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Summary. Most algorithms for the alignment of
biological sequences are not.derived from an evo-
lutionary model. Consequently, these alignment al-
gorithms lack a strong statistical basis. A maximum
likelthood method for the alignment of two DNA
sequences is presented. This method is based upon
a statistical model of DNA sequence evolution for
which we have obtained explicit transition proba-
bilities. The evolutionary model can also be used as
the basis of procedures that estimate the evolution-
ary parameters relevant to a pair of unaligned DNA
sequences. A parameter-estimation approach which
takes into account all possible alignments between
two sequences is introduced; the danger of esti-
mating evolutionary parameters from a single align-
ment is discussed.
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Introduction

With the adven! of modern molecular biology, the
ability to collect biolegical sequence data has out-
paced the ability to adequately analyze this data.
One tool for reducing this surfeit of inadequately
reated data is sequence alignment. A sequence
alignment is designed to exhibit the evolutionary
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correspondence between different sequences. It is
possible and, among some researchers, popular 10
align sequences by eyeball. The eyeball technique
is time-consuming. tedious, and irreproducible. In
1970, Needleman and Wunsch presented a dvnamic
programming algorithm for the alignment of w0
biological sequences by computer. Computer-aided
sequence alignment does not possess these disad-
vantages of the eyeball technique. The basic dynam-
ic programming algorithm chooses the best align-
ment by finding the alignment with the minimum
associated weight. This is assumed to be the best of
all alignments between the two sequences in ques-
tion. The evolutionary weight associated with an
alignment is simply the sum of the weights of the
evolutionary events implied by the alignment. In
the case of an alignment between two sequences,
insertions cannot be distinguished from deletions.
Therefore, the term indel is used to describe an evo-
lutionary event that may be either an insertion or a
deletion. Because a single-base indel leads to a sin-
gle-base gap in the alignment and because a nucle-
otide mismatch in the alignment is caused by one
or more nucleotide substitutions, the following
alignment implies that at least three substitutions
and two single-base indels took place:

ATAGAG-TTTGTACG
- TAGCGGTTCGTTCG

The dynamic programming algorithm has sub-
sequently been improved (e.g.. Gotoh 1982) but. in
its most basic form, there is a weight for each single
gap and a weight for each mismatch. If the weight
of a mismatch is | and the weight of a single-base
gap is 5, then the weight associated with the above
alignmentis 13(=1+ 1 + 1 + 5 + 5). A.complete



explanation of the dynamic programming algorithm
can be found in Sankoff and Kruskal (1983).

The weakness of the basic dynamic programming
method and its subsequent modifications is the lack
of an objective procedure 10 choose the relative
weights of gaps and mismatches. The result of this
weakness is that researchers are forced to use either
of two flawed approaches to obtain an alignment
petween two sequences. One approach is to arbi-
warily choose these weights and then obtain an
alignment. If this alignment is aesthetically pleasing
to the researcher, the process stops. Otherwise, the
researcher continues to adjust the weights until an
aesthetically pleasing alignment is obtained. Obvi-
ously, the subjective nature of this approach is not
ideal. Another approach is to use the same set of
weights for every pairwise alignment. This approach
is less subjective than the former approach—only
the initial choice of weights is subjective.

A few objective alignment techniques have been
proposed (¢.g., Reichert et al. 1973; Fitch and Smith
1983; Allison and Yee 1990) but only Bishop and
Thompson (1986) have described an objective tech-
nique that is based upon an evolutionary model.
Because evolution is the force that promotes diver-
gence between biclogical sequences, it is desirable
to view bioclogical sequence alignment algorithms in
the context of evolution. The weights of evolution-
ary events should be a function of evolutionary rates
and divergence times. Under this interpretation, the
basic dynamic programming procedure assumes that
the types of evolutionary events that can change a
biological sequence fall into three categories, For a
DNA sequence, these three possible tvpes of events
are insertion of exactly one base, deletion of exactly
one base, and substitution of one base for another.
The basic dynamic programming procedure assigns
an evolutionary weight to each type of evolutionary
event. The evolutionary weight should be propor-
tional to the negative logarithm of the probability
of the evolutionary event (Felsenstein 1981a). Thus,
the most basic alignment algorithm requires one
evolutionary weight for a substitution and another
evolutionary weight for a single-base indel. It is in-
correct to use the same set of weights far every pair-
wise alignment because the probabilities of evolu-
tionary events depend on the particular pair of
sequences to be aligned.

In this paper, we present 2 maximum likelihood
approach to the alignment of a pair of DNA se-
quences. This maximum likelihood approach is an
extension and modification of the pioneering ap-
proach of Bishop and Thompson (1986). The Bish-
op and Thompson approach is completely objective
but is approximate and is most effective for short
divergence times. Our more general approach yields
explicit calculations of likelihood and a method for
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estimating evolutionary parameters. This procedure
can adjust the evolutionary weights to the sequences
to be aligned. We also examine the bias that is gen-
erated when only a single alignment is used for the
estimation of evolutionary parameters. Our method
for estimating evolutionary parameters is accurate
and avoids this bias because it maximizes the like-
lihood of two sequences. In other words, our method
maximizes the sum—taken over all possible align-
ments between two sequences—of the likelihood of
individual alignments. :

Statistical Model of DNA Sequence Eveolution

Qur maximum likelihood approach is based upon
an evolutionary model that allows only substitu-
tions, single-base insertions, and single-base dele-
tions. It is our hope 10 eventually replace this evo-
lutionary model with a more realistic version that
can allow other evolutionary events such as inver-
sions, large insertions, and large deletions. This evo-
lutionary model is a Markov process; the probability
of a transition from the current state of a sequence
is independent of previous states of the sequence.
The likelihood of a pair of modem sequences, 4 and
B, separated from a common ancestral sequence C
by divergence time ¢ is

