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Abstract. Transcription factor (TF) binding to its DNA target site is
a fundamental regulatory interaction. The most common model used
to represent TF binding specificities is a position specific scoring ma-

trix (PSSM), which assumes independence between binding positions. In
many cases this simplifying assumption does not hold. Here, we present
feature motif models (FMMs), a novel probabilistic method for modeling
TF-DNA interactions, based on Markov networks. Our approach uses se-
quence features to represent TF binding specificities, where each feature
may span multiple positions. We develop the mathematical formulation
of our models, and devise an algorithm for learning their structural fea-
tures from binding site data. We evaluate our approach on synthetic
data, and then apply it to binding site and ChIP-chip data from yeast.
We reveal sequence features that are present in the binding specificities
of yeast TFs, and show that FMMs explain the binding data significantly
better than PSSMs.

Key words: transcription factor binding sites, DNA sequence motifs,
probabilistic graphical models, Markov networks, motif finder.

1 Introduction

Precise control of gene expression lies at the heart of nearly all biological pro-
cesses. An important layer in such control is the regulation of transcription.
This regulation is preformed by a network of interactions between transcription
factor proteins (TFs) and the DNA of the genes they regulate. To understand
the workings of this network, it is thus crucial to understand the most basic
interaction between a TF and its target site on the DNA. Indeed, much effort
has been devoted to detecting the TF-DNA binding location and specificities.

Experimentally, much of the binding specificity information has been de-
termined using traditional methodologies such as footprinting, gel-shift analy-
sis, Southwestern blotting, or reporter constructs. Recently, a number of high-
throughput technologies for identifying TF binding specificities have been devel-
oped. These methods can be classified to two major classes, in vitro and in vivo
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methods. In vitro methods can further be classified to methods that select high-
affinity binding sequences for a protein of interest (Elnitski et al.[1]), and high-
throughput methods that measure the affinities of specific proteins to multiple
DNA sequences. Examples of the latter class of methods include protein binding
microarrays [2] and microfluidic platforms [3], which claim to achieve better mea-
surement of transient low affinity interactions. The in vivo methods are mainly
based on microarray readout of either DNA adenine methyltransferase fusion
proteins (DamID) or of chromatin immunoprecipitation DNA-bound proteins
(ChIP-chip) [2]. However, despite these technological advances, distilling the TF
binding specificity from these assays remains a great challenge, since in many
cases the in vivo measured targets of a TF do not have common binding sites,
and in other cases genes that have the known and experimentally determined
site for a TF are not measured as its targets. For these reasons, the problem of
identifying transcription factor binding sites (TFBSs) has also been the subject
of much computational work [1].

The experimental and computational approaches above revealed TFBSs are
short, typically 6-20 base pairs, and that some degree of variability in the TFBSs
is allowed. For these reasons, the binding site specificities of TFs are described by
a sequence motif, which should represent the set of multiple allowed TFBSs for
a given TF. The most common representation for sequence motifs is the position

specific scoring matrix (PSSM), which specifies a separate probability distribu-
tion over nucleotides at each position of the TFBS. The goal of computational
approaches is then to identify the PSSM associated with each TF.

Despite its successes, the PSSM representation makes the very strong as-
sumption that the binding specificities of TFs are position-independent. That
is, the PSSM assumes that for any given TF and TFBS, the contribution of a
nucleotide at one position of the site to the overall binding affinity of the TF
to the site does not depend on the nucleotides that appear in other positions of
the site. In theory, it is easy to see where this assumption fails. If instead of the
PSSM representation, we allowed ourselves to assign probabilities to multiple
nucleotides at multiple positions, then we could use the same number of param-
eters to specify the desired TF binding specificities. This observation lies at the
heart of our approach (see Figure 1).

