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Abstract

Load balancing is a crucial part in every implementation of a cluster or grid com-
puting environment. The election of an optimal strategy is bound by the character-
istics of the architecture, the application of the computing environment, compu-
tational power, time constraints, and the nature of the information available about
the system and its tasks. In this paper we propose a new load balancing strategy
for the TREx environment [1] aimed to improve the execution time of the jobs in
the system.

1 Introduction

1.1 Goal

The objective of this project is to find a load balancing strategy that improve the existing one in the
TREx (Transparent Remote Execution) environment [1]. The current implementation of the load
balancing module in such environment follows a greedy approach that assign each task to the server
with the highest amount of computational power available. This approach does not consider the total
set of tasks to execute in order perform the assignation. We believe that a more efficient assignation
of tasks will considerably improve the performance of the TREx environment.

1.2 Previous Work

Load balancing is a typical problem in the field of distributed systems. Several efficient solutions
have been proposed to several different architectures.

This work is based upon the work of the authors of [2] where they proposed a methodology to
classify tasks accordingly to the resources the tasks will require to execute. In this paper the authors
also proposed an iterative method to assign workload to the server. This method requires extensive
communication with other terminals since for each iteration of the assignation loop it is required
to update the local knowledge about the workload of other terminal. This imposes a delay in the
assignation of the task that make it unfeasible for small tasks, specially in high latency networks,
since the improvement gained by the distribution of the task is diluted by the time that takes for the
task to be assigned. Additionally this method is heuristic, it is not guaranteed whether it provides an
optimal assignation and its efficacy is only empirical.

Authors of [3] posed a similar problem to the one in this paper. They found an optimal load bal-
ancing solution using convex optimization techniques and then compared this strategy with other
decentralized strategies. The model proposed by authors of [3] consider all the task to belong to the
same class and does not consider the variance in execution time among them.
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On [4], the authors present a model to estimate the service availability in a cluster, they propose prob-
abilistic models to estimate this value and compare different strategies of back-up in case of failure
of some of the machines. This models provide a useful insight about characteristics of estimation of
execution time of requests, but do not provide an optimal load balancing strategy.

1.3 Approach

Our approach pose the assignation problem as a convex optimization problem, using only the
information available through the TREX environment [1]. We model an estimation of the total time
required by the system as a whole to finish the execution of a set of tasks and minimize it. The
proposed model does not take into consideration the queue of a server which implies that the whole
set of tasks will always to be contained in the queue of any server. Additionally, the model require
independence between the rate of consumption of different resources within the same server and
assume that the arrivals of task to process are independent of each other.

The proposed model relies in the classifier defined in [2], the adequacy of this classifier is not
treated into this paper.

We proposed two model, both of them aim to assign static workload without requiring communi-
cation between the assignation unit and the surrogated computers. Although this approach prevents
the assignation unit of obtaining useful information for the assignation, it allows the assignment to
be performed in a extremely fast manner. We believe that this make it appropriate for small tasks in
high delay networks (and commodity systems) where the cost of communication delay is significant
when compared with the execution time of a task.

The first model proposed is an optimal static assignment. Upon observation of the behavior of this
approach, we determined that the variance of the execution time could be reduced introducing a
penalization value into the objective function, which was done in the second approach.

2 Methodology

2.1 Model Formulation

Consider a cluster of servers, all of them interconnected through a communication network. A load
balancing unit has as job to assign tasks to each one of this servers. Each task can be classified as
member of a class of tasks, this is shown in Figure 1.

The problem is modeled as follows:

S: The set of servers that will execute the tasks. Number of elements in S is denoted by |S|
T : The set of tasks to be executed. Number of elements in T is denoted by |T |
K: The set of distinct tasks classes. Number of elements in T is denoted by |K|

Each task t ∈ T belongs to only one class k ∈ K. The mapping of task to classes is to be performed
by a classifier which is out of the scope of this paper, previous work on this classification problem
can be found on [2].

Each server s ∈ S contains a variety of R distinct resources (CPU, GPU, Bandwidth, I/O commu-
nication). A server s is represented by a Performance Vector (Ps):
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Figure 1: Representation of architecture.

Ps =



Ps,1

Ps,2

...
Ps,r

...
P|S|,|R|


(1)

where each entry r in this vector represents the expected rate at which a resource r of server s will
process a task assigned to it.

