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Math 227C: Introduction to Stochastic Differential Equations

Lecturer: Xiaohui Xie Lecture #19
Scribe: Andrew Schaub

1 Stochastic Control

The focus of this lecture will be on stochastic control. We begin by looking at optimal
control in the deterministic case.

1.1 Deterministic Optimal Control

Suppose you have a deterministic ODE

ẋ = F (x(t), u(t))

Our goal in using deterministic optimal control is to try to solve the above equation. The
variable to be minimized is u over all of it’s functions The state variable is x(t), u(t) is
the control, and the independent variable is t. We want the system to give rise to optimal
performance. So, apply optimal control over a fixed time period [0, T ].

min
u

{∫ T

0
C[x(t), u(t)]dt+D[X(T )]

}
The initial state t0 needs to be close to something, and this will help determine the terminal
cost. The goal is to find some optimal use that minimizes the above value function. An
issue arrises though upon beginning with V (x(0), 0), and it concerns the identity of u. This
issue is a general problem.

1.1.1 Dynamic Programming

The typical way of trying to solve this general problem is using a dynamic programming
technique.

0 t T← dt →

At point t there is an optimal value V (x(t), t). One way to try to control the system is
by taking small steps and observing how the system evolves. This allows the minimization
of the control in some way. Now divide the cost into two components. The first component
will be the cost that occurs during the interval dt, and the second component is the cost
afterwards.

V (x(t), t) = min
u

[C(x(t), u(t))dt] + V (x(t+ dt), t+ dt)]

Essentially the goal is to minimize the above function, and that is the basic idea of dynamic
programming. Optimal control is obtained by looking at this small interval, with the differ-
ence here focusing on what occurs in the middle. Do a taylor expansion on V , and luckily
the taylor expansion will be relatively straightforward. The first order taylor expansion will
look like

V (x(t+ dt), t+ dt) = V (x(t), t) +
∂V

∂t
+
∂V

∂X
· ẋ(t)dt



Taylor expansion will reveal as V terms will cancel eachother out

V (x(t+ dt), t+ dt) = V (x(t), t) +
∂V

∂t
+
∂V

∂X
· ẋ(t)dt

In order to know that the above taylor series will converge smoothness must be assumed.
The third part of the above equation ∂V

∂X · ẋ(t)dt is not necessarily scalar, but will be the
dot product between two scalars. The importance of this is because it is recursive, and this
will lead to the minimal solution.

min
u

{
∂V

∂t
+

〈
∂V

∂X
,F (x(t), u(t))

〉
+ C(tx(t), u(t)

}
= 0

The minimum here has to be zero. Move ∂V
∂t outside,

∂V

∂t
+ min

u

{〈
∂V

∂x
, F (x, u)

〉
+ C(x, u)

}
= 0

The only cost associated with this is the terminal cost, and that is small. It simply equals

V (x, T ) = D(x)

This is the PDE that needs to be solved to find the optimal control of the system. So the
general idea is to try to identify the optimal control first. Once that has been identified
and the optimal value has be obtained than the optimal u can be extracted. This needs
to be done before solving the complicated PDE, as it has a minimization process subject
to the terminal case. This is known as deterministic optimal control, where the best u will
be found. So this will lead to the trajectory of x changing, which implies that the cost
function will change as well. By doing this though the best control signal will be found to
optimize this cost function. The final cost is not independent of initial selections though,
as it also depends on D. If a different u is selected, than the boundary conditions of V has
to be satisified, and the terminal cost will be satisfied. At the end u is only a function of t.
Be warned, this is not like the filtering problem, though this will be more apparent when
stochastic control is covered.

These types of equations are known as Hamilton-Jacobian-Bellman (HJB) equations,
and are famous if you are studying optimal control. Think about solving this numerically
by going backwards. The changes will relate to the difference in the PDE. ∂V

∂x is known
because it is terminal. Many other domains use this technique of dynamic programming by
breaking down problems into smaller and smaller portions as well. This is why it is known
as deterministic optimal control. The problem is very trivial at t, but as it progresses it
solves the original problem. Though unfortunately it is nontrivial to solve.

1.2 Stochastic Optimal Control

To look at a case with stochastic optimal control variance is introduced.

dXt = b(xt, ut)dt+ σ(xt, ut)dBt

So where the case in the previous section evolved deterministically, this case evolves as
an ODE. Suppose we are assuming a high dimension n, then it belongs to n dimensional.

2



Therefore it’s not really scalar, but is a random variable, by taking domains in the n
dimension.

Xt ∈ Rn, Bt : m− dim Brownian motion

σ(xt, ut) ∈ Rnxm

So define the value equations and start with x(t) at time t.

V (x(t), t) = min
u

∫ T

t
C(X(t), u(t))dt+D[X(T )]

What is the expectation? Remember X(T ) is random,

V (x(t), t) = min
u
E

[∫ T

t
C(X(t), u(t))dt+D[X(T )]

]
What type of control is being used? That is the question that needs to be addressed, for
there are many types of controls.

1. Open Loop Control (Deterministic Control).

Suppose u(t, ω) = u(t). In this case it will be deterministic control (open looped
control). Because it’s simply fixed as a function of t.

2. Open Looped Control (Feedback Control).

Suppose, Ut is Mt-adapted, where Mt is the σ-algebra generated by Xs, 0 ≤ S ≤ t .
Essentially for this σ-algebra you have all the information about the trajectory from
0 up to a certain time point, the history must be known.

3. Markov Control

U(t, ω) = u0(t, xt(ω)). Markov control uses less control. There is no history, and
there is no memory. It only uses what is current, there is nothing beyond that. An
example of where this would be used is a control theory about robots. The robot has
to decide to walk or stop, and this decision doesn’t depend on the past. Because of
this, the Markov control will be the same as the open loop control.