From the above discussion, it should be clear that the position-independent
assumption of PSSMs is rather strong, and that relaxing this assumption may
lead to a qualitatively better characterization of TF motifs. Indeed, recent stud-
ies revealed specific cases in which dependencies between positions may exist,
[3]. In a more comprehensive study, Barash et al.[4] developed a Bayesian net-
work approach to represent higher order dependencies between motif positions,
and showed that these models predict putative TFBSs in ChIP-chip data with
higher accuracy than PSSMs. However, the Bayesian network representation,
due to its acyclicity constraints, imposes unnecessary restrictions on the mo-
tif structure, and its conditional probability distributions limit the number of
dependencies that can be introduced between positions in practice, due to the ex-
ponential increase in the number of parameters introduced with each additional
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Fig. 1. Comparison between FMMs and PSSMs in a toy example of a TFBS with 4
positions. (a) Eight input TFBSs that the TF recognizes. (b) A PSSM for the input
data in (a), showing its Markov network representation, probability distributions over
each position, and sequence logo. Note that the PSSM assigns a high probability to
CG and GC in positions 2 and 3 as expected by the input data, but it also undesirably
assigns the same high probability to CC and GG in these positions. (c) An FMM for
the input data in (a), showing the associated Markov network, with 3 features, and
sequence logo. Note that features f1 and f2 assign a high probability to CG and GC
in positions 2 and 3 but not to CC and GG in these positions, as desired.

dependency. While some of these issues may be addressed, e.g., using sparse
conditional probability distribution representations, Bayesian networks are not
the ideal and most intuitive tool for the task.

Here, we propose a novel approach to modeling TFBS motifs, termed feature

motif models (FMMs). Our approach is based on describing the set of sequence
properties, or features, that are relevant to the TF-DNA interactions. Intuitively,
the binding affinity of a given site to the TF increases as it contains more of the
features that are important for the TF in recognizing its target site. In our
framework, features may be binary (e.g., “C at position 2, and G at position
3”) or multi-valued (e.g., “the number of G or C nucleotides at positions 1-4”),
and global features are also allowed (e.g., “the sequence is palindromic”). Each
feature is assigned a statistical weight, representing the degree of its importance
to the TF-DNA interaction, and the overall strength of a TFBS can then be
computed by summing the contribution of all of its constituent features. We
argue that this formulation captures the essence of the TF-DNA interaction
more explicitly than PSSMs and other previous approaches. It is easy to see that
our FMMs contains in it the PSSM description, since a PSSM can be described
within our framework using four single nucleotide features per position.

In what follows, we provide the mathematical formulation of FMMs, and
devise an algorithm for learning FMMs from TFBSs data. This problem is quite
difficult, as it reduces to learning structure in Markov networks, a paradigm that
is still poorly developed. We evaluate our approach in a controlled synthetic
data setting, and demonstrate that we can learn the correct features even from
a relatively small number of positive examples. Finally, we apply our method
to real TFBSs for yeast TFs [5, 6], and show several cases where our method
better explains the observed TFBS data and identifies motif sequence features
that span multiple positions. We identify global properties that are common to
the DNA sequence specificities of most TFs: TFBSs have strong dependencies
between positions; these dependencies mostly occur in the center of the site; and
dependencies typically exist between nearby positions in the site.
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2 The Feature Motif Model

We now present our approach for representing TF binding specificities. Much like
in the PSSM representation, our goal is to represent commonalities among the
different TFBSs that a given TF can recognize, and assign a different strength to
each potential site, corresponding to the affinity that the TF has for it. The key
difference between our approach and a PSSM is that we want to represent more
expressive types of motif commonalities compared to the PSSM representation,
in which motif commonalities can only be represented separately for each posi-
tion of the motif. Intuitively, we think of a TF-DNA interaction as one that can
be described by a set of sequence features, such as pairs or triplets of nucleotides
at key positions, that are important for the interaction to take place: the more
important features a specific site has, the higher affinity it will have for the TF.