P(A, B) = 2 P(OPAIOPBICY (1)
c

Here P(A | O) is the transition probability from se-
guence C to sequence A, and P(C) is the equilib-
rium probability of sequence C. It should be un-
derstood that the values of these probabilities all
depend on the particular values of the parameters
that are pertinent to the evolutionary process. The
evolutionary process described in this paper is re-
versible. The reversibility property implies that the
joint probability of sequence 4 and sequence C is
not influenced by the fact that sequence 4 is a de-
scendant of sequence C: the joint probability of these
two sequences would be the same if C were a de-
scendant of 4 or if both were descendants of a third
sequence. For a reversible process [i.e., P{C)P,
(4 | C)= P(4)P(C | A) for every A, C. and t > 0),
Eq. (1) reduces to

P(A, B) = P (A)P2(B | A) ()

When the evolutionary process is reversible, it is
therefore not necessary to sum over all possible an-
cestral sequences to compute the probability of two
modern sequences arising from a common ancestral
sequence. Instead, it is sufficient to treat one modern
sequence as if it were the ancestor and the other
modem sequence as if it were the descendant for
the computation of P,(4, B). )
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Specification of Evolutionary Process

The calculation of a transition probability can be
separated into two components. These two com-
ponents represent two superimposed stochastic pro-
cesses that can be classified as the substitution pro-
cess and the insertion—deletion process.

The Substitution Process

For the sake of simplicity, the substitution model
of Felsenstein (1981b) is adopted in the calculations
here. This is a straightforward reversible substi-
tution model. Alternative reversible models of sub-
stitution (e.g., Kimura 1980; Hasegawa et al. 1985)
could be incorporated into the likelihood framework
with no theoretical difficulty. In the model of Fel-
senstein (1981b), the substitution rate is indepen-
dent of the type of nucleotide being replaced. When
2 substitution does occur, a base will be replaced by
A, G, C, or T with respective probabilities n,, 7,
7c, and =;. These probabilities are referred 1o as the
equilibrium probabilities of the four nucleotides. It
is possible under this model to, for example, sub-
stitute 2 G by another G. Let the transition prob-
ability that a nucleotide which begins as type i is of
type j at time ! be f,{1). If 5 is the rate of base sub-
stitution, then

e+ afl ~e~) i=j
7{l — e~ i#j

fD= 3)

The Insertion-Deletion Process :
The insertion—deletion process is, for the sake of
clarity, presented not in terms of nucleotides but in
terms of imaginary links that separate the DNA
bases of a sequence. In our model, there are N nor-
mal links and one immortal link in a sequence of
N bases. Specifically, there is a normal link to the
right of each base. In addition, the lefimost base in
the sequence can be considered to have an immortal
link to its left. For example, if % represents a normal
link and e represents the immortal link then the
DNA sequence AGGGCCTA could be depicted as

SAXGAkGHGKhRCKRCHTx AKX

of, if the presence of nucleotides is considered with-
out regard to the actual type of nucleotide then the
same DNA seguence could be depicted as

®J% %k %k %k % % %k %

The insertion—deletion process is framed in terms
of a birth—death process of these links. Each link
evolves independently from all other links; a birth
or death of one link does not affect the probability
of a birth or death of any other link. Both types of
links can be associated with births. The birth rate
per normal link () is equal to the birth rate per

immortal link (A\). A newbom link is always a normai
link. We adopt the convention that it appears im-
mediately to the right of its parent link. Accompa-
nying the birth of a normal link is the birth of a
DNA base immediately to the left of the newbomn
link. The probabilities that the newborn DNA base
will be A, G, T, or C are w4, 7g, 7. and =, re-
spectively. Normal links are subject 10 death (u is
the death rate per normal link) but immortal links
are not.

Because the chance of more than one birth or
death taking place within a sequence at the same
instant is small enough to be neglected, a sequence
will either increase its length by a single nucleotide,
decrease its length by a single nucleotide, or stay the
same length during a given instant. A sequence of
n nucleotides will increase in length to » + 1 nu-
cleotides at rate (n + 1)A because a sequence of 7
nucleotides has n + 1 links. A sequence of n nucle-
otides will decrease in length to n — 1 nucleotides
(assuming n > 0) at rate np because a sequence of
n nucleotides has # normal links and only normal
links can die. This birth~death process is related to0
the more general linear birth—-death process (e.g.,
Feller 1968). The relationship between these two
birth—death processes can also be seen by examining
the form of the transition probabilities associated
with each process.

The calculation of likelihood requires not only
the calculation of transition probabilities from an-
cestral sequence to descendant sequence but, also,
calculation of the prior probability of the existence
(i.e., the equilibrium probability) of the ancestral
sequence. [n our model, the equilibrium probability
of a specific DNA sequence with n nucleotides is
the product of the equilibrium probability of se-
quences n nucleotides in length and the probability
that a sequence of length » nucleotides has the spe-
cific DNA sequence of interest. The latter of these
terms is the product of »n factors: the ith factor of
this product is 7, g, 71, OF 7 depending on wheth-
er the ith nucleotide in the sequence can be repre-
sented byan A, G, T, or C.

