CS295: Convex Optimization

Xiaohui Xie Department of Computer Science University of California, Irvine

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Course information

- Prerequisites: multivariate calculus and linear algebra
- Textbook: Convex Optimization by Boyd and Vandenberghe
- Course website:

http://eee.uci.edu/wiki/index.php/CS_295_Convex_Optimization_(Winter_2011)

- Grading based on:
 - final exam (50%)
 - final project (50%)

Mathematical optimization

Mathematical optimization problem:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq \mathbf{b}_i, \quad i = 1, \cdots, m$

where

- $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$: optimization variables
- $f_0 : \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i : \mathbb{R}^n \to \mathbb{R}$: constraint function

Optimal solution \mathbf{x}^* has smallest value of f_0 among all vectors that satisfy the constraints.

Examples

- transportation product transportation plan
- finance portfolio management
- machine learning support vector machines, graphical model structure learning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Transportation problem

We have a product that can be produced in amounts a_i at location i with $i = 1, \dots, m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j = 1, \dots, n$. The amount shipped from origin i to destination j is x_{ij} , at a cost of c_{ij} per unit.

Transportation problem

We have a product that can be produced in amounts a_i at location i with $i = 1, \dots, m$. The product must be shipped to n destinations, in quantities b_j to destination j with $j = 1, \dots, n$. The amount shipped from origin i to destination j is x_{ij} , at a cost of c_{ij} per unit.

To find the transportation plan that minimizes the total cost, we solve an LP:

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i \quad i = 1, \cdots, m$$
$$\sum_{i=1}^{m} x_{ij} = b_j \quad j = 1, \cdots, n$$
$$x_{ij} \ge 0$$

Markowitz portfolio optimization

Consider a simple portfolio selection problem with n stocks held over a period of time:

- ► x = (x₁, · · · , x_n): the optimization variable with x_i denoting the amount to invest in stock i
- **p** = (p₁, · · · , p_n): a random vector with p_i denoting the reward from stock *i*. Suppose its mean μ and covariance matrix Σ are known.
- ► $r = \mathbf{p}^T \mathbf{x}$: the overall return on the portfolio. r is a random variable with mean $\mu^T \mathbf{x}$ and variance $x^T \Sigma x$.

Markowitz portfolio optimization

The Markowitz portfolio optimization problem is the QP

min
$$\mathbf{x}^T \Sigma \mathbf{x}$$

s.t. $\mu^T \mathbf{x} \ge r_{min}$
 $\mathbf{1}^T \mathbf{x} = B$
 $x_i \ge 0, \quad i = 1, \cdots, m$

which find the portfolio that minimizes the return variance subject to three constraints:

- achieving a minimum acceptable mean return r_{min}
- satisfying the total budget B
- no short positions $(x_i \ge 0)$

Support vector machines (SVMs)

Input: a set of training data,

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, y_i \in \{-1, 1\}, i = 1, \cdots, n\}$$

where y_i is either 1 or -1, indicating the class to which \mathbf{x}_i belongs.

Problem: find the **optimal separating hyperplane** that separates the two classes and maximizes the distance to the closet point from either class.

Support vector machines (SVMs) 2

Define a hyperplane by $w^T x - b = 0$. Suppose the training data are linearly separably. So we can find w and b such that $w^T x_i - b \ge 1$ for all x_i from class 1 and $w^T x_i - b \le -1$ for all x_i from class -1.

The distance between the two parallel hyperplans, $w^T x_i - b = 1$ and $w^T x_i - b = -1$, is $\frac{2}{||w||}$, called **margin**.

To find the optimal separating hyperplane, we choose w and b that maximize the margin:

min
$$||w||^2$$

s.t. $y_i(w^T x_i - b) \ge 1$, $i = 1, \dots, n$

Undirected graphical models

Input: a set of training data,

$$\mathcal{D} = \{(\mathbf{x}_i) \mid \mathbf{x}_i \in \mathbb{R}^p \ i = 1, \cdots, n\}$$

Assume the data were sampled from a Gaussian graphical model with mean $\mu \in \mathbb{R}^{p}$ and covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$. The inverse covariance matrix, Σ^{-1} , encodes the structure of the graphical model in the sense that the variables *i* and *j* are connected only if the (i, j)-entry of Σ^{-1} is nonzero.