One way to achieve the above task is to represent a probability distribution
over the set of all sequences of the length recognized by the given TF. That is, for
a motif of length L, we represent a probability distribution over all 4L possible
L-mer sequences. Formally, we wish to represent a joint probability distribu-
tion P (X1, . . . , XL), where Xi is a random variable with domain {A, C, G, T }
corresponding to the nucleotide at the i-th position of the sequence. However,
rather than representing this distribution using the prohibitively large number
of 4L −1 independent parameters, our goal is to represent this joint distribution
more compactly in a way that requires many fewer parameters but still captures
the essence of TF-DNA interactions. The PSSM does exactly this, but it forces
the form of the joint distribution to be decomposable by positions. Barash et

al.[4] presented alternative representations to the PSSM, using Bayesian net-
works, that allow for dependencies to exist across the motif positions. However,
as discussed above, the use of Bayesian networks imposes unnecessary restric-
tions and is not natural in this context.

A more natural approach that can easily capture our above desiderata is
the framework of undirected graphical models, such as Markov networks or log-
linear models, which have been used successfully in an increasingly large number
of settings. As it is more intuitive for our setting, we focus our presentation on
log-linear models. Let X = {X1, . . . , XL} be a set of discrete-valued random
variables. A log-linear model is a compact representation of a probability distri-
bution over assignments to X . The model is defined in terms of a set of feature

functions fk(Xk), each of which is a function that defines a numerical value for
each assignment xk to some subset Xk ⊂ X . Given a set of feature functions
F = {fk}, the parameters of the log-linear model are weights θ = {θk : fk ∈ F}.
The overall joint distribution is then defined as:

P (x) =
1

Z
exp





∑

fk∈F

θkfk(xk)



 , where Z =
∑

x∈X

exp





∑

fk∈F

θkfk(xk)



 (1)

is the partition function that ensures that the distribution P is properly nor-
malized (i.e.,

∑

x∈X
P (x) = 1), and xk is the assignment to Xk in x. Although
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we chose the log-linear model representation, we note that it is in fact equiva-
lent to the Markov network representation, and the mapping between the two is
straightforward. We now demonstrate how we can use this log-linear model rep-
resentation in our setting, to represent feature-based motifs. We start by showing
how PSSMs can be represented within this framework.
Representing PSSMs. Recall that a PSSM defines independent probability
distributions over each of the L positions of the motif. To represent PSSMs in
our model, we define 4 features fiJ for each position that indicate whether a
specific nucleotide J ∈ {A, C, G, T } exists at a specific position 1 ≤ i ≤ L of the
TFBS. We associate each feature with a weight θiJ that is equal to its marginal
log probability over all possible TFBSs. It is easy to show that putting this into
Equation 1 defines the exact same probability distribution as of the PSSM, and
that the partition function as defined in Equation 1 is equal to 1 in this case.
Representing Feature Motifs. Given a TF that recognizes TFBSs of length
L, our feature-based model represents its motif using the log-linear model of
Equation 1, where each feature fk corresponds to a sequence property that may
be defined over multiple positions. As an example for a feature, consider the
indicator function: ‘C’ at position 2 and ‘G’ at position 3, as in Figure 1c. This
feature illustrates our ability to define features over multiple positions. We note,
that continuous and even global features (such as G/C content) can easily be
defined within our model. We then associate each feature with a weight, θk, that
defines its importance to the TF-DNA binding affinity. Given a sequence, we can
now compute its probability using Equation 1, which boils down to summing
the value of all the features present in the sequence, each multiplied by its
respective weight parameter, and exponentiating and normalizing this resulting
sum. Intuitively, this model corresponds to identifying which of the features
that are important for the TF-DNA interaction are present in the sequence, and
summing their contributions to obtain the overall affinity of the TF to the site.
This intuitive model is precisely the one we set out to obtain.