A class k ∈ K is an approximate representation of the expected behavior of all the task that belongs
to this class and is represented by the vector Ks:

Ks =



Ts,1
Ts,2

...
Ts,r

...
T|S|,|R|


(2)

where each entry represents the expected the time taken to be consumed by a resource with unitary
rate at resource r. It is assumed that the execution rates of different resources in the same server are
independent.

Thus, the expected execution time of a task of class k when assigned to resource s is given by:

maxj

{
Tk[j]

Pi[j]

}
(3)

Let Ns,k be a random variable that represents the number of task of class k assigned to server i.
Then, the Execution Time for a server s to finish its assigned load is given by:
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∑
k

Ns,kmaxj

{
Tk[j]

Pi[j]

}
(4)

And its Expected Execution Time is:

E

[∑
k

Ns,kmaxj

{
Tk[j]

Pi[j]

}]
(5)

Since maxj
{

Tk[j]
Pi[j]

}
is a constant, the previous equation can be expressed as:

∑
k

E [Ns,k]maxj

{
Tk[j]

Pi[j]

}
(6)

using basic properties of expected value.

The time for the whole system to finish its tasks load will be equal to the time taken by the last server
to finish its own tasks load. Thus the Expected Execution Time for the system as a whole (the time
taken to the system to process all its assigned workload) is given by:

maxs

{∑
k

E [Ns,k]maxj

{
Tk[j]

Pi[j]

}}
(7)

2.2 Assignation Model

Define Prob(S = s,K = k) as the probability distribution function of assigning a task of class k
to a a server s. By conditional probability:

Prob(S = s|K = k) = Prob(S=s,K=k)
Prob(K=k)

then Prob(S = s,K = k) = Prob(S = s|K = k)Prob(K = k).

DefineMk := Number of tasks of class k to be assigned; this value is known since the tasks to assign
are knew before the assignment is done. Assuming the distribution of classes to be independent,
then:

Prob(K = k) = Mk

|T |

Then E[Ns,k] can be expressed as:

E [Ns,k] =MkProb(S = s,K = k) =MkProb(S = s|K = k)Prob(K = k) (8)

Defining Prob(S = s|K = k) to follow a multinomial probability with probabilities
x1,k, x2,k . . . xs,k, . . . , x|S|,k, then:

E [Ns,k] =Mkxs,kProb(K = k) (9)

Thus, the Maximum Expected Execution time for the server is:

maxs

{∑
k

Mkxs,kProb(K = k)maxj

{
Tk[j]

Pi[j]

}}
(10)
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where both Mkxs,kProb(K = k) and maxj
{

Tk[j]
Pi[j]

}
are known constants which product can be

expressed as qs,k. Thus previous equation becomes:

maxs

{∑
k

xs,kqs,k

}
(11)

2.3 Minimization of Execution Time

As our first approach, we attempt to minimize the Expected Execution Time given the model de-
scribed above.

2.3.1 Optimization Problem

Equation 11 defines the objective function to minimize, during its formulation we restricted the
values of xs,k to denote the conditional probability of a multinomial distribution function given k.
In order for the values xs,k’s to meet this requirement, the following constraints must be satisfied:∑

s xs,k = 1 ∀k = 1, . . .K
xs,k ≥ 0 ∀s = 1, . . . , S and k = 1, . . . ,K

To express the problem in a more condensed fashion, we define the following matrices:

Xs =

 xs,1
...

xs,|K|

 , X =

 X1

...
X|S|

 , Qs =

 qs,1
...

qs,|K|

 (12)

Thus, the complete minimization problem can be expressed as:

minimizeX maxs
{
QT

s Xs

}
(13)

Subject to:

−xs,k ≤ 0 ∀ s = 1, . . . , |S| and k = 1, . . . , |K|∑|S|
s=1 xs,k − 1 = 0 ∀ k = 1, . . . |K|

The objective function can be reformulated to remove the maximum function and obtain:

minimizeX t (14)

Subject to:

QT
s Xs − t ≤ 0 ∀ s = 1, dots, |S|
−xs,k ≤ 0 ∀ s = 1, . . . , |S| and k = 1, . . . , |K|∑|S|

s=1 xs,k − 1 = 0 ∀ k = 1, . . . |K|

Which is a Linear Optimization Problem (LP).

