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ABSTRACT
The availability of whole genome sequences and high-throughput
genomic assays opens the door for in silico analysis of transcription
regulation. This includes methods for discovering and characteriz-
ing the binding sites of DNA-binding proteins, such as transcription
factors. A common representation of transcription factor binding
sites is a position specific score matrix (PSSM). This representation
makes the strong assumption that binding site positions are inde-
pendent of each other. In this work, we explore Bayesian network
representations of binding sites that provide different tradeoffs be-
tween complexity (number of parameters) and the richness of de-
pendencies between positions. We develop the formal machinery
for learning such models from data and for estimating the statistical
significance of putative binding sites. We then evaluate the rami-
fications of these richer representations in characterizing binding
site motifs and predicting their genomic locations. We show that
these richer representations improve over the PSSM model in both
tasks.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical, structural; J.3
[Computer Applications]: Life and Medical Sciences—biology
and genetics

General Terms
Algorithms

Keywords
Bayesian networks, DNA sequence motifs, transcription factors
binding sites

1. INTRODUCTION
A key issue in modern molecular biology is understanding the

mechanisms of transcriptional regulation. Many aspects of tran-
scription regulation involve DNA-binding proteins, called transcrip-
tion factors. These factors modulate the expression of genes by
binding to specific positions in nearby genomic regions. Transcrip-
tion factors bind to specific DNA subsequences that can be pin-
pointed by biological assays [27]. Indeed, the TRANSFAC database
∗Contact author: nir@cs.huji.ac.il
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[41] contains hundreds of biologically validated binding sites. Such
assays, however, are labor intensive and cannot identify all the
binding sites of a transcription factor.

The recent availability of complete genomic sequences (includ-
ing intergenic regions) motivates attempts to understand the regu-
latory mechanisms through in silico analysis. Binding site identifi-
cation involves two main tasks. The first task is to predict potential
binding sites of a known transcription factor on a genomic scale.
Here one uses examples of biologically verified binding sites and
aims to find similar sites in other intergenic regions such as gene
promoter regions [2, 34]. The second task is to discover a sequence
motif as well as its putative sites in a collection of relatively long in-
tergenic sequences that are suspected of being bound by the same
factor. An example of such a task is examining the promoter re-
gions of a set of genes that have common functional annotation or
are co-expressed. In this case, the discovered motif indicates a pos-
sibly unknown factor that regulates the set of genes. Many works
in recent years have proposed different schemes to handle this task
[3, 4, 24, 31, 39, 40].

Both tasks require us to describe a motif that characterizes se-
quences that appear at binding sites of the transcription factor. The
biological literature suggests that the relevant sequences are rela-
tively short (up to 20bp long). Moreover, although binding sites
are quite conserved, they do show some variability. The sequence
motif has to represent multiple allowed (or preferred) subsequences
at the binding site. A commonly used representation of such mo-
tifs is a position specific score matrix (PSSM). A PSSM records
the preference for each potential DNA nucleotide at each binding
site position. This representation inherently assumes that positions
within the motif are independent of each other.

It is an open question whether this strong independence assump-
tion is reasonable. Recent results indicate that in specific cases,
there might be dependence between positions (e.g., [1, 7, 9]). In
this paper, we take a pragmatic approach to this issue. We aim to
test whether modeling dependencies leads to better performance in
the computational tasks of binding site annotation and motif dis-
covery. If the result is positive, it suggests that there are dependen-
cies between positions, at least for some transcription factors.

The main technical question we face is how to relax the assump-
tion of independence. For this purpose we need to model the joint
distribution of all positions. A naive representation requires a large
number of parameters (exponential in the motif length). The full
independence model (a PSSM) and the full dependence model (an
exponentially large joint distribution) represent the two ends of a
spectrum. The choice of representation leads to a tradeoff: Less ex-
pressive models cannot represent complex dependencies, but have
succinct representation and can be learned robustly from few ex-
amples. More expressive models can represent complex dependen-
cies, but involve many parameters and require a larger number of
examples for learning.

In this paper we examine models that explore the middle ground
of this spectrum. These models are based on the language of Bayesian
Networks [33]. We describe procedures that learn such representa-



tions from data, and allow us to carry out the two tasks described
above. We first demonstrate how our flexible set of models general-
izes better than the PSSM model on biologically verified sites. We
then show that the models learned are more precise in predicting
putative binding sites (in the sense of achieving a better false posi-
tives vs. false negatives tradeoff) using genome-wide S. cerevisiae
localization assays [29].

2. MODELING BINDING SITE MOTIFS
We now consider how to model a sequence motif representing

the binding sites of a transcription factor. We want to represent the
commonalities among different binding sites. One way of going
about this is to represent a probability distribution over sequences
that will assign high probability to sequences that are likely to be
found at the binding site. We assume that binding sites are of length
K. We want to represent a probability distribution over all 4K pos-
sible K-mers that can appear at the binding site. Formally, we need
a distribution P (X1, . . . , XK) where Xi is a random variable that
represents the nucleotides in the i’th position of the K-mer. A naive
representation of such a distribution simply lists the probabilities
of all 4K assignments. This representation is clearly wasteful and
is also unrealistic to estimate from data. Thus, we are interested
in more succinct ways of representing such distributions. We will
now review the PSSM representation and several richer models for
this task.

Position Specific Score Matrix (PSSM) A common way of rep-
resenting a binding site is to assume that the nucleotide at one po-
sition is independent of the nucleotides at all other positions. This
assumption implies that

P (X1 . . . XK) =
KY

i=1

P (Xi)

Where P (Xi) is the marginal probability of each nucleotide Xi

in the distribution and is a shorthand for probability events of the
form P (Xi = A) . We call distributions that have this form PSSM
models.1

A PSSM model requires 3K parameters to describe the marginal
distribution of nucleotides at each position. A PSSM can capture
specific preferences at each position and also different levels of
specificity in positions.