3 Learning Feature Motif Models

In the previous section, we presented our feature-based model for representing
motifs. Given a collection of features F , our method uses the log-linear model
to integrate them, as in Equation 1. As we showed, the standard PSSM model
can be represented in our framework. However, our motivation in defining the
model was to allow for integration of other features, that may span multiple
positions. A key question is how to select the set of features for a given model.
In this section, we address this problem. Since log-linear models are equivalent
to Markov networks, our problem essentially reduces to structure learning in
Markov networks. This problem is quite difficult, since even the simpler problem
of estimating the parameters of a fixed model does not have an analytical closed
form solution. Thus, the solutions proposed for this problem have been various
heuristic searches, which incrementally modify the model by adding and deleting
features to it in some predefined scheme [7, 8].
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We now present our algorithm for learning a feature-based model from TFBSs
data. Our approach follows the Markov network structure learning method of
Lee et al.[8]. It incrementally introduces (or selects) features using the grafting

method of Perkins et al.[9]. We first present the simpler task of estimating the
parameters of a given model, as this is a sub-problem that we need to solve when
searching over the space of possible network structures.

3.1 Parameter Estimation

For the parameter estimation task, we assume that we are given as input a
dataset D = {x[1], . . . , x[N ]} of N aligned i.i.d TFBSs, each of length L, and
a model M defined by a set of sequence features F = {f1, . . . , fk}. Our goal is
to find the parameter vector θ = {θ1, . . . , θk} that specifies a weight for each
feature fi ∈ F , and maximizes the log-likelihood function:

log P (D | θ,M) =

N
∑

i=1

log P (x[i] | θ,M) =

N
∑

i=1

∑

fk∈F

θkfk(x[i]k) − N log Z (2)

where x[i]k corresponds to the nucleotides of the i-th TFBS at the positions
relevant to feature k, and Z is the partition function as in Equation 1. It can
easily be shown that the gradient of Equation 2 is:

∂ log P (D | θ,M)

∂θk

=

N
∑

i=1

∑

fk∈F

fk(x[i]k) − N
1

Z

∂Z

∂θk

(3)

Although no closed-form solution exists for finding the parameters that maximize
Equation 2, the objective function is concave, and we can thus find the optimal
parameter settings using numerical optimization procedures such as gradient
ascent or conjugate gradient [10]. We now deal with optimizing Equation 2.

3.2 Optimization of the Objective Function

Applying numerical optimization procedures such as gradient ascent requires the
computation of the objective function and the gradient with respect to any of
the θk parameters. Although the fact that the objective function is concave, and
that both the function and its gradient have simple closed forms may make the
parameter estimation task look simple, in practice the computing them may be
quite expensive. The reason is that the second terms of both the function and
the gradient involve evaluating the partition function, which requires, in a naive
implementation, summing over 4L possible TFBSs sequences.

Since algorithms for learning Markov networks usually require computation
of the partition function, this problem was intensively researched. Although in
some cases the structure of the features may be such that we can decompose
the computation to achieve efficient computation, in the general case it can be
shown to be an NP-hard problem and hence requires approximation. Here we
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suggest a novel strategy of optimizing the objective function. We first use the
(known) observation that the gradient of Equation 2 can also be expressed in
terms of features expectations. Specifically, since

1

Z

∂Z

∂θk

=

∑

x∈X
fk(xk) exp

(

∑

fk∈F θkfk(xk)
)

∑

x∈X
exp

(

∑

fk∈F θkfk(xk)
) = EP∼θ(fk(xk)), (4)

we can rewrite Equation 3 as:

∂ log P (D | θ,M)

∂θk

=

N
∑

i=1

∑

fk∈F

fk(x[i]k) − NEP∼θ(fk(xk)). (5)

We further observed that since Equation 2 is a concave function, its absolute
directional derivative along any given line in its domain is also a concave function.
We used this observation to use the conjugate gradient function optimization
algorithm [10] in a slightly modified version: Although the gradient that was
given to the algorithm was indeed as in Equation 5, the function value along
every line search step of the algorithm was the absolute directional derivative
along this line. For example, at the line search step along direction y our function
F ⋆(θ, y) value is: F ⋆(θ, y) = | < ∇ log P (D | θ,M), y > |

Following the above strategy allows us to optimize Equation 2 without com-
puting its actual value. Specifically, it means that we can optimize our objective
without computing the partition function. Instead, the problem reduces to eval-
uating feature expectations, a special case of inference in Markov networks, that
can be exactly computed using algorithms such as loopy belief propagation [11].
The ability of these algorithms to give an exact result depends on the under-
lying network structure. As the network structure becomes more complex, the
algorithms need to use approximations. Since this family of algorithms can also
approximate the partition function, our method will be similar to methods that
evaluate the partition function when the network structure allows for exact infer-
ence. However, as the error bounds for approximate inference are better charac-
terized then the error bounds of partition function estimations, it is possible that
our approach may work better under conditions that require approximation.