The presence of immortal links in this model is
necessary for the existence of a realistic equilibrium
distribution of sequence lengths. Without immortal
links, sequences would tend over time either to a
length of 0 or toward an infinite length. With im-
mortal links and a death rate per normal link that
exceeds the birth rate per link, a realistic equilibrium
distribution of sequence lengths can exist. If v, 15
the equilibrium probability of sequences n nucleo-
tides in length, then the distribution of v, obtained
under the birth-death model is the geometric dis-

tribution
(=36
Yo =\1-=Jl-
B/ \# -



where 0 < A < x. The mean and varniance are easily
calculated:

A
N
E(n) = =
l —_—
LS 4)
A
i’
Var(n) =

Likelihood Expressior of a Pair of DNA
Sequences

Consider two DNA sequences. The first, sequence
4, is TGTC. The second, sequence B, is GCACA.
various paths are possible for a transition from the
first sequence to the second sequence. For example,
one possible path consists of the first three bases of
the former sequence (TGT) undergoing substitution
1o the first three bases of the latter sequences (GCA)
and the rightmost base of the latter sequence arising
via insertion. The transition probability from one
sequence to another is the sum of the probabilities
of all possible paths connecting the two sequences.
The particular path of a transition from one se-
quence to another can be expressed well by align-
ment. As an example of an alignment or transition
path from sequence A4 to sequence B. consider the
following improbable alignment which will be de-
noted as a: ‘

-TGT-C -
G-C-ACA

The information.on presence and absence of bas-
es in alignment « will be termed a' and, when o' 1s
represented in terms of links, «’ can be represented
as:

* - * x *5 * -
ek - K - % * %

The links have been clustered in the above repre-
sentation of alignment a' for the purpose elucidating
the form of P(a’ | ). The probability of the specific
transition path represented by alignment « [i.e..
Pla | 8) where & is the collection of parameters ut,
A, st, 7., T, T, and x;} can be decomposed into
two components. P(a' | €) (the transition probability
of insertion—deletion) and P{« | «', 6). This decom-
position is possible because a contains all of the
mformation of «'. In other words

Pla |y =Pla, o {§) = Px|a 0P |6 (5)

In general. if the ancestral sequence { has n bases.
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P(c’ | 8) will be a product of n + 2 terms. The first
term is the equilibrium probability of an ancestral
sequence with n bases (or » + 1 links) and the second
term is a transition probability for the immortal
link. The remainder of the terms are transition prob-
abilities for normal links. The specific transition
probability for each link depends on the type of link
{normal or immortal), whether the link survived,
and the number of descendant links. The number
of descendant links for a particular ancestral link is
easily determined by depicting the information on
presence and absence of bases in terms of links. The
number of descendant links of a particular ancestral
link is one (if the particular ancestral link survives)
plus the number of descendant links to the right of
the particular ancestral link and to the left of the
particular ancestral link’s neighbor on the right.

Concerning the fate of an individual link over
time, three types of transition probabilities are con-
sidered: p,(?) is the probability after a timespan of
length 7 that n links are descended from a normal
link and one of them is the original, p’.(¢) is the
probability that n links are descended from a normal
link and the original dies, and p*.(¢) is the proba-
bility that the immortal link has » descendants in-
cluding itself. In the above example

P(a’ | 6) = v0" (00" ()2, ()P ((D)DA)
Pla |6, &) = nefoc(timafec(t)ma (6)

It can be proven by induction with respect to se-
quence length that our model is reversible. In fact
it is reversible with respect to each particular his-
tory a.

By their definitions, p,(¢) = p"o(t) = 0. The re-
mainder of the transition probabilities can be ob-
tained by solving the differential equations gov-

emning this birth—death process. These differential

equations can be formerly expressed:

d_deI(Q =Xn = 1)p,,(D

- A+ wnp(t) + enp,..(1) n>0
%}(—I) =Xn = 1)p', (1) — A + mnp' (1)

+ p(n + D) + 8P} n>0(7)
d—p‘;—?r(i) = up' (1) + up,(t)
i’i%!(’—) =Xn = 1)p"_s(0) ~ Dn + p(n— 1)] -

P 1) + unp”, (1) n >0,

where the initial conditions are
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0 =p"0) =1

pO)y=p0)y=0 n=2,

pAO)Y =10 n=20,

Equations (7) can be solved. The explicit forms

of the transition probabilities corresponding to the
above differential equations are

pAE = e~[1 — MB(OHNB(D))"~!

p)=[1 — e — uBOI[1 ~ AB(2)]
‘As@Or-' n>0 9

P'olt) = 18(1)

P’ = [1 — MOIASMI*

where

3, ... (8)
I ...

n>0

n>0

1 — =

H— k?"\"‘" (10)

- By =

It is important to note that there is a slight dis-

crepancy between the conventional form of align-

ment and our model. Previously, the following
alignment denoted by a was presented

-TGT-C -
G-C-ACA

If the fourth and fifth positions of alignment « are
switched, the result is

~-TG-TC -
G-CA-CA

It is not clear how the meaning of this modified
alignment and the meaning of alignment « differ
when viewed conventionally, but the two align-
ments clearly differ in meaning when viewed with
reference to our model. This difference is easier to
understand if the top sequence in each alignment is
viewed as the ancestor and the bottom sequence in
each alignment is viewed as the descendant. Ac-
cording to the likelihood model, the link associated

with the T in the top sequence at the fourth position

of alignment a was deleted but not before it gave
rise, via insertion, to a descendant link associated
with the A that can be found in the lower sequence
at the fifth position of alignment «. In the modified
alignment, the same A—now in the fourth align-
ment position—is a descendant of the link associ-
ated with the G in the top sequence at the third
position. This difference stems from the fact that,
in our model, a newborn link is always inserted
directly to the right of its parental link.