2.3.2 Solution to the Optimization Problem

The Lagrangian of the minimization problem is:

L(x, λ, ν) = t+

|S|∑
i=1

λiQ
T
i Xi −

|S|,|K|∑
i=1,j=1

λ(|S|+i)xi,j +

|K|∑
i=1

νi

 |S|∑
j=1

xi,j − 1

 (15)
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and applying the KKT conditions we obtain the following system of linear equations:

QT
i Xi ≤ 0 (16)
−xi,j ≤ 0 (17)

|S|∑
j=1

xi,j − 1 = 0 (18)

λi ≥ 0 (19)
λiQ

T
i Xi = 0 (20)

−λ(|S|i+j)xi,j = 0 (21)

∇t+
|S|∑
i=1

λi∇QT
i Xi −

|S|,|K|∑
i=1,j=1

λ(|S|+i)∇xi,j +
|K|∑
i=1

νi∇

 |S|∑
j=1

xi,j − 1

 = 0 (22)

Equation 22 is equivalent to:

|S|∑
i=1

λiQi −
|S|,|K|∑
i=1,j=1

λ(|S|+i) +

|K|∑
i=1

νi = 0 (23)

This is a system of linear equations which solution (when exists) gives the values ofX that minimize
the Expected Process Time for the whole system.

2.4 Accounting for variance

As an attempt to reduce the variance in the Execution Time, a second approach is attempted. For
this approach, a reformulation of the problem is made that takes into consideration the variance of
the execution times across multiple runs.

Recall equation 4:

∑
k

Ns,kmaxj

{
Tk[j]

Pi[j]

}
(24)

that denotes the Execution Time for server s. And note that even tasks that belong to the same class
will have a different Execution Time in the same server (the behavior of this difference will depend
of the classification method), to model the previously constant value can be redefined to be a random
variable:

Ys,k = maxj

{
Tk[j]

Pi[j]

}
(25)

which variance and estimated value can be known from the characteristic of the classifier used to
classify the tasks. Thus Equation 4 becomes:∑

k

Ns,kYs,k (26)

and using known properties of variance of a product of random variables, its variance is:

V ar(
∑
k

Ns,kYs,k) =
∑
k

(
E[Ns,k]

2V ar(Ys,k) + E[Y 2
s,k]V ar(Ns,k) + V ar(Ns,k)V ar(Ys,k)

)
(27)

From section 2.4, Ns,k follows a multinomial distribution, thus:
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E[Ns,k] = Mkxs,kProb(K = k)

V ar[Ns,k] = Mkxs,kProb(K = k)(1− (xs,k))

V ar(
∑
k

Ns,kYs,k) =
∑
k

((Mkxs,kProb(K = k))2V ar(Ys,k)

+ E[Ys,k]
2Prob(K = k)Mkxs,k(1− xs,k)

+ Mkxs,kProb(K = k)(1− xs,k)V ar(Ys,k))

This variance equation can be used to generate an estimator of the variance of the Execution time
of the whole system. A detailed analysis about the statistical characteristics of this estimator are
beyond of the scope of this paper. Such estimator is:

V (Xs) = V ar(
∑
k

Ns,kYs,k) (28)

Since V (X) is a variances its value is always non-negative. We can prove that is a convex function
using the criteria of the second derivate:

V ar(
∑
k

Ns,kYs,k) =
∑
k

(
(Mkxs,k)

2V ar(Ys,k) + E[Ys,k]
2Mkxs,k(1− xs,k) +Mkxs,k(1− xs,k)V ar(Ys,k)

)
=

∑
k

(
(Mkxs,k)

2(E[Y 2]− E[Y ]2) + E[Ys,k]
2Mkxs,k(1− xs,k) +Mkxs,k(1− xs,k)(E[Y 2]− E[Y ]2)

)
=

∑
k

(
E[Y 2](M2

kx
2
s,k +Mkxs,k(1− xs,k)) + E[Y ]2(Mkxs,k(1− xs,k)− (M2

kx
2
s,k)
)

V ar(
∑
k

Ns,kYs,k)
′ =

∑
k

(
E[Y 2]Mk(Mk2xs,k − xs,k + (1− xs,k)) + E[Y ]2Mk(−xs,k + (1− xs,k)− (Mk2xs,k)

)
V ar(

∑
k

Ns,kYs,k)
′′ =

∑
k

(
E[Y 2]Mk(2Mk − 1− 1) + E[Y ]2Mk(−1− 1− 2Mk)

)
=

∑
k

(
2E[Y 2]Mk(Mk − 1) + 2E[Y ]2Mk(−1−Mk)

)

V (X)′′ ≥ 0 ⇐⇒
∑
k

(
2E[Y 2]Mk(Mk − 1) + 2E[Y ]2Mk(−1−Mk)

)
≥ 0

→ 2E[Y 2]Mk(Mk − 1) + 2E[Y ]2Tk(−1−Mk) ≥ 0∀k
→ E[Y 2] ≥ E[Y ]2∀k

Since V ar(Y ) = E[Y 2] − E[Y ]2 ≥ 0 then the inequality above is always true. Thus V (X)′′ ≥ 0
and V (X) is convex.
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Table 1: Overview of the characteristics of the resources used for application profiling.