Problem: Find the maximum likelihood estimation of Σ^{-1} with a sparsity constraint, $\|\Sigma^{-1}\|_1 \leq \lambda$.

Undirected graphical models 2

Let S be the empirical covariance matrix:

$$S := \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T.$$

Denote $\Theta = \Sigma^{-1}$.

The convex optimization problem:

$$\begin{array}{ll} \min & -\log \det \Theta + \operatorname{tr}(S\Theta) \\ \text{s. t.} & \|\Theta\|_1 \leq \lambda \\ & \Theta \succ 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The optimization problem is in general difficult to solve: taking very long long time, or not always finding the solution

Exceptions: certain classes of problems can be solved efficiently:

- least-square problems
- linear programming problems
- convex optimization problems

Least-squares

minimize
$$||Ax - b||_2^2$$

where $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$.

- analytical solution: x^{*} = (A^TA)⁻¹A^Tb (assuming k > n and rank A = n)
- reliable and efficient algorithms available
- computational time proportional to n²k, and can be further reduced if A has some special structure

Linear programming

min
$$c^T x$$

s.t. $a_i^T x \le b_i$, $i = 1, \cdots, m$

where the optimization variable $x \in \mathbb{R}^n$, and $c, a_i, b_i \in \mathbb{R}^n$ are parameters.

- no analytical formula for solution
- reliable and efficient algorithms available (e.g., Dantzig's simplex method, interior-point method)

▶ computational time proportional to n²m if m ≤ n (interior-point method); less with structure

Linear programming: example

The Chebyshev approximation problem:

minimize $||Ax - b||_{\infty}$

with $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞} -norm replacing the ℓ_2 -norm:

$$\|Ax - b\|_{\infty} = \max_{i=1,\cdots,k} |a_i^T x - b_i|$$

where $a_i \in R^n$ is the *i*th column of A^T .

Linear programming: example

The Chebyshev approximation problem:

minimize $||Ax - b||_{\infty}$

with $x \in \mathbb{R}^n$, $b \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞} -norm replacing the ℓ_2 -norm:

$$\|Ax - b\|_{\infty} = \max_{i=1,\cdots,k} |a_i^T x - b_i|$$

where $a_i \in R^n$ is the *i*th column of A^T .

An equivalent linear programming:

min t s.t. $a_i^T x - t \le b_i$, $i = 1, \cdots, k$ $-a_i^T x - t \le -b_i$, $i = 1, \cdots, k$

Convex optimization problems

minimize $f_0(\mathbf{x})$ subject to $f_i(\mathbf{x}) \leq \mathbf{b}_i, \quad i = 1, \cdots, m$

where $x \in \mathbb{R}^n$.

both objective and constraint functions are convex

$$f(heta x + (1 - heta)y) \le heta f(x) + (1 - heta)f(y)$$

for any $0 \le \theta \le 1$, and any x and y in the domain of f_0 and f_i for all *i*.

- includes least-square and linear programming problems as special cases.
- no analytical formula for solution
- reliable and efficient algorithms available

Topics to be covered

- Convex sets and convex functions
- Duality
- Unconstrained optimization
- Equality constrained optimization

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Interior-point methods
- Semidefinite programming

Brief history of optimization

- 1700s: theory for unconstrained optimization (Fermat, Newton, Euler)
- ▶ 1797: theory for equality constrained optimization (Lagrange)
- ▶ 1947: simplex method for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco, McCormick, Dikin, etc)
- ▶ 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar)
- 1990s: polynomial-time interior-point methods for nonlinear convex optimization (Nesterorv & Nemirovski)
- 1990-now: many new applications in engineering (control, signal processing, communications, etc); new problem classes (semidefinite and second-order cone programming, robust optimization, convex relaxation, etc)

Convex set

Definition A set *C* is called **convex** if

$$\mathbf{x}, \mathbf{y} \in C \implies \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C \quad \forall \theta \in [0, 1]$$

In other words, a set C is convex if the line segment between any two points in C lies in C.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A **convex combination** of the points x_1, \dots, x_k is a point of the form

 $\theta_1 x_1 + \cdots + \theta_k x_k,$

where $\theta_1 + \cdots + \theta_k = 1$ and $\theta_i \ge 0$ for all $i = 1, \cdots, k$.

A set is convex if and only if it contains every convex combinations of the its points.

