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Course information
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Mathematical optimization

Mathematical optimization problem:

minimize f0(x)

subject to fi (x) ≤ bi , i = 1, ⋅ ⋅ ⋅ ,m

where

▶ x = (x1, ⋅ ⋅ ⋅ , xn) ∈ ℝn: optimization variables

▶ f0 : ℝn → ℝ: objective function

▶ fi : ℝn → ℝ: constraint function

Optimal solution x∗ has smallest value of f0 among all vectors
that satisfy the constraints.



Examples

▶ transportation - product transportation plan

▶ finance - portfolio management

▶ machine learning - support vector machines, graphical model
structure learning



Transportation problem
We have a product that can be produced in amounts ai at location
i with i = 1, ⋅ ⋅ ⋅ ,m. The product must be shipped to n
destinations, in quantities bj to destination j with j = 1, ⋅ ⋅ ⋅ , n.
The amount shipped from origin i to destination j is xij , at a cost
of cij per unit.

To find the transportation plan that minimizes the total cost, we
solve an LP:

min
m∑
i=1

n∑
j=1

xijcij

s. t.
n∑

j=1

xij = ai i = 1, ⋅ ⋅ ⋅ ,m

m∑
i=1

xij = bj j = 1, ⋅ ⋅ ⋅ , n

xij ≥ 0
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Markowitz portfolio optimization

Consider a simple portfolio selection problem with n stocks held
over a period of time:

▶ x = (x1, ⋅ ⋅ ⋅ , xn): the optimization variable with xi denoting
the amount to invest in stock i

▶ p = (p1, ⋅ ⋅ ⋅ , pn): a random vector with pi denoting the
reward from stock i . Suppose its mean � and covariance
matrix Σ are known.

▶ r = pTx: the overall return on the portfolio. r is a random
variable with mean �Tx and variance xTΣx .



Markowitz portfolio optimization

The Markowitz portfolio optimization problem is the QP

min xTΣx

s. t. �Tx ≥ rmin

1T x = B

xi ≥ 0, i = 1, ⋅ ⋅ ⋅ , n

which find the portfolio that minimizes the return variance subject
to three constraints:

▶ achieving a minimum acceptable mean return rmin

▶ satisfying the total budget B

▶ no short positions (xi ≥ 0)



Support vector machines (SVMs)

Input: a set of training data,

D = {(xi , yi ) ∣ xi ∈ ℝp, yi ∈ {−1, 1}, i = 1, ⋅ ⋅ ⋅ , n}

where yi is either 1 or −1, indicating the class to which xi belongs.

Problem: find the optimal separating hyperplane that separates
the two classes and maximizes the distance to the closet point
from either class.



Support vector machines (SVMs) 2

Define a hyperplane by wT x − b = 0. Suppose the training data
are linearly separably. So we can find w and b such that
wT xi − b ≥ 1 for all xi from class 1 and wT xi − b ≤ −1 for all xi
from class −1.

The distance between the two parallel hyperplans, wT xi − b = 1
and wT xi − b = −1, is 2

∥w∥ , called margin.

To find the optimal separating hyperplane, we choose w and b
that maximize the margin:

min ∥w∥2

s. t. yi (wT xi − b) ≥ 1, i = 1, ⋅ ⋅ ⋅ , n



Undirected graphical models

Input: a set of training data,

D = {(xi ) ∣ xi ∈ ℝp i = 1, ⋅ ⋅ ⋅ , n}

Assume the data were sampled from a Gaussian graphical model
with mean � ∈ ℝp and covariance matrix Σ ∈ ℝp×p. The inverse
covariance matrix, Σ−1, encodes the structure of the graphical
model in the sense that the variables i and j are connected only if
the (i , j)-entry of Σ−1 is nonzero.

Problem: Find the maximum likelihood estimation of Σ−1 with a
sparsity constraint, ∥Σ−1∥1 ≤ �.



Undirected graphical models 2

Let S be the empirical covariance matrix:

S :=
1

n

n∑
k=1

(xi − �)(xi − �)T .

Denote Θ = Σ−1.

The convex optimization problem:

min − log det Θ + tr(SΘ)

s. t. ∥Θ∥1 ≤ �
Θ ≻ 0



Solving optimization problems

The optimization problem is in general difficult to solve: taking
very long long time, or not always finding the solution

Exceptions: certain classes of problems can be solved efficiently:

▶ least-square problems

▶ linear programming problems

▶ convex optimization problems



Least-squares

minimize ∥Ax − b∥22
where x ∈ ℝn, b ∈ ℝk and A ∈ ℝk×n.