Resource Processor Speed Memory Operating System

R1 Intel Core 2 Duo 2.4 GHz 3.0GB XP Professional
R2 Intel Pentium 4 3.0 GHz 1GB XP Professional
R3 AMD Athlon 1.0 GHz 512 MB XP Professional
R4 Intel Core 2 Duo 2.2 GHz 1.5 GB XP Professional

2.4.1 New Minimization Problem

Using the variance indicator derived in the previous section, a new minimization problem can be
posed:

minimizeX t (29)

Subject to:

QT
s Xs + sV (X)− t ≤ 0 ∀ s = 1, . . . , |S|
−xs,k ≤ 0 ∀ s = 1, . . . , |S| and k = 1, . . . , |K|∑|S|

s=1 xs,k − 1 = 0 ∀ k = 1, . . . , |K|

where s is a parameter to be chosen from experimentation data.

3 Results

To compare between different approaches we will use the Expected Execution Time of the whole
system (as described in previous section). The variance of this value will be a secondary criteria.

The application profile was obtained using four distinct resources shown in Table 1.

Benchmark techniques similar to the ones described in [5] and [6] where employed. This techniques
used bytecode counting and timing similar to the methods used by the JRAF-2 framework and
associated publications [7], [8]. This benchmark criteria is consistent to the one employed in [2].

Since the classifier described in [2] is used as departing point of this paper, the same routines were
profiled for this paper, this routines are image processing extensions to the Python Interpreter of
an application called ImagePack [9] which contains three possible class: FullPack, Half-Pack, and
QuarterPack. Fullpack resize and converts two images to grayscale, enhances the sharpness of the
images, difference them and write the result. HalfPack and QuarterPack perform the same operations
but over a image which resolution is a half and one quarter of the original, respectively. The images
utilized are described in Table 2.

The processing rates of the most taxed resources in each server (per task) are shown in table 3. This
values are the ones denoted in equation 3 as maxj

{
Tk[j]
Pi[j]

}
. The variances of Execution Time per

resource and class are shown in table 4.

Both problems where solved utilizing IBM ILOG CPLEX Optimization Studio V12.2 [10] and
modeled on ”Optimization Programming Language” (OPL) [11]. The Appendix contain the OPL
code of the model. The behavior of the solutions to the optimization problem were simulated in the
”R Language”; the appendix contains the code using for this simulation. A complete implementation
in TREx [1] is planned as part of future work.
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Table 2: Images utilized for benchmark.

Image Resolution Pixels

Fallujah, Iraq 2094x1659 34687527
Fallujah, Iraq 4188x3317 13875011
Fallujah, Iraq 8366x6634 55500044
Indiana University 6500X4286 27859000
Istanbul, Turkey 3600x1998 7192800
Istanbul, Turkey 5116x2839 14524324
Istanbul, Turkey 11189x6208 69461312
Kabul, Afghanistan 1440x799 1150560
Kabul, Afghanistan 3600x1998 7192800
Kabul, Afghanistan 14198x7878 111851844
Mexico City, Mexico 1440x799 1150560
Mexico City, Mexico 7200x3995 28764000
Mexico City, Mexico 13320x7391 98448120
Purdue University 6500x4286 27859000
Riga, Latvia 5000x2699 13495000
San Clemente, CA 4300x2386 10259800
San Clemente, CA 12672x7031 89096832
UCI 14400x7990 230112000
Vatican City 28800x15980 460224000

Table 3: Value of most taxed resource.
Resource FullPack HalfPack Quarter Pack
R1 11.50130 4.87316 2.86764
R2 16.9556243 9.25800
R3 50.33736 38.93386
R4 11.58038 4.82544 2.78167

3.1 Problem 1

The solution to the equation system posed in Section 2.3.2, when 20 task of class 1, 50 of class 2
and 80 of class 3 are to be assigned is given by Equation 30:

X =

 0.97832 0 0
0 0 0.45576
0 0.13412 0

0.021684 0.86588 0.54424

 (30)

The results of simulating this assignation code 300 times is shown in Figure 3.1. The mean Execu-
tion Time is 366.0147 s, its variance is 468.6658 s2 and its STDDEV is 21.64869 s.