Convex hull

Definition

The **convex hull** of a set C, denoted **conv** C, is the set of all convex combinations of points in C:

$$\operatorname{conv} C = \left\{ \sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in C, \theta_{i} \geq 0, i = 1, \cdots, k, \sum_{i=1}^{k} \theta_{k} = 1 \right\}$$

Properties:

- A convex hull is always convex
- ► **conv** *C* is the smallest convex set that contains *C*, i.e., $B \supseteq C$ is convex \implies **conv** $C \subseteq B$

Convex cone

A set C is called a **cone** if $x \in C \implies \theta x \in C, \forall \theta \ge 0$.

A set C is a **convex cone** if it is convex and a cone, i.e.,

$$x_1, x_2 \in C \implies \theta_1 x_1 + \theta_2 x_2 \in C, \quad \forall \theta_1, \theta_2 \ge 0$$

The point $\sum_{i=1}^{k} \theta_i x_i$, where $\theta_i \ge 0, \forall i = 1, \dots, k$, is called a **conic** combination of x_1, \dots, x_k .

The **conic hull** of a set C is the set of all conic combinations of points in C.

Hyperplanes and halfspaces

A hyperplane is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b\}$ where $a \neq 0, b \in \mathbb{R}$.

A (closed) halfspace is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} \le b\}$ where $a \neq 0, b \in \mathbb{R}$.

- **a** is the normal vector
- hyperplanes and halfspaces are convex

Euclidean balls and ellipsoids

Euclidean ball in \mathbb{R}^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

Euclidean balls and ellipsoids

Euclidean ball in R^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid in R^n with center x_c :

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1 \right\}$$

where $P \in S_{++}^n$ (i.e., symmetric and positive definite)

- ► the lengths of the semi-axes of *ε* are given by √λ_i, where λ_i are the eigenvalues of *P*.
- An alternative representation of an ellipsoid: with $A = P^{1/2}$

$$\mathcal{E} = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

Euclidean balls and ellipsoids

Euclidean ball in R^n with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid in R^n with center x_c :

$$\mathcal{E} = \left\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1 \right\}$$

where $P \in S_{++}^n$ (i.e., symmetric and positive definite)

- ► the lengths of the semi-axes of *ε* are given by √λ_i, where λ_i are the eigenvalues of *P*.
- An alternative representation of an ellipsoid: with $A = P^{1/2}$

$$\mathcal{E} = \{ x_c + Au \mid \|u\|_2 \le 1 \}$$

Euclidean balls and ellipsoids are convex.

Norms

A function $f : \mathbb{R}^n \to \mathbb{R}$ is called a **norm**, denoted ||x||, if

- nonegative: $f(x) \ge 0$, for all $x \in R^n$
- definite: f(x) = 0 only if x = 0
- ▶ homogeneous: f(tx) = |t|f(x), for all $x \in R^n$ and $t \in R$
- ▶ satisfies the triangle inequality: $f(x + y) \le f(x) + f(y)$ notation: $\|\cdot\|$ denotes a general norm; $\|\cdot\|_{symb}$ denotes a specific norm

Distance: dist(x, y) = ||x - y|| between $x, y \in \mathbb{R}^n$.

Examples of norms

- ℓ_p -norm on R^n : $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$
 - ℓ_1 -norm: $||x||_1 = \sum_i |x_i|$
 - ℓ_{∞} -norm: $\|x\|_{\infty} = \max_{i} |x_{i}|$
- ▶ Quadratic norms: For P ∈ Sⁿ₊₊, define the P-quadratic norm as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2$$

Equivalence of norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on \mathbb{R}^n . Then $\exists \alpha, \beta > 0$ such that $\forall x \in \mathbb{R}^n$, $\alpha \|x\|_a \leq \|x\|_b \leq \beta \|x\|_a$.

Norms on any finite-dimensional vector space are equivalent (define the same set of open subsets, the same set of convergent sequences, etc.)

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $C = \{(x, t) \mid ||x|| \le t\} \subseteq \mathbb{R}^{n+1}$

the second-order cone is the norm cone for the Euclidean norm

(日) (日) (日) (日) (日) (日) (日) (日)

norm balls and cones are convex

Polyhedra

A **polyhedron** is defined as the solution set of a finite number of linear equalities and inequalities:

$$\mathcal{P} = \{x \mid Ax \preceq b, Cx = d\}$$

where $A \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$, and \leq denotes vector inequality or componentwise inequality.