Maximum Likelihood Estimation of Parameters
and Alignment

Consider two DNA sequences, 4 and B. Let the
length of sequence A4 be s, and the length of sequence

B be s,. Evolutionary parameters can be estimated
by maximizing the likelihood

Ly(4, B) = w,"Axe™ Sy v, PAB | 4, 8) (1])

where r,, rg, ¢, and re are the number of occur-
rences of each type of nucleotide in sequence 4. To
simplify notation, we write L,(4, B) instead of P{4,
B | 8). Because for k = 1,

put) = p,(DINBN)!
p'(0) = p", (B! (12)
") = pr iA@Y,

all insertion—deletion transition probabilities can be
written as a function of p,(?2), p' (1), p", (1), P'o(2), and
AB(7). This fact enables development of two recur-
sive algorithms, the alignment algorithm, and the
parameter estimation algorithm, which are very
similar to the conventional dynamic programming
algorithm. ’

Denote the subsequent consisting of the first m
bases of sequence 4 by A,, and denote the subse-
quence consisting of the first # bases of sequence B
by B,. Because our model is reversible, we can with-
out loss of generality consider sequence 4 to be an
ancestor of sequence B. This implies that all links
in sequence B are descendants of links in sequence
A. Define S(4,,, B,) as the set of all possible align-
ments between A, and B,.. Each possible alignment
a(A,,, B,) between A4,, and B, is a member of exactly
one of three subsets of S{4,,, B,):

SA,, B,) = {a(A,,, B,) where rightmost link of A«
has no descendant links in B,}

SY(A4,., B,) = {a{A4,,, B,) where rightmost link of A~
has exactly one descendant link in B,:

S*A,., B,) = {a(A,,, B,) where rightmost link of A~
has at least two descendant links 18
B,} '

To refer to a particular alignment between 4,, and
B, which happens to be a member of the subset
Si(4,,, B,), the notation a'(4,,, B,) will be used.

Alignment Algorithm

First, we introduce the alignment algorithm. This
recursive algorithm can produce the maximum lke
lihood alignment between sequence 4 and sequen®
B and its likelihood for a given value of 4. TH¢
procedure consists of gradually filling in the entri®
ofa(s, + 1) x (55 + 1) matrix. Each matrix positio"
corresponds 1o a subsequence of sequence A4 and 2
subsequence of sequence B. As in the conventio

dynamic programming algorithm, each entry in ﬂ“.
matrix is determined by considering its previous'*
calculated neighboring entries. Unlike the conve™
tional dynamic programming algorithm, the entri®



. the matrices constructed by our procedures are
;ot weights but are alignment likelihoods. The likeli-
pood of 2 specific wbsegucnce alignment a(A,,, B,)
for a certain value of § will be written as /,[e¢(A,,,, B,)]
where { = Q. 1, 2. The value of / depends on the
subset to which a(4,,, B,) belongs. Let us denote
\he alignment of highest likelihood in §"(A,,,, B,) for
» cerain value of 8 by atu (4,0, B,), Le.,
Ll Am Bl = max [[a/(A,. B.)]

at{Am, Bn)

in addition, let

!a[amal(Am: Bn)] = max{ls[a?nax(Amv Bn)]’
IB[a:lnax(Am’ Ba)],
Ii[afnax(Am, Bn)]}
The maximum likelihood alignment between se-
quence A4 and sequence B for a particular value
of 8 can be determined by a recursive procedure
[hat updates II[agu.z(A'm Bn)]s Il[ax!nu(Ann Bn)], and
LataAms Ba)l-

Let a,. denote the type of nucleotide at the mth
position of sequence A and let b, denote the type of
nucleotide at the nth position of sequence B. The
recursive procedure starts with the boundary con-

ditions

Lleth Ao Byl = liak. (Ao, Bo)] =0

Llathelde Bo)l = vaP"1(0)

106Gl Bo)l = ¥a2" (1) TT 7a0o)

=l

l=m=s5s,

j‘![arinax(‘{m' BO)] = lﬂ{a;n(Am' BO)] = O
l<=m=s,

l,[ag.“(fio, Bn)] = [ﬂ{al!nu(AO, Bn)] = 0

15"555

(13)

lolat:nax(~‘10- Bn)] = 'Yﬁp.n-o-l(l) H g,
=1

1l <=n=sg

Forl < m=<gs,and 1 = n < s,, the recursive
procedure follows these rules

{l[al.;\u("im’ Bn)] = E Ta.,,p'o(t)lﬁlamu(“l m-12 Bn)]

l‘[all::nax("lnv Bn)] = 3 Ta.,max{fa,.,b,.(t)pl(t)’ z'b,,pAl(!)]
'{![amx(Am—ls Bn-l)] (14)
r'[a;:n{"!m- 'Bn)l = whnkﬁ(t)max{[l[alltux("!m' Bﬂ—l)]"

IO[al:nu("lnv Bn- l)]}
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So the maximum likelihood alignment between se-
quence A4 and sequence B has likelihood

[G[amax(A- B)] = maX{IO[a?nu(A- B)]a ,d[arlnu(A- B)]!
Loz (4, B}

Similar to be conventional dynamic program-
ming procedure, recovery of the actual maximum
likelihood alignment is obtained by tracing back
through the likelihood matrix on the path that led
to the maximum likelihood value. Although it is
often true that there are many different a,,..(4, B)
that attain max./,[a(A4, B)], and although high like-
lihood alignments could be recovered by employing
the algorithm of Waterman (1983), our current com-
puter implementation only returns a single one of
these equally gpood maximum likelihood align-
ments.