Mixture of PSSMs Suppose that the transcription factor can have
several “types” of binding. These might correspond to slightly dif-
ferent physical configurations of the protein at the binding site, each
with somewhat different preferences. Thus, it can bind to any se-
quence that fits any one of the configurations. To model this case,
we assume there is an additional, unobserved, random variable T
that describes the type of the binding. We have some prior prob-
ability P (T ) (possibly uniform) over the type of binding, and we
assume that for each type the positions are independent, just as in
the PSSM case. This requires a distribution P (Xi | t) over the
nucleotide at the i’th position given the value t of T . The joint
probability of the observed positions require that we sum over all
possible values of T

P (X1 . . . XK) =

CX
t=1

"
P (t)

KY
i=1

P (Xi | t)

#

That is, the distribution is a mixture of PSSM representations where
the mixing probabilities are determined by P (T ).
1The term PSSM typically refers to a matrix of log-odd score
log P (Xi)

P0(Xi)
, where P0(Xi) is a background distribution. Our defi-

nition of a PSSM is equivalent when combined with P0(Xi).
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Figure 1: Examples of different Bayesian network models for a
motif with 5 positions. For each model, we show an example of
a Bayesian network structure, and the corresponding represen-
tation of the joint distribution. (a) PSSM, (b) tree, (c) non-tree,
(d) mixture of PSSMs, and (e) mixture of trees.

A mixture model has several benefits both in terms of represen-
tation and in terms of semantic interpretation. First, the number of
parameters is fairly small: C − 1 parameters for P (T ), and 3KC
parameters for the conditional probabilities P (Xi | T ). Second,
as suggested above, this model offers an important representational
concept. Although the nucleotides are dependent when T is un-
known, they are independent when T is observed. Thus, T plays
the role of a hidden biological mechanism the renders the posi-
tions independent. Understanding the interaction between the hid-
den mechanism T and the nucleotides at each position can provide
insights about the physical protein-DNA interactions.

Bayesian Networks Mixtures of PSSMs capture “broad” depen-
dencies among all the positions via the T variable. An alternative
approach to describe dependencies is to consider how each posi-
tion depends on the others. For example, a particular nucleotide
in position 1 might cause the conformation of a particular amino
acid side-chain to change. This, in turn, affects the conformation
of other amino acids in the binding site, and may have an effect on
the preference of binding in position 3.

One representation designed to capture “local” dependencies is
the language of Bayesian Networks. In this representation, we use
a directed acyclic graph G to represent the dependencies. The ver-
tices of G correspond to the random variables X1 . . . XK and a pa-
rameterization which describes a conditional distribution for each
variable given its immediate parents in G. The corresponding joint
probability distribution decomposes into the product form:

P (X1 . . . XK) =

KY
i=1

P (Xi | PaG
i ) (1)

Where PaG
i is the (possibly empty) set of parents of Xi in G. Fig-



ure 1 (a)–(c) show few examples of Bayesian networks, and their
associated form of the probability distribution.

The formal semantics of Bayesian Networks is in terms of con-
ditional independence statements: Each position Xi is independent
of it’s non-descendants in G given its parents in G [33]. In general,
the more edges we have in G, the more complex the dependencies
between positions are. The simplest network has no edges, like the
one in Figure 1(a). It is easy to see that in this case, the distribution
is simply a PSSM. For the general case, the number of parameters
in the networks depends on the number of edges: The conditional

distribution P (Xi | PaG
i ) requires 3 · 4|PaG

i | parameters.
Tree Bayesian Networks One sub-class of Bayesian network that
we want to single out is the class of tree Bayesian networks. In
tree models each position has at most one parent, making G a for-
est. For example, the networks in Figure 1(a) and (b) are both tree
networks. Tree networks also generalize first-order Markov chains
(where G is X1 → X2 → . . . → XK ). They provide a flexible
language for modeling dependencies, while limiting the number of
parameters to be at most 3 · 4K. Another important benefit of this
class of models is that there are efficient algorithms to learn the best
tree structure [12, 17].
Mixture of Trees In some cases, a tree structured network might
be too limited. One possible approach of enriching the represen-
tation is to combine the benefits of a tree structure with the added
richness of a hidden mechanism. This leads to a natural extension,
similarly to mixture of PSSMs, that is a mixture of trees . Each
Xi has as parents the hidden variable T and at most one other nu-
cleotide. The network of Figure 1(e) is an example of this model.
Intuitively, the unobserved variable T enhances the ability of the
tree to model additional dependencies while multiplying the num-
ber of parameters only by a factor of C. An important advantage
of mixture of trees is that, similarly to trees, there exist efficient
algorithms for learning the best structure [17, 32].

3. LEARNING MOTIF MODELS

3.1 The Learning Setup
Suppose we want to learn motif models from data. We assume

that our input is a set of aligned binding sites of the transcription
factor. Our task is to learn a probabilistic model that captures the
common features of these sequences. This is an instance of the well
studied problem of learning Bayesian networks from data . We
sketch the main issues without going into details. The interested
reader can find more details in [6, 16, 17, 22].

We assume we have a training dataset D of M aligned binding
sites. We denote by xi[m] the value of Xi at the m’th example. To
clarify the discussion, it is conceptually easier to think of the input
to the learning problem in terms of the empirical probability P̂ that
measures the frequency of events in the training examples. We do
so by using the distribution:

P̂ (x1, . . . , xk) =

1

M

MX
m

1 {x1[m] = x1, . . . , xK [m] = xK}

where 1 {} is the indicator function that has the value 1 if the con-
dition in its argument is true and 0 otherwise. While we do not
represent this distribution explicitly, it will be convenient to refer
to the marginal probabilities in this distribution in the discussion
below. It is easy to compute such marginal distribution from the
input examples.
Parameter Learning A key component in learning is assigning
parameters to the conditional distribution. In some models, such as

a PSSM , this is the only part we need to learn. In other models, we
also learn the structure G. However, for each structure we consider,
we also need to estimate its parameters.