3.3 Learning the Features

In Section 3.1, we developed our approach for estimating the feature parameters
for a fixed model in which the feature set F is defined. We now turn to the
more complex problem of automatically learning the set of features from aligned
TFBSs data. This problem is an instance of the more general problem of learn-
ing the structure of Markov networks from data. However, quite surprisingly,
although Markov networks are used in a wide variety of applications, there are
very few effective algorithms for learning Markov network structure from data.

In this paper we followed the Markov network structure learning approach
suggested by Lee et al.[8]. This approach extends the learning approach of
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Perkins et al.[9] to learning the structure of Markov network using the L1-
Regularization over the model parameters. To incorporate the L1-Regularization
into our model we need to introduce a Laplacian parameter prior over each fea-
ture, leading to the modified objective function:

log P (D, θ | M) = log P (D | θ,M) + log P (θ | M) (6)

where P (θ | M) =
(

α
2

)|F |
exp

(

−
∑

fk∈F α|θk|
)

and log P (D | θ,M) is the data

likelihood function as in Equation 2. Taking the log of this parameter prior and
eliminating constant terms, we arrive at the final form of our objective function:

log P (D, θ | M) =

N
∑

i=1

∑

fk∈F

θkfk(x[i]k) − N log Z − α
∑

fk∈F

|θk| (7)

It is easy to see that this modified objective function is also concave in the feature
parameters θ and we can thus optimize it using the same conjugate gradient
procedure described in Section 3.1. We then follow the grafting approach of
adding features in a stepwise manner. In each step, the algorithm first optimizes
the objective function relative to the current set of active features F , and then
adds the inactive feature fi ∈ ¬F with the maximal gradient at θi = 0. Using an
L1-Regularized concave function provides a stopping criteria to the algorithm
that leads to the global optimum [9]. The L1-Regularization has yet another
desirable quality for our purpose, as it has a preference for learning sparse models
with a limited number of features [8]. It has long been known to have a tendency
towards learning sparse models, in which many of the parameters have weight
zero [12] and theoretical results show that it is useful in selecting the features that
are most relevant to the learning task [13]. Since the grafting feature addition
method is a heuristic, it seems reasonable that features that were added at an
early stage may become irrelevant at later stages, and hence get a zero weight.
We thus introduce an important difference from the method of Lee et al., by
allowing the removal of features that become irrelevant.

4 Experimental Results

We now present an experimental evaluation of our approach. We first use syn-
thetic data to test whether our method can reconstruct sequence features that
span multiple positions when these are present, and then compare the ability of
our approach to learn binding specificities of yeast TFs to that of PSSMs.

4.1 Synthetic Data

To evaluate our models in a controlled setting, we manually created three FMMs
(Figure 2) of varying weights and features, and learned both PSSM and FMMs
from TFBSs that we sampled from them. We evaluated the learned models by
computing the log-likelihood that the learned models assign to a test set of 10,000
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Fig. 2. Evaluation of our approach on synthetic data. Results are shown for three
manually constructed model, from which we drew samples and constructed FMMs and
PSSMs. For each model, shown is its Markov network and sequence logo (left), training
and test log-likelihood (average per instance for the true model, and learned FMM and
PSSM) and KL-distance of the learned FMM and PSSM models from the true model.

unseen TFBSs sampled from the true model, and by computing the Kullback
Leibler (KL) distance between distributions of the true and learned models.