A polyhedron is the intersection of finite number of halfspaces and hyperplanes.

Simplexes

The **simplex** determined by k + 1 affinely independent points $v_0, \dots, v_k \in \mathbb{R}^n$ is

$$C = \operatorname{conv}\{v_0, \cdots, v_k\} = \left\{\theta_0 v_0 + \cdots + \theta_k v_k \mid \theta \succeq 0, \mathbf{1}^T \theta = 1\right\}$$

The affine dimension of this simplex is k, so it is often called k-dimensional simplex in \mathbb{R}^n .

Some common simplexes: let e_1, \dots, e_n be the unit vectors in \mathbb{R}^n .

- unit simplex: conv $\{0, e_1, \cdots, e_n\} = \{x | x \succeq 0, \mathbf{1}^T \theta \le 1\}$
- ▶ probability simplex: $conv{e_1, \dots, e_n} = \{x | x \succeq 0, \mathbf{1}^T \theta = 1\}$

Positive semidefinite cone

notation:

- S^n : the set of symmetric $n \times n$ matrices
- Sⁿ₊ = {X ∈ Sⁿ | X ≥ 0}: symmetric positive semidefinite matrices
- ▶ $S_{++}^n = \{X \in S^n \mid X \succ 0\}$ symmetric positive definite matrices

 S_{+}^{n} is a convex cone, called positive semidefinite cone. S_{++}^{n} comprise the cone interior; all singular positive semidefinite matrices reside on the cone boundary.

Example:

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in S^2_+ \iff x \ge 0, z \ge 0, xz \ge y^2$$

Operations that preserve complexity

- intersection
- affine function
- perspective function
- linear-fractional functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

►

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ●

Inner product, Euclidean norm

- Standard inner product on R^n : $\langle x, y \rangle = x^T y = \sum_i x_i y_i$
- Euclidean norm (ℓ_2 norm): $||x||_2 = \langle x, x \rangle^{1/2}$
- ▶ Cauchy-Schwartz inequality: $\langle x, y \rangle \leq ||x||_2 ||y||_2$
- Standard inner product on $R^{m \times n}$:

$$\langle X, Y \rangle = tr(X^TY) = \sum_{i=1}^m \sum_{j=1}^n X_{ij}Y_{ij}$$

Frobenius norm: $||X||_F = \langle X, X \rangle^{1/2}$

Norms and distance

- A function f : Rⁿ → R with dom f = Rⁿ is called a norm, written as f(x) = ||x||, if
 - $f(x) \ge 0$, for all $x \in \mathbb{R}^n$
 - f(x) = 0 only if x = 0
 - f(tx) = |t|f(x), for all $x \in R^n$ and $t \in R$

•
$$f(x+y) \leq f(x) + f(y)$$

- ► Distance: dist(x, y) = ||x y|| between $x, y \in \mathbb{R}^n$.
- Unit ball: $B = \{x \in \mathbb{R}^n | ||x|| \le 1\}$
 - B is convex
 - B is closed, bounded, and has nonempty interior
 - ▶ *B* is symmetric about the origin, i.e., $x \in B$ iff $-x \in B$.

Examples of norms

- ℓ_p -norm on R^n : $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$
 - ℓ_1 -norm: $||x||_1 = \sum_i |x_i|$
 - ℓ_{∞} -norm: $\|x\|_{\infty} = \max_{i} |x_{i}|$
- ▶ Quadratic norms: For P ∈ Sⁿ₊₊, define the P-quadratic norm as

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2$$

Equivalence of norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on \mathbb{R}^n . Then $\exists \alpha, \beta > 0$ such that $\forall x \in \mathbb{R}^n$,

$$\alpha \|\mathbf{x}\|_{\mathbf{a}} \le \|\mathbf{x}\|_{\mathbf{b}} \le \beta \|\mathbf{x}\|_{\mathbf{a}}.$$

In fact, norms on any finite-dimensional vector space are equivalent (define the same set of open subsets, the same set of convergent sequences, etc.)