Our task is to find the parameters θ that maximize the average
(log)-probability of each sample over the data. That is, we want to
maximize the (log)-likelihood function

�(G, θ : D) = IEP̂ [log P (X1, . . . , XK | G, θ)] (2)

In models where we do not have a hidden variable T , learning pa-
rameters is straightforward. It turns out that the maximum likeli-
hood parameters for P (Xi | PaG

i ) are simply the matching condi-
tional distributions in P̂ . That is, we set P (Xi | PaG

i ) = P̂ (Xi |
PaG

i ). Thus, parameter learning in this case reduces to estimat-
ing marginal probability from P̂ . Since we usually have a small
number of training examples, we smooth the maximum likelihood
estimates by using Dirichlet priors [23]. This amounts to adding a
small number (5 in our experiments) of pseudo instances that are
distributed according to a background distribution.

In models where we have a hidden variable T , parameter estima-
tion is somewhat more complex. We need to perform an iterative
procedure of Expectation Maximization [13, 28] to find a (local)
maximum of the likelihood function.

Structure Learning In addition to estimating parameters, we might
also want to learn the dependency structure G, i.e., which edges
to include. When performing structure learning we need to take
into account that richer models (ones with more edges) can achieve
higher likelihoods. This runs the risk of learning a model that seems
good on the training data but performs badly on new instances.
Thus, instead of maximizing the likelihood function, we attempt to
maximize a statistical score based on Bayesian considerations [22,
23]. This score can be thought of as likelihood penalized by a term
that accounts for differences in model complexity. It is designed to
estimate the performance of a model on new unseen instances. For
this we use the BDeu score of [23]. In models that do not have a
hidden variable T , finding the best graph is a combinatorial opti-
mization problem. For tree networks, this problem can be reduced
to a maximum weighted forest problem and solved efficiently [12,
17]. For general Bayesian networks, this problem is intractable,
and we resort to using a heuristic search.

In models where a hidden variable T is present, the situation is
more complex. First, we also need to decide on the cardinality of
T . Moreover, the structure score becomes intractable and we need
to resort to an approximation. We use the the Cheeseman-Stutz
approximation of the BDeu score [11]. To choose the cardinality of
G, we evaluate the score at each cardinality. For a mixture of trees
model where we also face the problem of structure learning, we
can use, similarly to trees, an efficient maximum weighted forest
algorithm [17, 32].

3.2 Experimental Evaluation
To evaluate the extent to which the richer models we described

are beneficial in representing transcription factors binding sites,
we performed the following experiment: By extracting datasets of
aligned binding sites from the TRANSFAC database [41], we ex-
amined 95 transcription factors for which there were 20 or more
sites. For each transcription factor, we evaluated the ability of each
of the representations to describe the distribution of sequences at
the binding site of that factor. To get an objective evaluation, we
performed 10-fold cross validation tests on each dataset. In such a
test we learn a model (i.e., select structure and parameters) on 90%
of the data and evaluate it on the remaining 10% of the instances.
We repeated this learning step 10 times, so that each instance is
evaluated exactly once as a test case. The performance of a repre-
sentation on a dataset is summarized by the average log-probability
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Figure 2: Comparison of dependency models and PSSM, learned on aligned binding sites from the TRANSFAC database [41]. (a)–
(d) One example of evident dependency in the bindings sites for TRANSFAC P$ABF Q2 motifs. (a) PSSM model; (b) mixture of
PSSMs model (2 components); (c) the dependency structure tree model (only middle positions are shown); (d) the occurrence table
for positions 5 and 6; (e) difference of average log-likelihood per instance on test data between the best dependency model and the
PSSM model (y-axis) for 95 transcription factors (x-axis). Asterisks mark statistically significant results (paired t-test with p < 0.05).

per instance when it is evaluated as part of the test set.
As a specific example, consider the sites of TRANSFAC identi-

fier P$ABF Q2 (Arabidopsis ABA responsive element binding fac-
tor). The associated dataset consists of 49 binding sites, each 17bp
long. A PSSM learned from this dataset (see Figure 2(a)), shows
position 5 as uninformative, and position 6 as weakly informative.
When we learn a mixture of PSSMs, we get a mixture between
the two PSSMs shown in Figure 2(b). As we can see, these two
PSSMs differ mostly in positions 5 and 6. When we learn a tree
Bayesian network, we get the dependency structure shown in Fig-
ure 2(c). The strongest dependency is between position 5 and 6.
We can see this dependency by examining the occurrence table for
both positions, Figure 2(d). As we can see, when position 5 is
’T’, position 6 is ’G’ with high probability, and when position 5 is
not ’T’, position 6 is ’C’ with high probability. In our cross vali-
dation test, the three methods achieves log-probability of −19.93,
−18.70, −18.47 bits per instance for PSSMs, mixture of PSSMs,
and trees, respectively. Qualitatively, we can say that by using a de-
pendency model we were able to detect a real phenomenon in the
data that was “smoothed out” by the over simplistic PSSM model.

The results of our evaluation on all 95 datasets appear in the
Supplementary Information [5, Table A.1]. Figure 2(e) summa-
rize these results by comparing the best dependency model with
the PSSM model. (For a comparison of individual methods, see
Supplementary Information [5, Item A.2]). We evaluated the sta-
tistical significance of these differences using a paired t-test on
log-probability of particular instances. For 12 cases, the PSSM
model performed better. In all 12 cases, the differences were not
statistically significant. For 14 cases, there are no noticeable dif-
ferences, and indeed the learned dependency models in these cases
show weak correlation. For 69 cases, the dependency models were
better than PSSMs. For 51 of these case, the improvement was
statistically significant. When we consider individual methods, the
tree networks were better in 33 cases (22 of these were significant),
mixtures of 2 PSSMs were better in 59 cases (36 significant), and
mixtures of 2 trees were better in 57 cases (35 significant). These
results give strong support to the claim that in many cases, model-
ing dependencies between binding sites positions, can significantly
improve generalization performance on new unseen binding sites.