▶ analytical solution: x∗ = (ATA)−1ATb (assuming k > n and
rank A = n)

▶ reliable and efficient algorithms available

▶ computational time proportional to n2k, and can be further
reduced if A has some special structure



Linear programming

min cT x

s.t. aTi x ≤ bi , i = 1, ⋅ ⋅ ⋅ ,m

where the optimization variable x ∈ ℝn, and c , ai , bi ∈ ℝn are
parameters.

▶ no analytical formula for solution

▶ reliable and efficient algorithms available (e.g., Dantzig’s
simplex method, interior-point method)

▶ computational time proportional to n2m if m ≤ n
(interior-point method); less with structure



Linear programming: example
The Chebyshev approximation problem:

minimize ∥Ax − b∥∞

with x ∈ ℝn, b ∈ ℝk and A ∈ ℝk×n. The problem is similar to the
least-square problem, but with the ℓ∞-norm replacing the ℓ2-norm:

∥Ax − b∥∞ = max
i=1,⋅⋅⋅ ,k

∣aTi x − bi ∣

where ai ∈ Rn is the ith column of AT .

An equivalent linear programming:

min t

s.t. aTi x − t ≤ bi , i = 1, ⋅ ⋅ ⋅ , k
− aTi x − t ≤ −bi , i = 1, ⋅ ⋅ ⋅ , k
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Convex optimization problems

minimize f0(x)

subject to fi (x) ≤ bi , i = 1, ⋅ ⋅ ⋅ ,m

where x ∈ ℝn.

▶ both objective and constraint functions are convex

f (�x + (1− �)y) ≤ �f (x) + (1− �)f (y)

for any 0 ≤ � ≤ 1, and any x and y in the domain of f0 and fi
for all i .

▶ includes least-square and linear programming problems as
special cases.

▶ no analytical formula for solution

▶ reliable and efficient algorithms available



Topics to be covered

▶ Convex sets and convex functions

▶ Duality

▶ Unconstrained optimization

▶ Equality constrained optimization

▶ Interior-point methods

▶ Semidefinite programming



Brief history of optimization

▶ 1700s: theory for unconstrained optimization (Fermat,
Newton, Euler)

▶ 1797: theory for equality constrained optimization (Lagrange)

▶ 1947: simplex method for linear programming (Dantzig)

▶ 1960s: early interior-point methods (Fiacco, McCormick,
Dikin, etc)

▶ 1970s: ellipsoid method and other subgradient methods

▶ 1980s: polynomial-time interior-point methods for linear
programming (Karmarkar)

▶ 1990s: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterorv & Nemirovski)

▶ 1990-now: many new applications in engineering (control,
signal processing, communications, etc); new problem classes
(semidefinite and second-order cone programming, robust
optimization, convex relaxation, etc)



Convex set

Definition
A set C is called convex if

x, y ∈ C =⇒ �x + (1− �)y ∈ C ∀� ∈ [0, 1]

In other words, a set C is convex if the line segment between any
two points in C lies in C .



Convex combination

Definition
A convex combination of the points x1, ⋅ ⋅ ⋅ , xk is a point of the
form

�1x1 + ⋅ ⋅ ⋅+ �kxk ,

where �1 + ⋅ ⋅ ⋅+ �k = 1 and �i ≥ 0 for all i = 1, ⋅ ⋅ ⋅ , k.

A set is convex if and only if it contains every convex combinations
of the its points.



Convex hull

Definition
The convex hull of a set C , denoted conv C, is the set of all
convex combinations of points in C :

conv C =

{
k∑

i=1

�ixi ∣ xi ∈ C , �i ≥ 0, i = 1, ⋅ ⋅ ⋅ , k ,
k∑

i=1

�k = 1

}

Properties:

▶ A convex hull is always convex

▶ conv C is the smallest convex set that contains C , i.e.,
B ⊇ C is convex =⇒ conv C ⊆ B



Convex cone

A set C is called a cone if x ∈ C =⇒ �x ∈ C , ∀� ≥ 0.

A set C is a convex cone if it is convex and a cone, i.e.,

x1, x2 ∈ C =⇒ �1x1 + �2x2 ∈ C , ∀�1, �2 ≥ 0

The point
∑k

i=1 �ixi , where �i ≥ 0,∀i = 1, ⋅ ⋅ ⋅ , k , is called a conic
combination of x1, ⋅ ⋅ ⋅ , xk .