These types of controls explain what type of information is allowed to be used. So regardless
of the type of control used in stochastic optimal control we apply the recursive formula, and
we have to get expectations.

V (x(t), t) +
∂V

∂t
· dt+

∂V

∂x
· dX(t) +

1

2
(dxt)

T ∂
2V

∂x2
(dxt)

So what is the covariant structure of this X(t). It will simply be the matrix σ(xt, ut).

V (x(t), t) +
∂V

∂t
dt+

〈
∂V

∂x
, b(xt, ut)

〉
dt+

〈
∂V

∂x
, σ(xt, ut)dBt

〉
+

1

2

∑
i,j

aij
∂2V

∂xi∂xj

aij = (σσT )ij
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After obtaining the expectation,

∂V

∂t
+ min

u

< ∂V

∂x
, b(xt, ut) > +

1

2

∑
ij

aij
∂2V

∂xi∂xj


Whether or not the solution exists, or is unique are hard questions. In general the goal is a
practical solution to the HJB equations. This type of equation does not necessarily have an
analytical solution. Though caution needs to be exercised as numerical solutions have issues
as well. A question was raised during lecture about the existence of a functional way of
approximating the minimum of u using an approximation formula or calculus of variations.
There is no clear way of how to do this. Remember, this is a general formula to follow. If
the user wants to think about analytical solutions, such as pondering if b is possibly convex,
and b is the convex of u. This exploration might lead to a possible solution, but in general
it own’t be easy.

1.2.1 Example of Linear Stochastic Control

Suppose,
dXt = (HtXt +MtUt)dt+ σtdBt

In this case,
x0 = x, t ≥ 0. Ht ∈ Rn/n, Ut ∈ Rk

σtR
n×m, Mt ∈ Rn×k

This minimizes u over the expectation,

V a(x, 0) min
u
Ex,0

{∫ T

0
(xTt CtXt + uTt Dtut)dt+XT

T RXT

}
There are costs associated with control. Try to make the u small. Another cost associated
with control is the terminal cost.

ψ(t, x) = min
u
V u

This satisfies the partial Jacobian. Add an an s term to make the equation more flexible

∂ψ

∂s
+ min

u

xTCsX + uTPsv +

n∑
i=1

(Hsx+Ms)i
∂ψ

∂xi
+

1

2

∑
ij

(σsσ
T
s )ij

∂2ψ

∂xi∂xj

 = 0

The matrix will determine the quadratic form. We need to specify that matrix. At time
T, St = R, aT = 0. Solving the second term is the gradient of ψ

XT Ṡtx+ȧt+min
u

xTCtx+ V TDtv + vT+ < Htx+Mtv, 2Stx > +
∑
ij

(σsσ
T
s )ij(St)ij = 0


ẋṡtx+ ȧt + min

u

{
xT ctx+ V TDtv+ < Htx+Mtvm2S)tx > tr[(σtσ

T
t )St]

}
= 0

2Dtv − 2MT
t StX = 0
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2(StX)TMtv

v = −DT
t M

T
t Stx

2(MT
t Stx)Tu

xT (ṡ+ Ct − StMtD
−1
E MT

t St + 2HT
t st = 0)z + ȧt + tr(σσTS)t = 0

1. Ṡt + Ct − StMtD
−1
t MT

t St + 2HT
t St = 0 ST = R

2. ȧt = −tr(σσT s)t, aT = 0

This type of equation is called a Ricarti equation.

ṡt + StAtSt +BtSt + Ct = 0

Find st which is an entire matrix. Once you find st you scan to find optimal control. This is
common in engineering, such as in airplane control. This particular example is an example
of linear stochastic control.

2 The Filtering Problem

In principle the key to the filtering problem involves solving an HBJ equation to find the
value function V . Linear systems will have a solution.

2.1 General Filtering Problem

The general problem involves a system of equations

(System) dXt = b(t, xt)dt+ σ(t, xt)dUt

(Observations) dZt = Ct, xt)dt+ γ(t, xt)dVt

ut : p-dim brownian motion

z0 = 0Vt : r-dim Brownian motion

Given the observations {Zs}:0≤s≤t. What’s the best estimate x̂t of the xt?

1. x̂t is Gt-measurable, where Gt is the σ-algebra generated by {Zs}0≤s≤t.

2. By best estimate it’s the smallest.

Define K to be
K = {y : ω− > Rn : Y is Gt-measurable

With a finite variance, so y ∈ L2(ω). For those familiar with functional analysis a general
functional space.

L2(ω) = {X : ω− > Rn|X is L-measurable & E[X2] <∞

Also because it’s an L2 space it defines an inner product as well. This is a Hilbert space,
an abstract vector space which possesses an inner product, that allows length and angle
measurement.
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1. < x, y >= E[xy]

2. Norm: ||X||2 =< x, x >= E[X2]

This defines the sample space. Kt is only Gt measurable. When referring to the best
solution, what is x̂t. We assume the best solution is

E[|xt − x̂t|2] = inf E[|xt − y|2]

y ∈ kt
Now comes the important concept. In Hilbert space these are close to subspace. xt is a
random variable, itself does not belong to kt, so the geometric meaning is that it is the
projection, and not just a projection, but the orthogonal projection. x̂t is the orthogonal
projection of x onto kt. This leads to the minimal distance from a closed subspace. To
reiterate the importance of this in geometric terms. The best estimate is the filtering of the
orthogonal projection of xt onto kt all functions are gt measurable. L is normal defined.
These conceptual changes are very important to grasp.

... To be covered in the next and final lecture
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