4. BINDING SITES IDENTIFICATION
An important usage for the learned binding site motifs is to iden-

tifying putative binding sites in new sequences. Suppose we learned
a model representing the joint distribution P (X1, . . . , XK) at the
binding site. Given a new promoter sequence, we want to check if
it contains a binding site. Naively, we can scan it and look for the
most probable K-mer given our model. However, such a K-mer
may be also probable in the background distribution. Thus, to min-
imize the number of false identifications, we want to consider only
those K-mers that are probable given our model and are improba-
ble in the background distribution. Statistically speaking, given a
background distribution P0 over the sequences, a natural score to
use is the log-odds ratio of the probability of the K-mer given our
model and its probability in the background distribution:

Score(x1, . . . , xK) = log
P (x1, . . . , xK)

P0(x1, . . . , xK)
(3)

Suppose we find a K-mer with score s. To attach statistical signif-
icance to this finding, we want to compute the p-value of a score s.
This is the probability of finding a score as high as this in random
K-mers sampled from the background distribution P0.

There are several ways to compute p-values. A naive approach
uses an empirical estimate of the p-value by sampling K-mers from
P0 and scores each one. Unfortunately, estimation of high signif-
icance levels requires vast amounts of samples. Alternatively, we
can use a Gaussian approximation of the score distribution. This
requires computing the mean and variance of the score distribution
under P0. For some of our models this term can be computed by
a closed form analytical solution. Lamentably, in our settings this
approach suffers from high inaccuracies, especially for the extreme
scores region of interest (see Supplementary Information for details
[5, Item C]).

To cope with this problem we use the method of importance sam-
pling (e.g. [21]) to estimate the score distribution. Instead of sam-
pling K-mers from P0, we sample from an alternative distribution



Q. Formally, this step is justified by the following manipulation

P0(Score(X1, . . . , XK) ≥ s)

= IEP0

»
1 {Score(X1, . . . , XK) ≥ s} · Q(X1, . . . , XK)

Q(X1, . . . , XK)

–

= IEQ

»
1 {Score(X1, . . . , XK) ≥ s} · P0(X1, . . . , XK)

Q(X1, . . . , XK)

–

Where 1 {} is the indicator function. Thus, we get an estimate of
the p-value by using weighted samples from Q, where the weight
of each sample is the ratio P0/Q of its probability.

The success of this approach depends on the choice of Q. In-
tuitively, we want a distribution that has most of its mass in the
“interesting” regions of the distribution (where the score will in-
deed be high). A useful proposal distribution should ensure that
the sampled distribution will be precise in all regions and particu-
larly in the region of interest. Thus, it is important to sample from
distributions that span the range between the background model P0

and our model of interest P . We do so by defining Q to be a mix-
ture of the form Q =

Pn
i=1 αiQi, where

Pn
i=1 αi = 1 ,Q1 = P0,

Qn = P . Each Qi itself represents an interpolation between P0

and P . See [5, Item C] for further details.
When we evaluate the statistical significance of different K-mers,

we must keep in mind that we are testing multiple hypotheses. If
we are searching a promoter sequence of length N , we evaluate
N − K + 1 K-mers (or twice as much if we are also searching
the reverse strand). And so, even if the sequence does not contain
a real binding site, we expect that the best K-mer in the sequence
will receive a score of some significance. To control for this we use
Bonferroni threshold. If we want to use significance level of 0.05,
and evaluate L positions, we need to check that the best scoring
K-mer has p-value less than 0.05/L. The same effect is achieved
by multiplying all p-values by the number of tested K-mers in the
sequence, these are called Bonferroni corrected p-values.

To summarize, for each sequence suspected of regulation we cal-
culate the discriminative score for each of its K-mers. For each K-
mer we calculate its Bonferroni corrected significance and report it
as a candidate binding site if this value is less than 0.05.

5. MOTIF DISCOVERY IN UNALIGNED
PROMOTER SEQUENCES

Up to this point, we examined the question of modeling depen-
dencies in binding sites positions, and how to use these models to
identify potential binding sites. In many cases, we are only given
genomic sequences suspected of co-regulation, and are asked to
construct a binding site model that can “explain” this co-regulation.
That is, we want to model a binding site that is common in the pro-
moters sequences of the co-regulated promoters and is rare in other
promoters. The main difficulty is that the actual binding position
of the transcription factor in each sequence is unknown.

Modeling a Regulated Sequence As a preamble to learning motif
models, we describe how we model regulated sequences. We use
a generative approach to describe the probabilistic processes that
could have generated the promoter sequences. Our model is similar
to the model used by probabilistic approaches for PSSM learning
(such as MEME [3]), with the important difference that we allow
for a general binding site model as described in section 3.

The model assumes that each sequence S = 〈S(1), . . . , S(L)〉
can be generated in two ways. It is either regulated by the tran-
scription factor T and so contains a single binding site from our
model M, or it is not regulated. (The extension to deal with a mul-
tiple binding site model, as in MEME, is straightforward.) We use
the random variable R to denote these two cases. The event R = rt

denotes that S contains a binding site, and the event R = rf de-
notes the complementary event. The probability of generating a
particular sequence given a motif model M is the sum over these
two possible events

P (S | M) = P (rf ) · P (S | rf ) + P (rt) · P (S | rt,M)

where we use rt and rf as shorthand notation for the event R = rt

and R = rf , respectively.
If the sequence does not contain a binding site, we model it us-

ing a background distribution. We estimate this distribution from
promoter regions of genes in the same genome. We model the back-
ground distribution by a k-order Markov chain. The probability of
a sequence generated from the background probability is then

P (S | rf ) =

LY
i=1

P0(S
(i) | 〈S(i−k), . . . , S(i−1)〉) (4)

where P0 is a time-invariant k-order Markov model.
We now consider the case where S is regulated by T . Here,

we assume that the binding site is generated by the probability de-
scribed by M, and the rest of the promoter is generated from the
background distribution. For now, we describe the probability in a
manner that does not depend on the details of the model M, and
focus on how it effects the probability of the sequence. The basic
problem in computing the probability of a regulated sequence, is
that we do not know the location of the binding site. Thus, we in-
troduce a random variable H that denotes this location, and average
over all possible values H can take:

P (S | rt,M) =

L−K+1X
h=1

P (h)P (S | rt, h,M) (5)

where P (h) is the prior probability that H = h over all possi-
ble binding positions. We take this to be a uniform distribution,
although we note that prior knowledge about promoter sequence
organization can be incorporated via this distribution.