Let || · || be a norm on Rⁿ. Then ∃ a quadratic norm || · ||_P such that ∀x ∈ Rⁿ,

$$\|x\|_P \le \|x\| \le \sqrt{n} \|x\|_P$$

"Minimum Norms" Lemma

Lemma

Suppose X is an n-dimensional normed vector space over \mathbb{R} or (\mathbb{C}) with basis { x_1, \dots, x_n }. There exists a c > 0 such that

$$\|\alpha_1 x_1 + \dots + \alpha_n x_n\| \ge c(|\alpha_1| + \dots + |\alpha_n|)$$

for any selection of $\alpha_1, \cdots, \alpha_n$ in the field.

Operator norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be norms on \mathbb{R}^m and \mathbb{R}^n , respectively. The operator norm of $X \in \mathbb{R}^{m \times n}$, induced by $\|\cdot\|_a$ and $\|\cdot\|_b$, is defined to be

$$\|X\|_{a,b} = \sup \{\|Xu\|_a \mid \|u\|_b \le 1\}$$

$$\|X\|_2 = \|X\|_{2,2} = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Max-row-sum norm:

$$\|X\|_{\infty} = \|X\|_{\infty,\infty} = \max_{i=1,\cdots,m} \sum_{j=1}^{n} |X_{ij}|$$

Max-column-sum norm:

$$\|X\|_{1} = \|X\|_{1,1} = \max_{j=1,\dots,n} \sum_{i=1}^{m} |X_{ij}|$$

Dual norm

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $\|\cdot\|_*$, is defined as

$$||z||_* = \sup \{z^T x \mid ||x|| \le 1\}.$$

•
$$z^T x \leq ||x|| ||z||_*$$
 for all $x, z \in \mathbb{R}^n$

•
$$||x||_{**} = ||x||$$
 for all $x \in \mathbb{R}^n$

- The dual of the Euclidean norm is the Euclidean norm
- The dual of the ℓ_∞ norm is the ℓ_1 norm
- The dual of the ℓ_p -norm is the ℓ_q -norm, where 1/p + 1/q = 1
- The dual of the ℓ_2 -norm on $R^{m \times n}$ is the nuclear norm,

$$||Z||_{2*} = \sup \{tr(Z^TX) \mid ||X||_2 \le 1\}$$

= $\sigma_1(Z) + \cdots + \sigma_r(Z) = tr(Z^TZ)^{1/2},$

where r = rank Z.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Continuity

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $x \in dom f$ if $\forall \epsilon > 0 \exists \delta > 0$ such that

$$||y-x|| < \delta \implies ||f(y)-f(x)|| < \epsilon.$$

Continuity can also be described in terms of limits: whenever the sequence (x_i) converges to a point $x \in dom f$, the sequence $(f(x_i))$ converges to f(x),

$$\lim_{i\to\infty} f(x_i) = f(\lim_{i\to\infty} x_i).$$

A function *f* is **continuous** if it is continuous at every point in its domain.

Derivatives

The function $f : \mathbb{R}^n \to \mathbb{R}^m$ is **differentiable** at $x \in int dom f$ if there exists a matrix $Df(x) \in \mathbb{R}^{m \times n}$ that satisfies

$$\lim_{z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|}{\|z - x\|} = 0,$$

with $z \in dom f \setminus \{x\}$. Df(x) is called the **derivative** of f at x. The function f is differentiable if dom f is open, and it is differentiable at every point in its domain.

The derivative can be found from partial derivatives:

$$Df(x)_{ij}=rac{\partial f_i(x)}{\partial x_j},$$

for all $i = 1, \cdots, m$, and $j = 1, \cdots, n$.

Gradient

The gradient of the function $f : \mathbb{R}^n \to \mathbb{R}$ is

$$\nabla f(x) = Df(x)^T,$$

which is a (column) vector in \mathbb{R}^n . Its components are the partial derivatives of f:

$$abla f(x)_i = \frac{\partial f(x)}{\partial x_j}, \qquad i = 1, \cdots, n.$$

The first-order approximation of f at $x \in int dom f$ is

$$f(x) + \nabla f(x)^T(z-x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Chain rule

Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in int \ dom \ f$, and $g : \mathbb{R}^m \to \mathbb{R}^p$ are differentiable at $f(x) \in int \ dom \ g$. Define the composition $h : \mathbb{R}^n \to \mathbb{R}^p$ by h(x) = g(f(x)). Then h is differentiable at x, with derivative

$$Dh(x) = Dg(f(x)) Df(x).$$

Examples:

Second derivative

The second derivative or Hessian matrix of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in int \ dom \ f$, denoted $\nabla^2 f(x)$, is given by

$$abla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \cdots, n, \ j = 1, \cdots, n,$$

provided f is twice differentiable at x.