The conic hull of a set C is the set of all conic combinations of
points in C .



Hyperplanes and halfspaces

A hyperplane is a set of the form {x ∈ ℝn ∣ aTx = b} where
a ∕= 0, b ∈ ℝ.

A (closed) halfspace is a set of the form {x ∈ ℝn ∣ aTx ≤ b}
where a ∕= 0, b ∈ ℝ.

▶ a is the normal vector

▶ hyperplanes and halfspaces are convex



Euclidean balls and ellipsoids

Euclidean ball in Rn with center xc and radius r :

B(xc , r) = {x ∣ ∥x − xc∥2 ≤ r} = {xc + ru ∣ ∥u∥2 ≤ 1}

ellipsoid in Rn with center xc :

ℰ =
{

x ∣ (x − xc)TP−1(x − xc) ≤ 1
}

where P ∈ Sn
++ (i.e., symmetric and positive definite)

▶ the lengths of the semi-axes of ℰ are given by
√
�i , where �i

are the eigenvalues of P.

▶ An alternative representation of an ellipsoid: with A = P1/2

ℰ = {xc + Au ∣ ∥u∥2 ≤ 1}

Euclidean balls and ellipsoids are convex.
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Norms

A function f : Rn → R is called a norm, denoted ∥x∥, if

▶ nonegative: f (x) ≥ 0, for all x ∈ Rn

▶ definite: f (x) = 0 only if x = 0

▶ homogeneous: f (tx) = ∣t∣f (x), for all x ∈ Rn and t ∈ R

▶ satisfies the triangle inequality: f (x + y) ≤ f (x) + f (y)

notation: ∥ ⋅ ∥ denotes a general norm; ∥ ⋅ ∥symb denotes a specific
norm

Distance: dist(x , y) = ∥x − y∥ between x , y ∈ Rn.



Examples of norms

▶ ℓp-norm on Rn: ∥x∥p = (∣x1∣p + ⋅ ⋅ ⋅+ ∣xn∣p)1/p

▶ ℓ1-norm: ∥x∥1 =
∑

i ∣xi ∣
▶ ℓ∞-norm: ∥x∥∞ = maxi ∣xi ∣

▶ Quadratic norms: For P ∈ Sn
++, define the P-quadratic norm

as
∥x∥P = (xTPx)1/2 = ∥P1/2x∥2



Equivalence of norms

Let ∥ ⋅ ∥a and ∥ ⋅ ∥b be norms on Rn. Then ∃�, � > 0 such that
∀x ∈ Rn,

�∥x∥a ≤ ∥x∥b ≤ �∥x∥a.

Norms on any finite-dimensional vector space are equivalent
(define the same set of open subsets, the same set of convergent
sequences, etc.)



Norm balls and norm cones

norm ball with center xc and radius r : {x ∣ ∥x − xc∥ ≤ r}

norm cone: C = {(x , t) ∣ ∥x∥ ≤ t} ⊆ ℝn+1

▶ the second-order cone is the norm cone for the Euclidean norm

norm balls and cones are convex



Polyhedra

A polyhedron is defined as the solution set of a finite number of
linear equalities and inequalities:

P = {x ∣ Ax ⪯ b,Cx = d}

where A ∈ ℝm×n, A ∈ ℝp×n, and ⪯ denotes vector inequality or
componentwise inequality.

A polyhedron is the intersection of finite number of halfspaces and
hyperplanes.



Simplexes

The simplex determined by k + 1 affinely independent points
v0, ⋅ ⋅ ⋅ , vk ∈ ℝn is

C = conv{v0, ⋅ ⋅ ⋅ , vk} =
{
�0v0 + ⋅ ⋅ ⋅+ �kvk ∣ � ર 0, 1T � = 1

}
The affine dimension of this simplex is k , so it is often called
k-dimensional simplex in ℝn.

Some common simplexes: let e1, ⋅ ⋅ ⋅ , en be the unit vectors in Rn.