For a specific value h of H , the probability of S is

P (S | rt, h,M) =

P (S | rf )
P (S(h), . . . , S(h+K−1) | M)Qh+K−1

i=h P0(S(i) | 〈S(i−k), . . . , S(i−1)〉)
(6)

The fractional term is the log-odds ratio between the probability of
the K-mer 〈S(h), . . . , S(h+K−1)〉 given the motif model M and
its probability in the background distribution P0. As we see, a se-
quence is probable given rt, if it contains a K-mer with a higher
probability according to the model M than according to the back-
ground distribution.

Having defined a probabilistic model, we can use Bayes rule to
compute both the posterior probability of regulation

P (rt | S,M) =
P (rt)P (S | rt,M)

P (S | M)

and the posterior probability of a specific K-mer being a binding
site for the motif model M

P (h | S, rt,M) =
P (h)P (S | h, rt,M)

P (S | rt,M)

Incorporating Biological Observations The above model left the
choice of P (rt) as a free parameter. This parameter represents the
prior probability that a sequence is regulated, before we see the
actual sequence. During training, we want to introduce additional
knowledge that mark specific sequences as regulated and others as
not. A simplistic way of doing this is to assume that as part of the



training data we observe R. In this case, the training data will con-
sists of pairs < S, R > that contain a sequence and whether it is
regulated or not. For example, if we have a cluster of co-expressed
genes, we can set R = rt for promoter sequences of genes in the
cluster and R = rf for all other sequences. The problem with
the simplistic approach is that often we are not that confident in our
training data. The cluster of co-expressed genes might contain false
positive (i.e., non-regulated genes that appear in the cluster), and
similarly there might be false negative genes (that are regulated but
were not included in the cluster). To capture such considerations,
we take a probabilistic approach, and allow the learning algorithm
to view the promoter sequences of genes in the cluster as having
high probability of being regulated, and all other sequences as hav-
ing low probability of being regulated.

To deal with this case, we introduce a random variable O that
denotes our observation about the gene and is dependent of the
regulated status of the gene, but not on its promoter sequence. Un-
der this assumption, the probability of a the observation and the
sequence is

P (S, O) =
X

r

P (r)P (O | r)P (S | r)

Thus, we view O as a noisy sensor of the underlying biological reg-
ulation. Given O, we can readily calculate the posterior probability
of regulation given our observation via Bayes rule.

A crucial detail lies in the choice of P (O | R). If the observa-
tion is that of co-expressed genes or genes with similar functional
annotation, we can set this distribution to reflect the fact that most
regulated genes will appear in the co-regulated cluster. Similarly,
we want the distribution to reflect that few non-regulated genes will
appear in the cluster.

A more interesting case involves ChIP localization data [29, 35,
38]. In this case the observation is a p-value that the sequence is en-
riched in the immnuprecipitation assay. A significant localization
p-value is an indication that the sequence is bound by the assay’s
target transcription factor. To model the dependence of the local-
ization p-value on the R attribute, we use the noisy sensor model
of Segal et al [37]. This model encodes that when the p-value is
small, it is most likely generated by a regulated sequence. As the
p-value grows, the probability given rt decays exponentially, and
when the p-value is sufficiently large, it is most likely generated by
a non-regulated sequence.
Learning We now have all the tools necessary to describe the
learning procedure. The algorithm’s input is a dataset D that con-
sists of M promoter sequences S[1], . . . ,S[M ], and their associ-
ated observations O[1] . . . , O[M ]. We want to learn a motif model
that maximizes the log-likelihood of the data

�(D : M) =

MX
m=1

log P (S[m], O[m] | M) (7)

We assume the background distribution P0 is known and fixed. Our
task amounts to estimating the structure and parameters of the mo-
tif model. Unfortunately, due to the fact that both R[m] and H [m]
are unknown, there is no simple estimation procedure for this task.
Instead, we use an Expectation Maximization (EM) [13] approach.
The EM algorithm uses the current model to “complete” the proba-
bility of the hidden values. Given such a completion, we no longer
have missing values and a maximum likelihood model is computed
analytically. We then use the new model for completing the data
and so forth. The procedure iterates until it convergences to a (lo-
cal) maximum. This procedure is a form of hill climbing and is
guaranteed to improve the likelihood at each iteration. The Struc-
tural Expectation Maximization (SEM) algorithm [15] generalizes
this idea when we also learn structure.

For models where the structure is fixed and we learn using max-
imum likelihood (PSSMs and mixtures of PSSMS), we define EM
as progressing through a sequence models M0,M1, . . . such that

Mt+1 = arg max
M

Q(M : Mt,D)

where

Q(M : Mt,D) = (8)X
m,r,h

P (r, h | S[m], O[m],Mt) · log P (S[m], r, h | M)

A useful property of log P (S,R, H | M) is that it can be further
decomposed into a sum of terms. Using Eq. (4)–(6) and discard-
ing of the terms that do not involve M, we find that maximizing
Q(M : Mt,D) is equivalent to maximizingX

m

X
h

P (rt, h | S[m], O[m],Mt)·

log P (X1 = S(h)[m], . . . , XK = S(h+K−1)[m] | M)

This problem is in the form of Eq. (2) but where we now consider
each K-mer in the input sequences as a training sample. Essen-
tially, each K-mer is taken into account while learning Mt+1 in
proportion to our current belief that it is a binding site. This is
achieved probabilistically by weighing each K-mer by the term
P (R[m] = rt, H [m] = h | S[m], O[m],Mt) which is exactly
the probability of regulation given the previous model.

When we also face the problem of learning structure and use the
Bayesian score to guide our learning procedure (tree networks, and
mixture of trees), the details are more complex. However, the final
upshot is similar [16].

To summarize, our learning procedure consists of two phases

• E-step: use Mt to compute the weight for each K-mer in
the input sequences.

