers. It is

very likely that p53 suppresses metastasis through down-

regulation of PTK2. Furthermore, we identified VIM, the ex-

pression of which has been closely correlated with prostate

and breast cancer metastasis (Thompson et al., 1992; Singh

et al., 2002). The biological roles of these promising new

candidates in p53-regulated suppression of tumor migration

and metastasis warrant further investigation.

This study also raised new questions concerning p53 DNA

binding dynamics. Of the 542 high-confidence binding loci,

we have observed that many were either far away from prox-

imal promoter of genes or inactive in inducing adjacent gene

expression. Are these binding sites functional? If so, how do

they operate? It is possible that many of the p53 binding sites

function through long-distance interactions as enhancers or

locus control regions (LCRs) to modulate gene expressions

(West and Fraser, 2005), which can be investigated using

the 3C approach (Dekker et al., 2002). It is also possible

that a number of the p53 binding sites not associated with

array-detected transcriptional activity identified in this study

indicate that array probe analysis is blind to alterations in

splicing and alternative transcriptional start and end sites.

In addition, these sites might not permit recruitment of re-

quired cofactors to trigger transcriptional activity. p53 is

known to interact with coactivators or corepressors under

various conditions. For example, BNIP3L is a p53 binding

target, and its induction requires the simultaneous activation

of both p53 and hypoxia-inducible factor 1 (HIF-1) under

hypoxic conditions (Fei et al., 2004). The data generated in

this study potentially provide the initial framework for higher-

level interactions of p53 regulation.

In summary, we have developed an unbiased, highly pre-

cise, and efficient mapping methodology to allow the whole-

genome survey of TFBS with an unprecedented resolution.

The application of this approach to the discovery of p53

binding sites has enabled us to identify many new in vivo tar-

gets of the p53 tumor-suppressor protein. The characteriza-

tion of these targets by expression profiling in cultured can-

cer cells and primary tumors uncovered potentially important

pathological and clinical roles. Our findings expand the cur-

rent knowledge base surrounding p53 function and impli-

cate p53 in a greater diversity of biological activities than pre-

viously suspected.

EXPERIMENTAL PROCEDURES

Cell Culture and Drug Treatments

Human colon cancer cell line HCT116 and its derived isogenic p53�/�

cells (provided by Dr. Bert Vogelstein) were cultured in DMEM containing

10% FCS and treated with 5-fluorouracil and cycloheximide.

ChIP Experiment

ChIP assays with HCT116 cells were carried out as described (Weinmann

and Farnham, 2002; Wells and Farnham, 2002). For all ChIP experiments,

DO1 monoclonal antibody was used for immunoprecipitation, and quan-

titative PCR analyses were performed in real time using the ABI PRISM
Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc. 217



7900 Sequence Detection System and SYBR Green Master Mix as de-

scribed (Ng et al., 2003). Relative occupancy values were calculated by

determining the apparent immunoprecipitation efficiency (ratios of the

amount of immunoprecipitated DNA over that of the input sample) and

normalized to the level observed at a control region, which was defined

as 1.0.

Construction of ChIP-PET Library

The end-polished ChIP DNA fragments were ligated to the cloning vector

pGIS3, which contains two MmeI recognition sites (Figure S1). The liga-

tions were transformed into TOP10 cells (Invitrogen) to form the ChIP

DNA library. Plasmid of the ChIP DNA library was digested with MmeI

and end polished with T4 DNA polymerase. The resulting vector contain-

ing a signature tag from each terminal of the ChIP DNA insert was self-

ligated and then transformed into TOP10 cells to form the ‘‘single-PET’’

library. The plasmids from this library were digested with BamHI to release

50 bp PETs, which were concatenated into long fragments (1–2 kb) and

cloned into pZErO-1 (Invitrogen) as the final ChIP-PET library for sequenc-

ing.

PET Extraction and Mapping to Genome

PET sequences were extracted from the raw sequence reads obtained

from the ChIP-PET library and were mapped to the human genome as-

sembly (hg17). The process of PET extraction and mapping is essentially

same as previously described for cDNA analysis (Ng et al., 2005).

Additional Methods

The Supplemental Data contain the above methods and additional

methods in more detail, statistical analyses, and p53 motif analyses.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, 11 figures, and 4 tables and can be found

with this article online at http://www.cell.com/cgi/content/full/124/1/

207/DC1/.

ACKNOWLEDGMENTS

The authors acknowledge Mr. H. Thoreau, Mr. L. Lim, and the Cloning

and Sequencing Group at the Genome Institute of Singapore for technical

support; Mr. Au Yong Wing Yau, Mr. Choo Siew Woh, and Mr. Wong

Chee Hong of the Bioinformatics Institute of Singapore for bioinformatics

support; and Ms. Melissa Jane Fullwood for manuscript proofreading.

This work was supported by A*STAR of Singapore and NIH ENCODE

grant 1R01HG003521-01 to Y.R. and C.L.W. B.L. is supported partially

by a grant from the NIH.

Received: May 4, 2005

Revised: September 13, 2005

Accepted: October 25, 2005

Published: January 12, 2006

REFERENCES

Bergh, J., Norberg, T., Sjogren, S., Lindgren, A., and Holmberg, L. (1995).