▶ unit simplex: conv{0, e1, ⋅ ⋅ ⋅ , en} = {x ∣x ર 0, 1T � ≤ 1}
▶ probability simplex: conv{e1, ⋅ ⋅ ⋅ , en} = {x ∣x ર 0, 1T � = 1}



Positive semidefinite cone

notation:

▶ Sn: the set of symmetric n × n matrices

▶ Sn
+ = {X ∈ Sn ∣ X ર 0}: symmetric positive semidefinite

matrices

▶ Sn
++ = {X ∈ Sn ∣ X ≻ 0} symmetric positive definite matrices

Sn
+ is a convex cone, called positive semidefinte cone. Sn

++

comprise the cone interior; all singular positive semidefinite
matrices reside on the cone boundary.

Example:

X =

[
x y
y z

]
∈ S2

+ ⇐⇒ x ≥ 0, z ≥ 0, xz ≥ y2



Operations that preserve complexity

▶ intersection

▶ affine function

▶ perspective function

▶ linear-fractional functions



▶



Inner product, Euclidean norm

▶ Standard inner product on Rn: ⟨x , y⟩ = xT y =
∑

i xiyi
▶ Euclidean norm (ℓ2 norm): ∥x∥2 = ⟨x , x⟩1/2

▶ Cauchy-Schwartz inequality: ⟨x , y⟩ ≤ ∥x∥2 ∥y∥2
▶ Standard inner product on Rm×n:

⟨X ,Y ⟩ = tr(XTY ) =
m∑
i=1

n∑
j=1

XijYij

▶ Frobenius norm: ∥X∥F = ⟨X ,X ⟩1/2



Norms and distance

▶ A function f : Rn → R with dom f = Rn is called a norm,
written as f (x) = ∥x∥, if

▶ f (x) ≥ 0, for all x ∈ Rn

▶ f (x) = 0 only if x = 0
▶ f (tx) = ∣t∣f (x), for all x ∈ Rn and t ∈ R
▶ f (x + y) ≤ f (x) + f (y)

▶ Distance: dist(x , y) = ∥x − y∥ between x , y ∈ Rn.
▶ Unit ball: B = {x ∈ Rn∣∥x∥ ≤ 1}

▶ B is convex
▶ B is closed, bounded, and has nonempty interior
▶ B is symmetric about the origin, i.e., x ∈ B iff −x ∈ B.



Examples of norms
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Equivalence of norms

Let ∥ ⋅ ∥a and ∥ ⋅ ∥b be norms on Rn. Then ∃�, � > 0 such that
∀x ∈ Rn,

�∥x∥a ≤ ∥x∥b ≤ �∥x∥a.

In fact, norms on any finite-dimensional vector space are equivalent
(define the same set of open subsets, the same set of convergent
sequences, etc.)

▶ Let ∥ ⋅ ∥ be a norm on Rn. Then ∃ a quadratic norm ∥ ⋅ ∥P
such that ∀x ∈ Rn,

∥x∥P ≤ ∥x∥ ≤
√

n∥x∥P



“Minimum Norms” Lemma

Lemma
Suppose X is an n-dimensional normed vector space over ℝ or (ℂ)
with basis {x1, ⋅ ⋅ ⋅ , xn}. There exists a c > 0 such that

∥�1x1 + ⋅ ⋅ ⋅+ �nxn∥ ≥ c(∣�1∣+ ⋅ ⋅ ⋅+ ∣�n∣)

for any selection of �1, ⋅ ⋅ ⋅ , �n in the field.



Operator norms
Let ∥ ⋅ ∥a and ∥ ⋅ ∥b be norms on Rm and Rn, respectively. The
operator norm of X ∈ Rm×n, induced by ∥ ⋅ ∥a and ∥ ⋅ ∥b, is defined
to be

∥X∥a,b = sup {∥Xu∥a ∣ ∥u∥b ≤ 1}

▶ Spectral norm (ℓ2-norm):

∥X∥2 = ∥X∥2,2 = �max(X ) = (�max(XTX ))1/2

▶ Max-row-sum norm:

∥X∥∞ = ∥X∥∞,∞ = max
i=1,⋅⋅⋅ ,m

n∑
j=1

∣Xij ∣

▶ Max-column-sum norm:

∥X∥1 = ∥X∥1,1 = max
j=1,⋅⋅⋅ ,n

m∑
i=1

∣Xij ∣



Dual norm

Let ∥ ⋅ ∥ be a norm on Rn. The associated dual norm, denoted
∥ ⋅ ∥∗, is defined as

∥z∥∗ = sup {zT x ∣ ∥x∥ ≤ 1}.