• M-step: Set Mt+1 to be the model learned by the proce-
dures of Section 3 using the weighted dataset of the E-step.

It is important to note that following the freedom we had in choos-
ing a model in Section 3, we can consider any Bayesian network in
the M-Step.

Initial Model A final issue is the choice of the initial model M0.
The EM algorithm is typically sensitive to bad starting points and
can get trapped in inferior local maximum. The choice of a rea-
sonable (albeit not perfect) starting point is crucial to the success
of the whole learning algorithm. In general, we can use any al-
gorithm for finding regulatory motifs in DNA sequences, and use
the K-mers suspected as binding sites to define the initial distribu-
tion of M0. As our learning favors discriminative motifs, we use a
simple and efficient variant of the algorithm described by Barash et
al [4]. This algorithm uses random projections of subsequences, as
described by Buhler and Tompa [8]. Having chosen a random pro-
jection, we check whether it appears in each input sequence. Each
of the projected K-mers is then scored by a hypergeometric p-value
for enrichment in sequences with P (rt | O) > 0.5 . We repeat this
test using several random projections, and choose the most signifi-
cant projected K-mer we find. The subsequences of length K that
match this projected word are used as the samples for training the
initial model M0.

The learning method we described is similar in the general ar-
chitecture to previous EM-based methods, such as MEME [3]. It
differs from MEME in several aspects. First and foremost, we plug
in a general Bayesian network learner that learns a model in a repre-
sentation of choice (e.g., trees, mixtures of PSSMs, etc.). Second,
the learning process takes into account partial observations about



Table 1: Performance evaluation on synthetic data. For each method we report the sensitivity, specificity, and statistical significant
of the set of sequences predicted to contain the motif. These were compared to the known planted sequences. The left hand side of
the table is for datasets created using a PSSM model (no dependencies), while the right hand side for datasets created using a tree
network. Each column reports a different setting of training data parameters: Number of true positive sequences (TP) vs. false
positive ones (FP) in the training data. The line with method True reports the performance of the model from which we sampled the
binding sites.

PSSM Generated Tree Generated
Learned Model TP = 100; FP = 0 TP = 50; FP = 50 TP = 25; FP = 75 TP = 100; FP = 0 TP = 50; FP = 50 TP = 25; FP = 75
PSSM 68%,56% 2.33e-95 65%,51% 1.05e-86 64%,57% 3.96e-89 68%,65% 1.07e-101 68%,65% 1.07e-101 67%,63% 7.78e-99
Tree 68%,56% 2.33e-95 65%,52% 5.15e-87 66%,56% 3.22e-92 85%,66% 6.04e-135 82%,70% 1.91e-132 80%,66% 1.47e-124
Mix of PSSMs 67%,55% 9.69e-93 61%,48% 1.55e-78 53%,46% 3.34e-65 70%,64% 2.14e-104 66%,59% 1.93e-94 67%,57% 1.68e-94
Mix of Trees 60%,48% 4.90e-77 43%,38% 2.32e-47 40%,48% 3.15e-49 72%,62% 9.39e-107 67%,54% 2.12e-92 64%,56% 2.01e-88
True 67%,54% 2.12e-92 67%,54% 2.12e-92 67%,54% 2.12e-92 86%,68% 1.03e-138 86%,68% 1.03e-138 86%,68% 1.03e-138
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Figure 3: Evaluation of training on synthetic data. ROC
curves showing ability to identify binding sites on test data.
(a) Binding sites generated from a PSSM model. (b) Bind-
ing sites generated from a tree model. The x-axis shows the
false positive rate, FP/(FP+TN), the y-axis shows the true posi-
tive rate, TP/(TP+FN). Each curve shows the performance for
one model: True– the model that generated the data; PSSM–
the learned PSSM model; Tree – the learned tree model; Mix
of PSSMs– the learned mixture of PSSMs. In both graphs, the
training data consisting of 100 true positive sequences of length
500bp.

each sequence. This allows us to combine sequences with different
strengths of support of being regulated. Third, our method incor-
porates a rich background model during learning and not as a post-
processing step. Finally, we use as a starting point a discriminative
combinatorial search method. This search method attempts to find
initial solutions that best distinguish the sequences that are believed
to be regulated from these that are believed to be not regulated.

6. EXPERIMENTAL RESULTS
At the beginning of this paper we stated two fundamental ques-

tions: whether dependencies between positions are evident in bio-
logical data, and whether learning models of position dependencies
can improve de novo binding site discovery. We discussed the first
question in Section 3.2, and now turn to the second one.

Synthetic Data We begin by evaluating our methods on synthetic
data. For this task, we built several datasets, each consisting of both
“positive” promoters, (i.e. sequences in which we planted binding
site motifs), and “negative” ones. To simulate the underlying bi-
ological problem as accurately as possible, the motifs themselves
were sampled from models trained on known binding sites of the
Human LUN transcription factor from the TRANSFAC database
(V$LUN1 01). In each setting, we created two parallel sets, one
sampled from a tree network that contains position dependencies,

and the other from a PSSM model. The promoter sequences were
sampled from a 3-order Markov model background distribution,
trained on Human promoter regions. To simulate noise, we have
contaminated our datasets with another group of “false positive”
promoters, where no motif was planted.

We set the observation model such that all “positive” sequences
had P (rt | O) = 0.99, while the “negative” ones had P (rt | O) =
0.01. We tested our methods on a variety of settings, changing both
the promoters lengths (from 250 to 500bp), and the composition
of the “positive” promoters: from 100 true positives without false
ones, down to 25 true positives with 75 false ones. The synthetic
datasets are available from our site ([5, Item B.1]). After applying
our methods to the synthetic training data, we tested them on un-
seen test data that was similarly generated. Each test promoter was
assigned a Bonferroni-corrected p-value, according to its best scor-
ing K-mer (see Section 4). We then used these scores to discrimi-
nate between putative “positive” promoters and “negative” ones.