Evolutionary Parameter Estimation Algorithm

The second recursive procedure is designed to cal-
culate the likelihood of two sequences for a given
value of 6. As stated above, L4, B) could be cal-
culated by summing the probability of each possible
alignment between sequence A and sequence B.
However, this is impractical because the number of
possible alignments between two sequences is usu-
ally enormous. To make the calculation of L,(4, B)
practical, we have again designed an algorithm de-
rived from the conventional dynamic programming
procedure. A similar but approximate algorithm was
presented by Bishop and Thompson (1986). Our
algorithm calculates the entries of an (s, + 1) X (55
+ 1) matrix. The entries in this matrix are the sums
of likelihoods of alignments between subsequences.
As in the preceding subsection, we define L(4,,,
B,) by

Lidm B) = 2 Ula(d,, B}, i=0,1.2

@A gy Ba)

The boundary conditions for the earlier recursive
procedure are used in this procedure. Also, for 1 <
m=s,and1 = n = s,

A -
LYAn B,) = " T 8'olt) D LiAmeys Br)

i=Q

A
LiA4,, B,) = " T ol foms ()P 1(0) + 74, D1(D)]

-3 LiAmr By

=0
va(Amv Bn) = Tb.,AB([)[LOI(f!m' Bn—l)
+ LO;(AM‘ Bn—l)] -
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Then. the likelihood of two sequences is ob-
tained by

LA, By=L¥A. B) + L}A, B) + L¥X4. B) (15)

To find the maximum likelihood estimate of 6, this
procedure can be used in conjunction with a nu-
merical maximization routine. This strategy for the
estimation of § [i.e.. the estimation of 8 by the value
of 8 that satisfies max,L (A, B)] will be referred to
as the sum approach.

There may be applications where the posterior
probability of a specific alignment is of interest. If
there is a specific alignment a(4, B) between se-
quence A and sequence B that is of interest, the
posterior probability of a(4, B)—the fraction of the
total likelihood contributed by «a(.4. B)~—can be cal-
culated )

I"[a(-‘!m- Bn)]
LA, B;)

The numerical maximization routine used to pro-
duce the results in this paper is adapted from the
simplex method. The computer code for this max-
imization routine was published in Press et al. (1988).
Press et al. used the algorithm of Nelder and Mead
(1965) as a basis for their routine. This algorithm
will not be described here, but its purpose is to es-
timate the maximum value of a function when the
maximum cannot be solved for exactly. In the con-
text of the sum approach, the function is L,(4, B),
and the maximization routine searches the likeli-
hood surface for the value of § that maximizes the
likelihood. The maximization routine requires spec-
ification of an initial value of 6. At the initial value
of 8, our program determines L,(4, B). The maxi-
mization routine attempts to climb the likelihood
surface. It starts at the initial value of § and travels
on the likelihcod sirface toward the maximum val-
ue of 8, We will use the word iteration to describe
a single evaluation of L,(4, B) by our program. Mul-
tiple iterations are necessary because the maximi-
zation routine requires evaluation of L4, B) for
many vatues of 8. If J is the number of iterations
required by the maximization routine when analyz-
ing sequences 4 and B via the sum approach, then
the amount of computation required by the sum
approach would be proportional to Is,s; because
each iteration requires an amount of computation
proportional 1o s,s;.

Pla(4. B) | 8. A, B] = (16)

Simulation Studies

Design

Parameter estimation properties were investigated
by stimulation study. Pairs of sequences were gen-
erated by evolving from an ancestral sequence 4 10

a descendant sequence B. The evolutionary process
in the simulation was consistent with our evoly-
tionary model except that the length of the ancestra]
sequence was fixed instead of being drawn from a
geometric distribution. The purpose of this inten-
tional violation was to eliminate the eflect of van.-
able initial sequence length on the estimation of
evolutionary parameters. For the simulated evolu-
S 4
s, + 1
the length of ancestral sequence 4. This is the max-
imum likelihood estimate of A for a given value of
u and s, under our evolutionary model. The base
composition was set to 7, = 75 = 7, = 7w, = 0.25
[the Jukes—Cantor model (1969)] and the divergence
time was 7 = 1.0.

Conceivably. A1 i, §t, 74, Tg. 7. and 77 could
all be estimated with regard 1o each pair of sequenc-
es. This would be the ideal situation. Our parameier
estimation process was not this complete because a
complete analvsis would be prohibitively slow. To
simplify the parameter estimation process, equilib-
rium base frequencies (,, 7, 7, and =) were es-
timated by the frequency with which each type of
nucleotide appeared in the evolved sequences. For
example, if 130 of 495 ancestral nucleotides were
guanine and 140 of 503 descendant nucleotides
were guanine then the estimate of 7, would be
130 + 140
495 + 505
of parameters 10 be estimated, At was fixed at
(s, + sg)
S tspt+ 2
estimate of A for given values of u, 5,, and sz i

w(s, + sp)
Sq+spg+ 2

To obtain the most reliable estimates of the evo-
lutionary parameters, all possible alignments should
be taken into account. This is accomplished by th¢
sum approach. To study the effects of parameter
inference from a single alignment, two alternative
estimation procedures—the direct alignment ap-
proach and the indirect alignment approach— wer¢
compared with the sum approach. The two alter
native procedures attempt to find the value of f tha!
maximizes the likelihood of the most probablé
alignment. Because the most probable alignment d¢-
pends on the particular value of 6, the two altel”
native procedures estimate 8 and the alignment 5
multaneously.