In order to allow the reader to appreciate the advantages of this approach against the previous greedy
implementation, the previous load balancing unit on TREx[1] would have performed an assignation
which mean execution time will be approximately 574.0918 s.

3.2 Problem 2

As described during in the Methodology section, Problem 2 requires a proper value of s to be calcu-
lated using experimental data. Since we lacked information about the behavior of the optimization
problem as a function of s, our approach consisted in iterate over multiples of 0.1 in the interval
[0, 10] to observe the behavior of the function, while doing this, we observed that the variance of the
Execution Time increased abruptly in the interval [0, 0.1].
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Table 4: Variances of execution times.
Resource FullPack HalfPack Quarter Pack
R1 4.823 0.7316 0.18734
R2 1.506243 0.73502
R3 6.32796 2.33286
R4 3.49021 0.94767 0.2146

Figure 2: Model 1 Execution time (in second).

Further investigation about he behavior of the optimization problem is required before being able to
derive a method to calculate an optimal value of s.

4 Discussion

Our first approach provided a considerable reduction in the Expected Execution Time of the over
the one of the actual load balancing unit of the TREx system. Nevertheless is far from being optimal
since does not takes in consideration important factors common to every distributed system environ-
ment as overload of transmission of tasks, bandwidth considerations during task distribution, and
is not robust against outdated information. Additionally, is based upon several assumptions about
the behavior of the tasks (i.e. as independence in rate of consumption of different resources in the
same server) that are false and its efficiency is highly dependent of the quality of the classifier used
to assign classes to the tasks to execute.

The second approach attempted to minimize this dependency of the classifier by introducing the
variance in a class (a unwanted attribute of the classifier) as a penalization during the assignation
of tasks. Unfortunately, simulation results that are contrary to what we expected prevent us to
withdrawn conclusions about the efficacy (or inefficacy) of the approach until any programming or
implementation error is discarded.

Further extensions over the same model are to be performed in the same model, as accounting for
bandwidth and latency in the transmission and a penalization for outdated information.

During the realization of this project, we learned to model a typical problem of our research area as a
convex optimization problem, to evaluate its solubility and to extend it to include new and different
aspects of the problem of study.

5 Conclusion

In this paper we addressed the problem of load balancing when the architecture does not provide
timely information about the instant state of the components of a grid. We developed a linear pro-
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gramming model for the load balancing problem and derived a metric, the Expected Execution Time,
to estimate the efficacy of a load balancing strategy and solved the problem of finding an optimal
solution for this metric. Additionally, we extended this model to account for the variance in the exe-
cution time and formulated this new problem as a Quadratically Constrained Optimization Problem.
Simulations were conducted to evaluate the performance of this models and evaluate the feasibility
of its implementation in TREx[1].
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Appendix

OPL implementation of Approach 1

dvar float x1[1..3] in 0..1;
dvar float x2[2..3] in 0..1;
dvar float x3[2..3] in 0..1;
dvar float x4[1..3] in 0..1;
dvar float t in 0..4000000;

range k_range = 1..3;

int t1=30;
int t2=50;
int t3=80;
int t_array[k_range] = [t1, t2, t3];

float r1[k_range] = [11.5013, 4.87316, 2.86764];

float r2[2..3] = [16.9556243, 9.25800];

float r3[2..3] = [50.33736,38.93386];

float r4[k_range] = [11.58038, 4.82544,2.78167];

minimize
t;

subject to {
// Server 1
ct1: sum(i in 1..3)r1[i]*t_array[i]*x1[i]<= t;

// Server 2
ct2: sum(i in 2..3)r2[i]*t_array[i]*x2[i]<= t;

// Server 3
ct3: sum(i in 2..3)r3[i]*t_array[i]*x3[i]<= t;
// Server 4
ct4: sum(i in 1..3)r4[i]*t_array[i]*x4[i]<= t;

// Assignation for every class must be a probability
ct9: x1[1]+x4[1] == 1;
ct10: x1[2]+x2[2]+x3[2]+x4[2] == 1;
ct11: x1[3]+x2[3]+x3[3]+x4[3] == 1;