We evaluated two specific aspects of our approach: the minimum number
of samples needed for learning FMMs, and the dependency of the learning on
the prior weighting parameter, α. In all experiments, we limited the FMM to
structures that allow exact inference using belief propagation algorithm [11].
While this poses constraints on the underlying network, learning more complex
models also gave good performance, since the most important feature were still
learned. We repeated each experiment setting 3 times.

We first tested the effect of the prior weight parameter α on the quality
of the learning reconstruction. To this end, we varied α in the range of 10−6

to 100, while using a fixed number of 500 input sequences. The results showed
that in the range tested, the best reconstruction performance was achieved for
α = 0.1. While smaller values tend to allow over fitting, higher values pose harsh
constraints on the leaned model.

Second, we estimated the minimum number of samples needed for learning
FMMs, by sampling different training set sizes in the range of 10-500. As can
be seen in Figure 2, for all three cases, our model reconstructs the true model
with high accuracy even with a modest number of 50 input TFBSs, reconstructs
the true model nearly perfectly with 100 or more samples. As expected, since
the true model includes dependencies between positions, our model significantly
outperforms the PSSM in these cases even when only 20 input sites were used.
In these experiments, we fixed the prior weight parameter to 0.1. Examining the
learned features, we found that for a sample size of 20 or more, only features that
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Fig. 3. Evaluating our approach on real TFBSs from yeast. (a) Train (green points) and
test log-likelihood (blue bars), shown as the mean and standard deviation improvements
in the average log-likelihood per instance compared to a PSSM. Each model was learned
from the TFBSs reported by MacIsaac06 et al. in a 5-fold cross validation scheme.
Models that were constrained to allow exact inference are marked with a red star. (b)
Markov network representation of the dominant features of the FMM model learned
for RTG3. (c) Sequence counts for positions 3 and 4 of the input TFBSs of RTG3. (d,e)
Same as (b,c), for strong feature relations learned for the STE12 TF.

appeared in the true model were learned with significant weight. Our results thus
show that we can successfully learn FMMs, even in a realistic setting in which
only a limited number of input TFBSs is available.

4.2 Identifying Binding Features of Yeast TFs

Having validated our approach on synthetic data, we next applied it to TFBSs
data for yeast TFs. Our goal is to identify whether FMMs can better describe
the sequence specificities of yeast TFs. As input to our method, we used the
high-quality TFBSs data reported by MacIsaac et al.[6]. This dataset consists of
16371 regulatory TF-binding site interactions, where each interaction reported
is one in which the TF is bound to the promoter region containing the TFBS
as determined by the ChIP-chip assays of Harbison et al.[5], and the TFBS
has a good match to the PSSM reported for the corresponding TF. While this
dataset is quite comprehensive, it is in fact a very stringent test for our method,
since each reported TFBS is required to have a relatively good match to the
PSSM, a property that we do not necessarily expect from sequences that are
well explained by our feature motif models.

We used a five fold cross validation scheme to test whether FMMs can better
explain yeast TFBSs. We took each of the 69 TFs and learned a model from
the training set. Models of length greater then 8 were constrained to allow exact
inference as in Section 4.1. As a measure of success, we computed for each motif,
the average and standard deviation of the five test sets average log likelihood.
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Using this criterion, we compared the results of applying our model to that
of applying the PSSM model to the same input data. The results are shown in
Figure 3(a). As can be seen, FMMs better explained the TFBSs data of 60 of the
69 TFs (86%). In 34 of the 69 (49%) cases, the probability that our model gave
to each TFBS in the test data was, on average, more than twice the probability
assigned by the PSSM. We note that although the results of the constrained
model were slightly weaker (66%, and 33% respectively) they are still relatively
good. Taken together, these results demonstrate that TFBSs data can be better
characterized by feature motif models compared to PSSMs, and that the position
independent assumption of the PSSM model does not hold in many cases and
can thus poorly represent the binding affinities of many TFs.