The direct alignment approach consists of findiné
the values of § that correspond to max,fy[@max{-1- Bl
This approach is identical to the sum approach &*
cept that the maximization procedure is used ¥
conjunction with the alignment algorithm insté3
of in conjunction with the evolutionary paral'l"et‘er

tionary process, A was fixed at where s, is

= 0.27. To further reduce the number

because the maximum likelihood

under our evolutionary model.



cs‘imation algorithm. As with the sum approach,
the direct alignment approach requires an amount
Ofcomputation proportional to Is,s, where [ is the
aumber of iterations of the alignment algorithm.
The indirect alignment approach is an attempt
10 reduce the number of iterations required of the
jlignment algorithm. This gpproach consists of us-
ing an initial value of # during a first iteration of the
alignment algorithm to find /,[a,,,.(4. B)] and a spe-
qfic alignment enax(A. B) as;ociated with f{ama(A4,
g)). The maximization routine is then used to find
the value of 4 that maximizes the likelihood of this
specific alignment. In other words, the maximiza-
ion routine is dissociated from the alignment al-
orithm. This is advantageous because calculation
of 1he likelihood of a specific fixed alignment re-
quires an amount of computation proportional to
max(s:» Sg) whereas the alignment algorithm re-
quires an amount of computation proportional to
5,55- When this new estimate of § is obtained, the
alignment algorithm is used to find a different spe-
cific alignment. This new alignment will be 2 max-
imum likelihood alignment associated with the new
value of 8. The cycle of choosing the value of 8 that
maximizes the likelihood of a specific alignment and
then finding a new maximum likelihood alignment
corresponding to this new value of § continues until
the process converges (i.e., the new alignment is
identical 1o the old alignment). This procedure is
rerminated when the process converges. We do not
have a theoretical result that guarantees the con-
vergence of this process but we have yet to observe
a failure to converge. The amount of computation
required by the indirect alignment approach is less
than the amount required by the direct alignment
approach because the indirect alignment approach
requires fewer iterations of the alignment algorithm.
The maximization routine appears 10 work well
for each strategy, but it should be realized that the
maximization routine is more likely to make an
error when being employed by the direct alignment
approach and the indirect alignment approach than
when being employed by the sum approach. If A8
represents a small departure from 8, a maximum
likelthood alignment for a given value of 8 will not
always be a maximum likelihood alignment for 6 +
A8. The surface relating 8 1o the likelihood of the
maximum likelihood alignment is not differentiable
at all points; it is a difficult surface upon which to
search for a maximum. This is the surface used by
the two simplified approaches. The sum approach
travels upon a more well-behaved (i.e., differentia-
ble) surface because the likelihood of each possible
alignment makes a contribution to this surface.
Two measures of the standard error of parameter
estimates were obtained for each value of 8. The first
measure was obiained by evolving many replicate
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pairs of sequences under the same value of §. From
this sample of sequence pairs, the sample standard
error was calculated. The second measure of the
standard error of parameter estimates was an ap-
proximation of the asymptotic standard error. This
approximation can be obtained by evaluating the
inverse of the Fisher information matrix {i.e., the
Hessian matrix of the negative log likelihood: Ken-
dall and Stwuart (1973)] for a pair of sequences.

Results

Because of the similar results obtained by the direct
alignment approach and the indirect alignment ap-
proach, only the results of the sum approach and
the direct aligninent approach are emphasized in
this paper. In terms of computer time, the indirect
alignment approach was the quickest of the three
approaches by a large margin because the design of
the indirect alignment approach requires relatively
few iterations of the alignment algorithm.

All three approaches perform well and similarly
for estimation of evolutionary parameters from
closely related pairs of sequences. Although all three
approaches perform well for short evolutionary dis-
tance, even the most likely alignment between close-
ly related sequences has a small posterior probabil-
ity when maxylanm,. (4, B)] and max,L,(4, B) are
compared. The advantage in accuracy of parameter
estimation of the sum approach over the other two
approaches increases as the evolutionary distance
separating the sequence pairs increases (Table 1).
The sum approach evaluates all possible alignments
10 estimate parameters whereas the other two ap-
proaches evaluate only a single alignment per iter-
ation of the alignment algorithm. The estimates from
the approaches that evaluate only a single alignment
per iteration were found to be biased and the size
of this bias increases as evolutionary distance in-
creases. We believe this bias stems from the nature
of the alignment aigorithm. The alignment algo-
rithm often must choose between either inferring
substitution events or inferring insertion—deletion
events. Sometimes both alternative inferences are
relatively probable but the maximum likelihood
alignment cannot take this fact into account; only
one alternative can be incorperated into the maxi-
mum likelihood alignment. Furthermore, each time
the alignment algorithm is faced with choosing be-
tween the same two types of alternatives during the
inference of an alignment, it will always resolve the
uncertainty in favor of the same type of alternative,
It is this property of the alignment algorithm that
generates the bias. The observation that this bias
increases as the evolutionary distance separating se-
quences increases can be explained by the fact that,
as sequences diverge. the situation where two alter-
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Table 1. A comparison of the sum approach and the direct
alighment approach

-~ —

ul st (A) (B)

ut = 001, st =0.01
1 0.0108 = 0.0034 0.0105 + 0.0036 790.8 786.7

. * 0.0034 * 0.0055
11 0.0105 +0.0031 0.0107 = 0.0035 790.8 786.7
* 0.0032 * 0.0053

wt = 0.01, st =0.1
I 0.0105 = 0.0049 0.0974 + 0.0205 920.8 915.2

+ 0.0034 * 0.0171
I 0.0098 + 0.0043 0.0974 = 0.0205 920.8 915.3
+ 0.0031 + 0.0168

w = 0.0, 5t =0.5
1 60103 = 0.0036 0.5140 + 0.0381 1218.1 1207.9

+ 0.0038 = 0.0477
II  0.0080 % 0.0027 0.514] + 0.0405 1217.7 1208.2
=+ 0.0028 = 0.0460

wt = 0.01,5t=1.0
I 0.0101 + 0.6038 1.0456 = 0.1033 1348.0 1334.1

+ 0.0044 * 0.0925
I 0.0060 = 0.0021 1.0540 = 0.1151 1346.8 1334.8
+ 0.0024 =+ 0.0863

ar=0151s=0.1
1 0.1081 £ 0.0127 0.1007 = 0.0292 1197.9 1143.7

+ 0.0159 * 0.0258
I 0.0775 2 0.0139 0.1211 = 0.0385 11944 1146.7
= 0.0091 = 0.0194

u=0.1.5r=05
I 0.1023 + 0.0205 0.4920 = 0.0572 1390.7 1311.8

+ 0.0220 + 0.0674
11 0.0409 + 0.0072 0.5882 = 0.1007 1372.8 1320.2
+ 0.0065 + 0.0518