The results on one dataset are shown in Figure 3, as ROC curves.
These curves compare the false positive rate to the true positive
rate, when changing the p-value threshold. It is evident that all
methods perform similarly on the data generated from a PSSM,
and are comparable to the true model that generated the data. The
data generated from a tree network, shows a difference between the
performances of the learned tree network to both the PSSM and
the mixture of PSSMs models that are incapable of modeling the
underlying dependencies and therefore perform worse. The learned
tree network closely tracks the performance of the true model.

In practice, we want to retrieve sequences that contain the learned
motif. We do so by selecting sequences whose Bonferroni cor-
rected p-value is below a prespecified a threshold. In our experi-
ments, we chose to use a threshold of 0.01. The rationale for this
strict threshold is as follows. In genome-wide scans, we examine
several thousands of sequences, most of which are not expected to
be targets of the transcription factor in question. By setting a strict
significance level, we control the number of false positives among
the retrieved sequences. In Table 1 we report the quality of the se-
lection procedure using three measures. Sensitivity (% of positives
sequences retrieved out of all positive ones), Specificity (% of true
positives retrieved), and the significance of the retrieved sequences,
according to the hypergeometric p-value (called specificity score by
[25]). This score is the probability of retrieving at least that many
positive sequences in a random set of sequences of the same size.

As we can see, when the data does not contain false positives
sequences, all models perform roughly equivalently on data gener-
ated from PSSM. On the tree generated data, we see that the PSSM
does the worse, the mixture of PSSMs is slightly better, and finally
the tree network is roughly equivalent to the true model. As we
increase the noise ratio, the problem becomes harder. The PSSM
model and to a large extent the tree model are fairly robust, even
in high degrees of noise. On the other hand, the mixture models
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Figure 4: Results on ChIP localization data of Lee et al [29]. (a) & (b) ROC curves for two example motifs. (c) Example of detection
of a motif in upstream region. For each position (x-axis) we show the Bonferroni corrected p-value (y-axis) assigned by each model.
(d)–(f) Cross validation evaluation of different methods. Each point represents one localization experiment and shows the difference
between the performance of the learned models and learned PSSM in sensitivity (x-axis) and specificity (y-axis).

are more susceptible to noise, and their performance decays. When
learning from shorter sequences of length 250bp, the same qualita-
tive conclusions reappear (data not shown, see [5, Item B.1]).
ChIP Localization Data To evaluate our methods on real life data,
we used a dataset of genome-wide Chromatin Immunoprecipitation
(ChIP) localization measurements for 106 yeast transcription fac-
tors in 146 experiments [29, 35, 38]. This assay measures the bind-
ing affinities of a target transcription factor to promoter regions in
vivo. The experimental protocol [35] assigns a p-value to each pro-
moter sequence. A sequence with p-value less than 0.001 is consid-
ered to be bound by the factor. The stringent threshold of 0.001 is
aimed to reduce the false positive identifications in a genome wide
screening [29]. This assay provides valuable information about the
binding specificity of transcription factors. However, it is important
to keep in mind that it does not pinpoint the exact binding location.
Based on this, we can test whether our prediction for gene regu-
lation events match the biological predictions of the localization
experiment. We stress that our predictions are based solely on sites
identifications of de novo learned motifs.

We focused on 109 experiments for which there where at least
10 genes with localization p-value ≤ 0.001 and at least 50 genes
with p-value ≤ 0.01. The aim of our procedure was to get an
objective evaluation of the ability of the learned motif to detect the
sequences that the transcription factor binds to. Thus, it is crucial to
test performance on sequences that were not seen during training.
To achieve this, we performed a 5-fold cross validation test. In each
of the 5 runs we used 80% of the yeast genes as training data, and
tested the learned motif on the remaining 20% of the genes. Finally,
each sequence was scored by a Bonferroni corrected p-value, and
was declared to contain an occurrence of the motif if this p-value
was smaller than 0.01.

To evaluate the success of the different methods, we tested them

against the set of genes that Lee et al [29] consider to be bound
by the transcription factor (i.e., those with localization p-value ≤
0.001). We note that this set is conservative by nature, and so we
expect that it does not contain all the truly bound sequences. How-
ever, it provides a good objective test data. In the following discus-
sion we treat these sequences as “true”. Figures 4(a) and (b) show
ROC curves for two examples: Msn2 (H2O2) and Swi5 (YPD). As
we can see in these two examples, models that capture dependen-
cies are clearly superior to the PSSM model. The differences in
performances are due to the increased expressiveness of the richer
models. Figure 4(c) illustrates a scan of the promoter region in
search of a statistically significant putative binding site. Shown is
the promoter region of Gal80 with models learned from localiza-
tion assay of Gal4 (Galactose). As we can see, the mixture of trees
model assigns a significant Bonferroni corrected p-value at the true
binding position, while the PSSM model does not.

Next, we evaluated the accuracy of the learned motifs in a genome-
wide scan for binding sites. For each method, we compared the
putative set of regulated sequences against the original set of Lee et
al, by using the sensitivity and specificity measures. The results are
available in the Supplementary Information [5, Table B.2]. A sum-
mary of these results appears in Figure 4(d)–(f) that show the dif-
ferences in sensitivity and specificity between each of our methods
and PSSM models. Points in the upper right quadrant represent ex-
periments where the richer model performed better in terms of both
sensitivity and specificity, points in the bottom left quadrant are
ones where the PSSM model performed better, while points in the
other two quadrants are ones where the two methods achieve dif-
ferent tradeoffs between sensitivity and specificity. As we can see,
in most experiments all three methods perform better than PSSM
models. The tree network shows a modest improvement in 32 ex-
periments, and a slight decrease in 15. The mixture of PSSMs does
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Figure 5: Comparison of PSSMs learned by our method to the
ones learned by AlignACE on the gene clusters of [25]. (a) Dif-
ference between the PSSMs learned by method and by Alig-
nACE in sensitivity (x-axis) and specificity (y-axis). (b) Com-
parison of the hypergeometric p-value of PSSMs learned by
AlignACE (x-axis) and the ones by our method (y-axis).

somewhat better (55 better, 19 worse), and the mixture of trees is
significantly better in virtually all experiments (87 better, 2 worse).