We next turned to examine the actual features that we identified and test
their biological significance. To this end, we first examined the models learned
for each of the 69 TFs, by extracting the dominant features learned and observ-
ing the counts of these features in the original input TFBS data. Two examples
of such a model examination are shown in Figure 3(b-e). The leucine zipper TF
RTG3, an activator of the TOR growth pathway, represents one case in which
our model provides insight into its binding specificity, and in which we can clearly
understand why the PSSM model fails. For this TF, our model assigns a prob-
ability that, on average per test-set TFBS, is more than 20 times greater than
the corresponding probability assigned by the PSSM. Examining the dominant
features of the model reveals that the two most dominant features were defined
over positions 3 and 4. Each one of these features gives high weight to either
“GA” or “TG” at thess positions. Strikingly, the counts of these two features in
the original input data were 79 and 81 (out of 173 BSs), respectively. Clearly,
the PSSM model completely misses this. These results suggest that RTG3 may
have two distinct types of TFBSs, one with a “TG” in positions 3 and 4 and
another with “GA” in these positions. This hypothesis is consistent with a study
by Rothermel et al.[14] showing that RTG3 contains at least two independent
activation domains, which may interact with different co-factors, leading to two
different binding modes.

The STE12 transcription factor, an activator of the mating or pseudohyphal
growth pathways, is another intriguing example where our model provides insight
into the specificity of the corresponding TF. Of all the 994 TFBSs of STE12 in
the input data, 54 have a ‘T’ in position 6. Of these, 53 have the exact full TFBS
of ‘TGAAATA’. In other words, if a ‘T’ appears in position 6 of the TFBS, it fully
determines the remaining basepairs of the site. As can be seen in Figure 3(d,e),
our model captures this property, by learning six features with high weights that
each contained a ‘T’ in position 6, and one of the other positions as the second
position. This result is consistent with reports in the literature that the specificity
of STE12 can change, depending on its interaction with other regulators [15].
This TFBS is also an example where a simple Bayesian network representation of
the site would not be able to compactly represent the site, since position 6 would
have to be a parent of each of the other positions, thereby placing constraints
(due to acyclicity) on the types of features that could be learned between the
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positions when ‘T’ is not present in position 6, and in any case requiring many
parameters for the representation. A mixture model, which is one of the options
presented Barash et al.[4] would work here, but learning it from the data might
be challenging.

To further and globally characterize the biological significance of the feature
motif models learned, we took the dominant features of each of the 69 models
learned, and partitioned the TFBSs into two sets, based on the presence of each
of the features. By mapping the sites back to the promoters in which they were
identified, we could partition the genes regulated by the each TF into genes that
have TFBS of the TF and have the examined feature, and genes that don’t have
such TFBS. We used the hypergeometric distribution to compute a p-value for
an enrichment of the partition to various features. In all enrichment tests we took
p < 0.01 to be significant, corrected the results by FDR, and presented the best
enrichment for each TF. We first tested for enrichment in functional categories
from the Gene Ontology (GO) database. The results are shown in Figure 4(a).
These results suggest that particular features of the TFBS of each TF may be
important for its ability to regulate one specific class of genes. Second, we ran
the same enrichment tests using a database of 346 protein-DNA interactions
that we compiled from 10 different ChIP-chip studies. The top enrichment in
this case, shown in Figure 4(b), suggest hypotheses on the cooperation between
other proteins and specific types of the TFBS of the TF as characterized by the
enriched feature. Since the data include protein-DNA interactions measured in
various conditions [5], some enrichments represent TFBSs that are bound by the
corresponding TF only in some conditions.

Finally, we used our resulting models to gain insights into the global prop-
erties of binding specificities of all yeast transcription factors. To this end, we
collected all the dominant features that we learned across all 8 length models,
and computed the average weight of features that were learned between each pair
of positions of the TFBS. The comparison of this average weight for each com-
bination of positions is shown in Figure 4(c). Intriguingly, although this average
represents many different TFs, two prominent signals emerge. First, the strongest
dependencies between features exist between features positioned in the center of
the site. Second, nearby positions tend to have a higher dependency compared
to dependencies that exist between distant positions. From these results, we
compiled a general ‘consensus’ model for representing the dependencies between
positions in the TFBSs of the yeast transcription factors, shown in Figure 4(d).
Thus, our model provides insights into global properties that are characteristics
of TFBS specificities across all yeast TFs.