The second-order approximation of f, at or near x, is:

$$\hat{f}(z) = f(x) + \nabla f(x)^T (z-x) + \frac{1}{2} (z-x)^T \nabla^2 f(x) (z-x).$$

Chain rule for second derivative

Some special cases:

• $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$:

$$\nabla^2(g \circ f)(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T$$

• h(x) = f(Ax + b), where $A \in \mathbb{R}^{n \times m}$ and $g : \mathbb{R}^m \to \mathbb{R}$:

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Matrix calculus

Suppose $A \in \mathbb{R}^{n \times n}$. adj(A) denotes the adjugate of A, the transpose of the cofactor matrix of A. The derivative of det(A),

$$\frac{\mathrm{d}\,\mathsf{det}(\mathsf{A})}{\mathrm{d}\alpha} = \mathsf{tr}\left(\mathsf{adj}(\mathsf{A})\frac{\mathrm{d}\mathsf{A}}{\mathrm{d}\alpha}\right).$$

If A is invertible,

$$\frac{\mathrm{d}\,\mathsf{det}(\mathsf{A})}{\mathrm{d}\alpha} = \mathsf{det}(\mathsf{A})\,\mathsf{tr}\left(\mathsf{A}^{-1}\frac{\mathrm{d}\mathsf{A}}{\mathrm{d}\alpha}\right).$$

In particular,

$$\begin{split} & \frac{\partial \det(\mathsf{A})}{\partial \mathsf{A}_{ij}} = \mathsf{adj}(\mathsf{A})_{ji} = \mathsf{det}(\mathsf{A})(\mathsf{A}^{-1})_{ji} \\ & \frac{\partial \log \det(\mathsf{A})}{\partial \mathsf{A}_{ij}} = (\mathsf{A}^{-1})_{ji} \end{split}$$

Derivative of det(A)

Proof.

Denote C the cofactor matrix of A. $det(A) = \sum_{k} A_{ik} C_{ik}$.

$$\frac{\mathrm{d}\operatorname{det}(\mathsf{A})}{\mathrm{d}\alpha} = \sum_{i} \sum_{j} \frac{\partial \operatorname{det}(\mathsf{A})}{\partial \mathsf{A}_{ij}} \frac{\mathrm{d}\mathsf{A}_{ij}}{\mathrm{d}\alpha}$$
$$= \sum_{i} \sum_{j} \frac{\partial}{\partial \mathsf{A}_{ij}} \sum_{k} \mathsf{A}_{ik} C_{ik} \frac{\mathrm{d}\mathsf{A}_{ij}}{\mathrm{d}\alpha}$$
$$= \sum_{i} \sum_{j} C_{ij} \frac{\mathrm{d}\mathsf{A}_{ij}}{\mathrm{d}\alpha}$$
$$= \operatorname{tr}\left(\operatorname{adj}(\mathsf{A}) \frac{\mathrm{d}\mathsf{A}}{\mathrm{d}\alpha}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: the gradient of the log det function

Consider the function $f : S_{++}^n \to \mathbb{R}$, given by $f(X) = \log \det X$. The first-order approximation of f is

$$\log \det(X + \Delta X) = \log \det(X) + tr(X^{-1}\Delta X),$$

which implies that

$$abla f(\mathsf{X}) = \mathsf{X}^{-1}.$$

Example: the gradient of the log det function II

The result can be proved using the formula on the derivative of det(X) function. But here we use a different technique based on the first-order approximation.

$$\begin{split} \log \det(X + \Delta X) &= \log \det \left(X^{1/2} (I + X^{-1/2} \Delta X X^{-1/2}) X^{1/2} \right) \\ &= \log \det X + \log \det (I + X^{-1/2} \Delta X X^{-1/2}) \\ &= \log \det X + \sum_i \log(1 + \lambda_i) \\ &\approx \log \det X + \sum_i \lambda_i \\ &= \log \det X + \operatorname{tr}(X^{-1/2} \Delta X X^{-1/2}) \\ &= \log \det X + \operatorname{tr}(X^{-1/2} \Delta X X^{-1/2}) \end{split}$$

where λ_i is the *i*th eigenvalue of $X^{-1/2}\Delta X X^{-1/2}$.