}

OPL implementation of Approach 2

dvar float x1[1..3] in 0..1;
dvar float x2[2..3] in 0..1;
dvar float x3[2..3] in 0..1;
dvar float x4[1..3] in 0..1;
dvar float t in 0..4000000;

range k_range = 1..3;

int t1=30;
int t2=50;
int t3=80;
int t_array[k_range] = [t1, t2, t3];

12



float p[k_range] = [(t1+t2+t3)/t1, (t1+t2+t3)/t2, (t1+t2+t3)/t3];

float r1[k_range] = [11.5013, 4.87316, 2.86764];

float r2[2..3] = [16.9556243, 9.25800];

float r3[2..3] = [50.33736,38.93386];

float r4[k_range] = [11.58038, 4.82544,2.78167];

// Variances
float v1[k_range]= [4.823,0.7316,0.18734];
float v2[2..3]= [1.506243, 0.73502];
float v3[2..3]= [6.32796 , 12.33286];
float v4[k_range]= [3.49021,0.94767, 0.2146];

// Parameter
float s = 0.1;

minimize
t;

subject to {
// Server 1
ct1: sum(i in 1..3)r1[i]*t_array[i]*x1[i]
+ s*(sum(i in 1..3)( (t_array[i]*x1[i])ˆ2 + (r1[i]ˆ2 + v1[i])*(t_array[i]*x1[i])*(1-x1[i]*p[i])))

<= t;

// Server 2
ct2: sum(i in 2..3)r2[i]*t_array[i]*x2[i]
+ s*(sum(i in 2..3)( (t_array[i]*x2[i])ˆ2 + (r2[i]ˆ2 + v2[i])*(t_array[i]*x2[i])*(1-x2[i]*p[i])))

<= t;

// Server 3
ct3: sum(i in 2..3)r3[i]*t_array[i]*x3[i]
+ s*(sum(i in 2..3)( (t_array[i]*x3[i])ˆ2 + (r3[i]ˆ2 + v3[i])*(t_array[i]*x3[i])*(1-x3[i]*p[i])))

<= t;

// Server 4
ct4: sum(i in 1..3)r4[i]*t_array[i]*x4[i]
+ s*(sum(i in 1..3)( (t_array[i]*x4[i])ˆ2 + (r4[i]ˆ2 + v4[i])*(t_array[i]*x4[i])*(1-x4[i]*p[i])))

<= t;

// Assignation for every class must be a probability
ct9: x1[1]+x4[1] == 1;
ct10: x1[2]+x2[2]+x3[2]+x4[2] == 1;
ct11: x1[3]+x2[3]+x3[3]+x4[3] == 1;

}

R Implementation of Simulation

reps = 300
ExecTime = rep(0,reps);

t1=30;
t2=50;
t3=80;

r1=c(11.5013, 4.87316, 2.86764);
r2=c(0, 16.9556243, 9.25800);
r3=c(0, 0.33736,38.93386);
r4=c(11.58038, 4.82544,2.78167);
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v1=c(4.823,0.7316,0.18734);
v2=c(0,0,01.506243, 0.73502);
v3=c(0, 6.32796 , 12.33286);
v4=c(3.49021,0.94767, 0.2146);

for(iter in c(1:reps)){

x = matrix(c(
c(0.97832, 0, 0),
c(0, 0, 0.45576),
c(0, 0.13412, 0),
c(0.021684, 0.86588, 0.54424)),
4, byrow=T);

assigns = matrix(c(
rmultinom(1, t1, x[,1]),
rmultinom(1, t2, x[,2]),
rmultinom(1, t3, x[,3])), 3, byrow=T);

tasks1<-mat.or.vec(4,1)
tasks2<-mat.or.vec(4,1)
tasks3<-mat.or.vec(4,1)

server1=numeric(0);
server2=numeric(0);
server3=numeric(0);
server4=numeric(0);

for(k in c(1:3)){
server1 = c(server1, rnorm(assigns[k,1], r1[k], v1[k]));
server2 = c(server2, rnorm(assigns[k,2], r2[k], v2[k]));
server3 = c(server3, rnorm(assigns[k,3], r3[k], v3[k]));
server4 = c(server4, rnorm(assigns[k,4], r4[k], v4[k]));
}

timeS1= sum(server1);
timeS2= sum(server2);
timeS3= sum(server3);
timeS4= sum(server4);

ExecTime[iter] = max(timeS1, timeS2, timeS3, timeS4);
}
mean(ExecTime)
sd(ExecTime)
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