Complete sequencing of the p53 gene provides prognostic information in

breast cancer patients, particularly in relation to adjuvant systemic ther-

apy and radiotherapy. Nat. Med. 10, 1029–1034.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker,

J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al.

(2005). Core Transcriptional Regulatory Circuitry in Human Embryonic

Stem Cells. Cell 122, 1–10.

Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J.,

Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., et al.

(2005). Chromosome-wide mapping of estrogen receptor binding reveals
218 Cell 124, 207–219, January 13, 2006 ª2006 Elsevier Inc.
long-range regulation requiring the forkhead protein FoxA1. Cell 122,

33–43.

Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A.,

Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams,

A.J., et al. (2004). Unbiased mapping of transcription factor binding sites

along human chromosome 21 and 22 points to widespread regulation of

noncoding RNAs. Cell 116, 499–509.

Chen, J., and Sadowski, I. (2005). Identification of the mismatch repair

genes PMS2 and MLH1 as p53 parget genes by using serial analysis of

binding elements. Proc. Natl. Acad. Sci. USA 102, 4813–4818.

Coates, P.J., Lorimore, S.A., Lindsay, K.J., and Wright, E.G. (2003). Tis-

sue-specific p53 responses to ionizing radiation and their genetic modifi-

cation: the key to tissue-specific tumour susceptibility? J. Pathol. 201,

377–388.

Crosby, M.E., Oancea, M., and Almasan, A. (2004). p53 binding to target

sites is dynamically regulated before and after ionizing radiation-mediated

DNA damage. J. Environ. Pathol. Toxicol. Oncol. 23, 67–79.

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing

chromosome conformation. Science 295, 1306–1311.

el-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W., and Vogelstein,

B. (1992). Definition of a consensus binding site for p53. Nat. Genet. 1,

45–49.

el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R.,

Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B.

(1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75,

817–825.

ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of

DNA Elements) Project. Science 306, 636–640.

Fei, P., Wang, W., Kim, S.H., Wang, S., Burns, T.F., Sax, J.K., Buzzai, M.,

Dicker, D.T., McKenna, W.G., Bernhard, E.J., and el-Deiry, W.S. (2004).

Bnip3L is induced by p53 under hypoxia, and its knockdown promotes

tumor growth. Cancer Cell 6, 597–609.

Frith, M.C., Hansen, U., Spouge, J.L., and Weng, Z. (2004). Finding func-

tional sequence elements by multiple local alignment. Nucleic Acids Res.

32, 189–200.

Haverty, P.M., Hansen, U., and Weng, Z. (2004). Computational inference

of transcriptional regulatory networks from expression profiling and tran-

scription factor binding site identification. Nucleic Acids Res. 32, 179–188.

Hoh, J., Jin, S., Parrado, T., Edington, J., Levine, A.J., and Ott, J. (2002).

The p53MH algorithm and its application in detecting p5-responsive

genes. Proc. Natl. Acad. Sci. USA 99, 8467–8472.

Horak, C.E., Mahajan, M.C., Luscombe, N.M., Gerstein, M., Weissman,

S.M., and Synder, M. (2002). GATA-1 binding sites mapped in the b-glo-

bin locus by using mammalian chIp-chip analysis. Proc. Natl. Acad. Sci.

USA 99, 2924–2929.

Hug, B.A., Ahmed, N., Robbins, J.A., and Lazar, M.A. (2004). A chroma-

tin immunoprecipitation screen reveals protein kinase cb as a direct

RUNX1 target gene. J. Biol. Chem. 279, 825–830.

Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S.,

Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H.

(2004). Defining the CREB regulon: a genome-wide analysis of transcrip-

tion factor regulatory regions. Cell 119, 1041–1054.

International Human Genome Sequencing Consortium (2004). Finishing

the euchromatic sequence of the human genome. Nature 431, 931–945.

Kaeser, M.D., and Iggo, R.D. (2002). Chromatin immunoprecipitation

analysis fails to support the latency model for regulation of p53 DNA bind-

ing activity in vivo. Proc. Natl. Acad. Sci. USA 99, 95–100. Published on-

line December 26, 2001. 10.1073/pnas.012283399.

Kannan, K., Amariglio, N., Rechavi, G., Jakob-Hirsch, J., Kela, I., Kamin-

ski, N., Getz, G., Domany, E., and Givol, D. (2001). DNA microarray iden-

tification of primary and secondary target genes regulated by p53. Onco-

gene 20, 2225–2234.

http://www.cell.com/cgi/content/full/124/1/207/DC1/
http://www.cell.com/cgi/content/full/124/1/207/DC1/


Kho, P.S., Wang, Z., Zhuang, L., Li, Y., Chew, J.L., Ng, H.H., Liu, E.T.,

and Yu, Q. (2004). p53 regulated transcriptional program associated

with genotoxic stress-induced apoptosis. J. Biol. Chem. 279, 21183–

21192.

Kim, J., Bhinge, A.A., Morgan, X.C., and Iyer, V.R. (2005a). Mapping

DNA-protein interactions in large genomes by sequence tag analysis of

genomic enrichment. Nat. Methods 2, 47–53.

Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond,

T.A., Wu, Y., Green, R.D., and Ren, B. (2005b). A high-resolution map

of active promoters in the human genome. Nature 436, 876–880.

Kuznetsov, V.A. (2005). Mathematical Analysis and Modeling of SAGE

Transcriptome. In SAGE: Current Technologies and Applications, S.M.

Wang, ed. (Norwich, United Kingdom: Horizon BioScience), pp. 139–

180.

Lin, Y.H., Park, Z.Y., Lin, D., Brahmbhatt, A.A., Rio, M.C., Yates, J.R.,

and Klemke, R.L. (2004). Regulation of cell migration and survival by focal

adhesion targeting of Lasp-1. J. Cell Biol. 165, 421–432.

Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben,

L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. (2005).

Genome sequencing in microfabricated high-density picolitre reactors.

Nature 437, 376–380.

Miller, L.D., Smeds, J., George, J., Vega, V.B., Vergara, L., Ploner, A.,

Pawitan, Y., Hall, P., Klaar, S., Liu, E.T., et al. (2005). An expression sig-

nature for p53 status in human breast cancer predicts mutation status,

transcriptional effects and patient survival. Proc. Natl. Acad. Sci. USA

102, 13550–13555.

Mirza, A., Wu, Q., Wang, L., McClanahan, T., Bishop, W.R., Gheyas, F.,

Ding, W., Hutchins, B., Hockenberry, T., Kirschmeier, P., et al. (2003).

Global transcriptional program of p53 target genes during the process

of apoptosis and cell cycle progression. Oncogene 22, 3645–3654.

Ng, H.H., Robert, F., Young, R.A., and Struhl, K. (2003). Targeted recruit-

ment of Set1 histone methylase by elongating Pol II provides a localized

mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719.

Ng, P., Wei, C.L., Sung, W.K., Chiu, K.P., Lipovich, L., Ang, C.C., Gupta,

S., Shahab, A., Ridwan, A., Wong, C.H., et al. (2005). Gene identification

signature (GIS) analysis for transcriptome characterization and genome

annotation. Nat. Methods 2, 105–111.

Polyak, K., Xia, Y., Zweuer, J.L., Kinzler, K.W., and Vogelstein, B. (1997).

A model for p53-induced apoptosis. Nature 389, 300–305.

Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I.,

Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., et al. (2000). Genome

wide location and function of DNA binding proteins. Science 290, 2306–

2309.

Roh, T.Y., Cuddapah, S., and Zhao, K. (2005). Active chromatin domains

are defined by acetylation islands revealed by genome-wide mapping.

Genes Dev. 19, 542–552. Published online February 10, 2005.

10.1101/gad.1272505.

Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P.,

Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D., and Church,

G.M. (2005). Accurate multiplex polony sequencing of an evolved bacte-

rial genome. Science 309, 1728–1732. Published online August 4, 2005.

10.1126/science.1117389.
Singh, B., Reddy, P.G., Goberdhan, A., Walsh, C., Dao, S., Ngai, I.,

Chou, T.C., O-Charoenrat, P., Levine, A.J., Rao, P.H., and Stoffel, A.

(2002). p53 regulates cell survival by inhibiting PIK3CA in squamous cell

carcinomas. Genes Dev. 16, 984–993.

Thompson, E.W., Paik, S., Brunner, N., Sommers, C.L., Zugmaier, G.,

Clarke, R., Shima, T.B., Torri, J., Donahue, S., Lippman, M.E., et al.

(1992). Association of increased basement membrane invasiveness

with absence of estrogen receptor and expression of vimentin in human

breast cancer cell lines. J. Cell. Physiol. 150, 534–544.

Tlsty, T.D. (1998). Cell-adhesion-dependent influences on genomic insta-

bility and carcinogenesis. Curr. Opin. Cell Biol. 10, 647–653.

Vogelstein, B., Lane, D., and Levine, A. (2000). Surfing the p53 network.

Nature 408, 307–310.

Weinmann, A.S., Bartley, S.M., Zhang, T., Zhang, M.Q., and Farnham,

P.J. (2001). Use of chromatin immunoprecipitation to clone novel E2F tar-

get promoters. Mol. Cell. Biol. 21, 6820–6832.

Weinmann, A.S., and Farnham, P.J. (2002). Identification of unknown tar-

get genes of human transcription factors using chromatin immunoprecip-

itation. Methods 26, 37–47.

Weinmann, A.S., Pearlly, S.Y., Oberley, M.J., Huang, T.H.-M., and Farn-

ham, P.J. (2002). Isolating human transcription factor targets by coupling

chromatin immunoprecipitation and CpG island microarray analysis.

Genes Dev. 16, 235–244.

Wells, J., and Farnham, P.J. (2002). Characterizing transcription factor

binding sites using formaldehyde crosslinking and immunoprecipitation.

Methods 26, 48–56.

West, A.G., and Fraser, P. (2005). Remote control of gene transcription.

Hum. Mol. Genet. 15, R101–R111.

Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Mein-
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