4.3 Application of FMM to Motif Finder

As a natural extension of our FMM approach, we integrated our FMM model into
a basic motif finder application. Our motif sampler takes as input a set of positive
sequences, and a set of negative sequences. The algorithm searches for a motif of
length L that maximizes the sum of the log-probabilities of the best TFBSs for
each positive input sequence. The algorithm works in an iterative manner. It first
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Fig. 4. Biological significance of FMMs. (a) TFBSs of yeast TFs with particular fea-
tures are enriched for specific GO functional categories. (b) Same as (a) for enrichment
in protein-DNA interactions that we compiled from 10 different studies. (c) Average
weight of features that span 2 positions, across FMM models learned for all yeast TFs
with L = 8 (d) ‘Consensus’ properties of correlations between positions in the sequence
specificities of TFs, compiled based on (c).

searches for a sequence of length L that maximizes the ratio between fraction of
positive sequences and negative sequences that contain it up to one mismatch. It
then initializes a model from these L-length sequences that appear in the positive
set. Following this initialization, we then use the Expectation Maximization
(EM) algorithm to optimize the model. In the “E” step the motif finder selects
the maximum likelihood TFBS from each positive sequence, while in the “M”
step it learns a new model from these selected sequences. The algorithm stops
after convergence is reached or after a maximal number of “EM” steps. After
finding a motif, the algorithm removes from each sequence the TFBS with the
ighest likelihood, and then searches for a new motif.

Although our motif finder does not yet integrate all the state of the art
methodologies for motif finding, we use it to provide an example for the potential
of using FMMs instead of PSSMs for the motif finding task. Specifically, we
took the 177 sets of at least 25 sequences each, that bind a transcription factor
under a specific condition according to the data of Harbison et al.[5] as positive
sets, and the rest of the sequences as negative sets. We used a 5-fold cross
validation scheme to evaluate the motif finder using either FMM or PSSM as
the motif model. In these runs we used half of the background as input and half
for evaluation. We evaluated the performance of the results by evaluating the
sum of log-probabilities of the best TFBS for both the positive sequence test set,
and for the held out set of background sequences, and compared the difference
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of the two. For this evaluation, we used the best of motifs number 2 to 5 that
the motif finder outputs. As the results presented in Figure 5 show, even with
this relatively basic motif finder, in 133 of the 177 (75%) positive sets tested, we
found motifs that gave better average likelihood on the held out positive test set
compared to the PSSMs that were learned. Since we used the same framework
for learning both the FMM and PSSM models, these results show the potential
of our FMM models for the motif finding task, and suggest that combining them
within advanced motif finding schemes may yield improved results.
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Fig. 5. Motif finder results. (a) The difference between the test average log-likelihood
and the background average log-likelihood for the best FMM model (stars), and the
difference between this value and the similar value using the best PSSM model (bars).

5 Conclusions

In this paper we presented feature motif models (FMMs), a novel probabilis-
tic method for modeling the binding specificities of transcription factors. We
presented the mathematical foundations of FMMs and showed their advantage
over PSSMs in learning motifs from both synthetic and real data. We demon-
strated the benefits of using undirected graphical models (Markov networks)
for representing important features of TF binding specificities, and suggested a
methodology to learn such features from both aligned and unaligned input se-
quences. We also suggested a methodology for optimizing the objective function,
that may give better performance under settings that require approximation.

There are several directions for refining and extending our approach. First,
expanding the network structure in which we preform exact inference, and im-
proving our approximate inference abilities, will greatly increase the power of
our models. Second, integrating our model into a state of the art (rather than
basic) motif finder algorithms may allow us to improve upon existing approaches
to the task. Finally, using our models as an improved basic building block, we
can integrate it into higher level regulatory models (e.g., [16]) and obtain a much
better quantitative understanding of the underlying principles of transcriptional
regulatory networks.
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