To evaluate the learned models with respect to what is known
about the underlying biological context, we compared the PSSMs
we learned with known yeast transcription factor binding sites from
TRANSFAC [41] (see [5, Table B.2]). In 23 experiments we found
a TRANSFAC PSSM for the tested transcription factor. Out of
these, in 15 experiments the PSSM we learn matches the known
one.

Clusters of Yeast Genes Another rich collection of datasets of
genes were collected by the Church lab [25, 39]. These clusters
of genes are based on functional annotations, co-expression, and
known targets of transcription factors. They were originally ana-
lyzed using AlignACE [36]. This analysis included multiple runs
of AlignACE, followed by filtering based on the quality of the mo-
tifs found. The best PSSMs were reported for each cluster.

To gauge the quality of our baseline method, we compared the
PSSMs learned by our procedures to the ones learned and reported
by [25]. For this task we used the whole training data (as done by
AlignACE), and examined the two learned motifs for each group
by comparing their sensitivity, specificity and their hypergeometric
p-value. As we can see in Figure 5 (a), Our method had improved
the PSSM’s performance in 14 cases and reduced it in 3. The main
observation is the different tradeoff between sensitivity and speci-
ficity of the two learning techniques. However, in most examples
(32 out of 41) our PSSM obtained a more significant hypergeomet-
ric p-value, as shown in Figure 5 (b). These results show that our
PSSM learning procedure is comparable to AlignACE in terms of
both motif quality and significance.

Next, we evaluated the different methods on this dataset. For
each group having more than 50 genes, we repeated our procedures
as above. Due to the noisier nature of the data, we have set the
regulation prior P (rt | O) = 0.75 for genes inside a cluster, and
0.01 elsewhere. Since the methods differ in their expressiveness
and the number of parameters in their representations, a compar-
ison on the same set of sequences used for learning can be mis-
leading. Indeed, when comparing the performance of the differ-
ent models on the training data, the richer models, and particularly
mixtures of PSSMs and trees, seem much better (see Supplemen-
tary Information [5, Table B.3]). To get a more realistic assessment,
we once again used a 5-fold cross validation protocol as described
above. In Figure 6 we see a summary of these results (see Sup-
plementary Information [5, Tables B.4 and B.5] for details). As

we can see, the tree networks perform similarly to PSSMs, while
both mixture models perform poorly in most cases. To understand
this phenomenon, we examined the PSSM results. In many clusters
both the sensitivity and the specificity were small (< 15%). This
suggests that these clusters contain many false positives as well as
false negatives genes, making the problem harder. Recall that our
synthetic results show that mixture models are not as robust to the
presence of noise as the simpler models. Our suspicion is that they
tend to overfit spurious signals from the false positives sequences,
and are therefore less suitable for such a domain. We discuss pos-
sible solutions for this in the next section.

7. DISCUSSION
In this paper we expanded the probabilistic representation of

DNA motifs using the language of Bayesian network. Our frame-
work allows any model spanning the range from the position inde-
pendent PSSM to the full dependency model. We described meth-
ods to learn these models from limited data and showed that several
types of dependency models (trees, mixtures of PSSMs and mixture
of Trees) generalize better than PSSM on unseen real life data. We
presented methods for discovering putative binding sites given any
Bayesian network model and described an effective approach for
evaluating the statistical significance of candidate sites. Finally, we
showed how to perform de novo discovery of motifs in unaligned
genomic sequences suspected of co-regulation. In a thorough em-
pirical evaluation, we compared the effectiveness of dependency
models in discovering statistically significant transcription factors
on real life clusters.

We are not the first to model dependencies between positions in
biological sequence motifs. Agarwal and Bafna [1], suggested the
tree network model, and discussed algorithms for learning it. In a
related problem of modeling splice junctions, recent works exam-
ined k-order Markov models [30] and tree Bayesian networks [10].
These works learned models from aligned binding sites and used
them to detect splice junctions in new sequences. Finally, Bayesian
networks were used to model dependencies between positions in
protein motifs that were aligned according to 3-D structure [26].
This domain introduces another layer of complications due to the
large alphabet size of amino acids. Our work is, to the best of
our knowledge, the first one that presents a general framework for
learning any Bayesian network motif model in de novo discovery
of transcription factors. As we show in Section 6, this ability can
lead to dramatic improvements in the learned motifs.

This work can be extended in several directions. First, the ad-
vantage of being able to model a motif using any Bayesian network
suggests further exploration of different types of models as well as
general unrestricted models. This can include representational ex-
tensions that are geared toward the complexity vs. expressiveness
issue such as context specific dependency models [6, 18]. Second,
as our framework made no particular assumption on the type of
binding sites, it can be readily adapted to discover other sequence
motifs such as those of splicing and histone remodeling factors.
Third, an important challenge is to integrate our method with ad-
ditional data. As noted in Section 5, prior information about bind-
ing site location can be used. A more interesting challenge is to
combine our method with other types of information such as gene
expression [6, 37]. The biggest question posed by our results is
how to automatically select between different dependency models
(including the PSSM model). A natural measure for predicting per-
formance of probabilistic models on test data is the Bayesian score
[11, 22]. Unfortunately, in our experiments the Bayesian score was
not successful in selecting one of the best models.

Finally, our analysis here focused mainly on the statistical sig-
nificance of the results. However, these results also have interest-
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Figure 6: Evaluation of different methods on the clusters of the Church Lab [25, 39]. Each point represents a cluster, and shows the
difference between the cross-validated performance of the learned models to the learned PSSM in sensitivity (x-axis) and specificity
(y-axis).

ing implications about protein-DNA interactions. The challenge is
how to relate these dependencies to protein structure and function.
For this purpose, we need to be able to estimate our confidence
in the discovered dependencies (e.g., using bootstrap [14, 19] or
Bayesian methods [20]) and relate these dependencies with three
dimensional conformations of Protein-DNA complexes.
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