w=01,s=10 :
1 0.1110 + 0.0345 0.9758 + 0.1289 1476.4 1373.3

* 0.0382 * 0.1470
I 0.0083 £ 0.0067 1.9009 + 0.5301 14104 1387.2
+ 0.0027 + 0.2164

ul =035, 5t =05
1 0.5176 + 0.2086 0.5292 + 0.3722 1660.5 1383.9

+ 0.2647 * 0.4114
II  0.0147 = 0.0106 1.7892 + 0.4286 1434.8 1396.4
+ 0.0036 + 0.1886

The average results of the sum approach and the direct alignment
approach are presented for various values of uf and s7. The av-
erage results were obtained from 20 pairs of sequences. To pro-
duce a pair of sequences separated by a particular value of uf and
st, a descendant sequence was evolved as described in the text
from an ancestral sequence of length 500. Each pair of sequences
was then analyzed by both the sum approach (I) and the direct
alignment approach {i1). The column with the heading of 7 con-
tains average estimates of ur and the column with the heading
5t contains average estimates of s7. Each average estimate is fol-
lowed by the sample standard error. Direcily below each sample
standard error is the average estimate of the standard error as
obtained from the information matrix. The values of
~In{ifan..(4.8)]} and —In[L{A4.B)] corresponding to each pair
of it and st are presented in the columns labeled (4) and (B),
respectively

native inferences are both relatively probable be.
comes more common. The sum approach is not
forced 1o make the same kind of choice between
alternatives. It can estimate parameters by consid-
ering each alternative in proportion 1o its likelihood.
In other words, the best alignment can often be 2
poor source of information about the actual values
of evolutionary parameters.

We believe that the detected bias is not particular
to our model. Instead, this bias is likely to arise any
time evolutionary parameters are being estimated
from a single alignment; it does not matter whether
this alignment is a maximum likelihood alignmem
or a subjective alignment. Because phylogeny infer-
ence techniques tend to be based on the analysis of
single multiple-sequence alignments. the estimates
of evolutionary parameters obtained by phyvlogeny
inference techniques will be biased, especially when
distantly related sequences are being considered. The
significance, if any, of this bias on the inference of
phylogenetic tree topology is unknown.

The estimates of standard error derived from the
inverse of the information matrix were quite similar
to the sample standard errors (Table 1). This sim-
ilarity is fortunate because sample standard errors
cannot be calculated for actual data whereas the
inverse of the information matrix can be calculated.
This similarity implies that the inverse of the in-
formation matrix yields a reliable predictor of pa-
rameter estimate precision. '

The quality of the performance of all three ap-
proaches deteriorates as the evolutionary distance
separating a pair of sequences increases because it
becomes more difficult to correctly infer which events
are responsible for the differences between two se-
quences as the number of differences accumulates.

In addition, it was found that the precision of pa-

rameter estimation increases with increasing se-
quence length (Fig. 1). This result is expected be-
cause long sequences can be viewed as large dat2
sets and short sequences can be viewed as small datd
sets.

The different parameter estimates obtained by
the sum approach and the direct alignment ap-
proach can have a pronounced effect on the ap-
pearance of the maximum likelihogd alignments
produced from these parameter estimates (Fig. 2>
To demonstrate their maximum likelihood method-
Bishop and Thompson {1986) included an examl{’l"
of the alignment between the 70-base mitochondrid
tRNA sequence for aspartic acid in the mouse (M¥
musculus) and the 68-base mitochondrial tRNA ¢
quence for aspartic acid in the ox (Bos tqurus). AF
though these sequences are t0o short to obtain &
curate estimates of evolutionary parameters. ¥°
present the maximum likelihood alignment betwee®
these sequences which is produced by both the sur
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Fig. 1. The effect of sequence length on
the standard error of u? and st. Pairs of
sequences with pr = 0.1 and st = 0.5
were simulated as described in the text.
Parameter estimates were obtained from
the sum approach and sample standard
errors as calculated from the analysis of
20 pairs of sequences are shown. Data

a points represent the standard errors asso-
ciated with ancestral sequence lengths of
250, 500, or 1000 bases. The square

0.00 ¥ T T
0 200 400 600

300 1000 symbols represent standard errors of pr

and the filled diamond symbols represent
standard errors of st.

Length in Bases of Ancestral Sequence

Al

SACBRAATCC-C-TGAGACCCC-TTCAGTAGITAACACGTA-ATC-ATTGTT -TGTC~-CGTAGCGGTAAGA
5-CTAATCCGCCCGTGACCCCCTTC~CAAGGAAARAACCCACATCCACTGTGCTACCGCGTAGT-TCACGA

CAGATACGARCCTACTCCTCGCAC-AGCGAAGGTGCGAAACAA ~TAATTGCGAAGTGAGTAACTTGATTG
AGGGAACGTA-CTACGGAT-GCAGGAAGGAGGGTGC-AARGAATTAATGGAGCACTTAGTAA-ATGATTG

3:

3ACAAATC-CCTGAGACCCCTTCAGTAGTTAACACGTA-ATC-ATTGTTTGTCCGTAGCGGTAA~GACAG
FCTAATCCGCCCGTGACCCCCTTCCAAGGARARACCCACATCCACTGTGCTACCGCGTAGTTCACGAAGS

ATACGAACCTACTCCTCGCACAGCGAAGCTGCGAAACAATAATTGCGAAGTGAGTAACTTGATTGAATCC
35ACSTA-CTACGGATGCAGGAAGGAGGGTGCAMAGAATTAATGGAGCACTTAGTAA~ATGATTGAATCC

Fig. 2. The effect of two parameter estimation approaches on of wt = 0.115 and sz = 0.465. The first 140 positions of the

the appearance of the maximum likelihood alignment. A de-
scendant sequence was evolved, as described in the text, from
an ancestral sequence of length 500. The true value of ur = 0.1
and the true value of st = 0.5. {(A) The sum approach required
48 iterations of the maximization routine and obtained estimates

maximum likelihood alignment given uz = 0.115 and st = 0.465
are shown. (B) The direct alignmen1 approach required 40 iter-
ations of the maximization routine and obtained estimates of st
=(.031 and st = 0.573. The first 140 positions of the maximum
likelihood alignment given uz = 0.031 and sz = 0.573 are shown.

ARGATAT TAGTAARATCAAT TACATARCTTTGTCAAAGTTAAATTATAGATCAATAATCT-ATATATCTTA
JAGGTGTTAGTAAAAC-ATT-ATATAATTTTGTCAAAGTTAAGTTACAARGTGAAA~-GTCCTGTACACCTCA

-

ARGATATTAGTAAAATCAATTACATAACTTTGTCAAAGTTAAATTATAGATCAATAATCTATATATCTTA
SAGGTGTTAGTAAAA-CA-TTATATAATTTTGTCAAAGTTAAGT TACAAGTGAAAGTCCTGTACACCTCA

Fig. 3. Alignments between the tRNA genes for aspartic acid (B) The alignment produced by both the sum approach and the

from the mitochondrial genomes of mouse and ox. In the case
of each afignment, the top sequence is from the mouse and the
bottom sequence is from the ox. (A) The alignment produced by
the maximum likelihood method of Bishop and Thompson (1986).

direct alignment approach. The sum approach obtained estimates
of wt = 0.019 = 0.015 and st = 0.527 + 0.144. The direct
alignment approach obtained estimates of pz = 0.015 = 0.010
and st = 0.508 = 0.133, .
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approach and the direct alignment approach. We
believe that the contrast between this alignment and
the alignment of Bishop and Thompson (Fig. 3) is
due either to an error in the program of Bishop and
Thompson or to a flaw in their traceback algorithm.,

Future Directions

This maximum likelihood methodology achieves the
objective of adjusting the *weights™ in the dynamic
programming procedure to the data. However, this
methodology is no1 ideal. The most glaring fault of
our evolutionary model is the lack of occurrence of
large insertions and deletions. A generalization of
our evolutionary model. which can partially correct
this flaw. has been developed and will be presented
in a forthcoming paper. Fitch and Smith (1983) re-
alized that 1erminal indels in an alignment are often
due to missing sequence data and not due to evo-
lutionary events. The current versions of our algo-
rithms treat all indels as evolutionary events. Ex-
pansion of our model to permit special treatment
of terminal indels would be an improvement. It
would also be worthwhile 10 allow heterogeneity of
evolutionary rates along a sequence and to allow the
sequence context 1o have an effect on evolutionary
rates. For example, it appears that palindromes and
tandem repeats can be mutagenic (e.g., Schaaper et
al. 1986) and, therefore, are probably associated with
accelerated evolutionary rates. Another attractive
addition to the maximum likelihood methodology
would be the ability to simply represent confidence
sets of alignments. It would be useful to be able to
represent a set of alignments that contained the true
alipnment with 95% certainty. The concept of se-
quence graphs {Hein 1990) might aid this objective
as well as the objective of finding and representing
multiple sequence alignments. It is our hope that
that maximum kikelihood framework can eventually
serve as the basis of a technique for the inference
of evolutionary trees from unaligned sequences. Al-
though our maximum likelihood framework is ad-
mittedly unrealistic, we believe it is crucial to link
biological sequence analysis with the process of evo-
lution. The study of biological sequence data should
not be divorced from the process that created it.
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Erratum

An Evolutionary Mode! for Maximum Likelihood Alignment of DNA Sequences
J. L. Thorne, H. Kishino, J. Felsenstein
J Mol Evol (1691) 33:114-124

Equations (6) should read:
Pa’|6) = 7407 (ps(Dp (D1 (DDAD)

Plalb, ') = 767176 foc(TrTamc fecD, .

The last formula of Equations (9) should begin with p%/(¢) instead of p.(7). Thus, Equations
(9) should read:

2.0 = e*(1 — AB@OYMB@)~! n >0
2 =1 — e — )1 = ABOABW)' n>0
pelt) = uB(0)

pA()= (1 = ABOYABW)Y"' n>0

Announcements

The Fifth International Conference on the Cell and Molecular Biology of Chlamydomonas
will be held, May 26-31, 1992 at the Asilomar Conference Center in Pacific Grove, CA.
The meeting will consist of platform and poster sessions devoted to all aspects of the mo-
lecular biology and genetics of Chlamydomonas. Platform sessions will include:

Session Chair
1. Cell Differentiation and Life Cycle Ursula Goodenough
I1. Photosynthesis Richard Sayre
III.  Molecular Biology of Dynein David Mitchell
IV. Biochemistry and Metabolism Emilio Fernandez
V. Mating, Signal Transduction, and Behavioral
Response Herman van den Ende
VI. Innovations in Genetics and Molecular Biology of
Chlamydomonas Paul Lefebvre
VIL. The Flagellar Apparatus: Basal Bodies and Assembly Joel Rosenbaum
VIII. Organelle Genetics and Molecular Biology Elizabeth Harris

There will also be one or two other platform sessions to be announced. For further infor-
mation, please contact Dr. George Witman, Organizer, The Worcester Foundation for Ex-