▶ zT x ≤ ∥x∥ ∥z∥∗ for all x , z ∈ Rn

▶ ∥x∥∗∗ = ∥x∥ for all x ∈ Rn

▶ The dual of the Euclidean norm is the Euclidean norm

▶ The dual of the ℓ∞ norm is the ℓ1 norm

▶ The dual of the ℓp-norm is the ℓq-norm, where 1/p + 1/q = 1

▶ The dual of the ℓ2-norm on Rm×n is the nuclear norm,

∥Z∥2∗ = sup {tr(ZTX ) ∣ ∥X∥2 ≤ 1}
= �1(Z ) + ⋅ ⋅ ⋅+ �r (Z ) = tr(ZTZ )1/2,

where r = rank Z .



Continuity

A function f : ℝn → ℝm is continuous at x ∈ dom f if
∀� > 0 ∃ � > 0 such that

∥y − x∥ < � =⇒ ∥f (y)− f (x)∥ < �.

Continuity can also be described in terms of limits: whenever the
sequence (xi ) converges to a point x ∈ dom f , the sequence
(f (xi )) converges to f (x),

lim
i→∞

f (xi ) = f ( lim
i→∞

xi ).

A function f is continuous if it is continuous at every point in its
domain.



Derivatives

The function f : ℝn → ℝm is differentiable at x ∈ int dom f if
there exists a matrix Df (x) ∈ ℝm×n that satisfies

lim
z→x

∥f (z)− f (x)− Df (x)(z − x)∥
∥z − x∥

= 0,

with z ∈ dom f ∖{x}. Df (x) is called the derivative of f at x .
The function f is differentiable if dom f is open, and it is
differentiable at every point in its domain.

The derivative can be found from partial derivatives:

Df (x)ij =
∂fi (x)

∂xj
,

for all i = 1, ⋅ ⋅ ⋅ ,m, and j = 1, ⋅ ⋅ ⋅ , n.



Gradient

The gradient of the function f : ℝn → ℝ is

∇f (x) = Df (x)T ,

which is a (column) vector in ℝn. Its components are the partial
derivatives of f :

∇f (x)i =
∂f (x)

∂xj
, i = 1, ⋅ ⋅ ⋅ , n.

The first-order approximation of f at x ∈ int dom f is

f (x) +∇f (x)T (z − x).



Chain rule

Suppose f : ℝn → ℝm is differentiable at x ∈ int dom f , and
g : ℝm → ℝp are differentiable at f (x) ∈ int dom g . Define the
composition h : ℝn → ℝp by h(x) = g(f (x)). Then h is
differentiable at x , with derivative

Dh(x) = Dg(f (x)) Df (x).

Examples:

▶ f : ℝn → ℝ and g : ℝ→ ℝ:

∇(g ∘ f )(x) = g ′(f (x))∇f (x)

▶ h(x) = f (Ax + b), where A ∈ ℝn×m and g : ℝm → ℝ:

∇h(x) = AT∇f (Ax + b)



Second derivative

The second derivative or Hessian matrix of f : ℝn → ℝ at
x ∈ int dom f , denoted ∇2f (x), is given by

∇2f (x)ij =
∂2f (x)

∂xi∂xj
, i = 1, ⋅ ⋅ ⋅ , n, j = 1, ⋅ ⋅ ⋅ , n,

provided f is twice differentiable at x .

The second-order approximation of f , at or near x , is:

f̂ (z) = f (x) +∇f (x)T (z − x) +
1

2
(z − x)T∇2f (x)(z − x).



Chain rule for second derivative

Some special cases:

▶ f : ℝn → ℝ and g : ℝ→ ℝ:

∇2(g ∘ f )(x) = g ′(f (x))∇2f (x) + g ′′(f (x))∇f (x)∇f (x)T

▶ h(x) = f (Ax + b), where A ∈ ℝn×m and g : ℝm → ℝ:

∇2h(x) = AT∇2f (Ax + b)A



Matrix calculus

Suppose A ∈ ℝn×n. adj(A) denotes the adjugate of A, the
transpose of the cofactor matrix of A. The derivative of det(A),

d det(A)

d�
= tr

(
adj(A)

dA

d�

)
.

If A is invertible,

d det(A)

d�
= det(A) tr

(
A−1

dA

d�

)
.

In particular,

∂ det(A)

∂Aij
= adj(A)ji = det(A)(A−1)ji

∂ log det(A)

∂Aij
= (A−1)ji



Derivative of det(A)

Proof.
Denote C the cofactor matrix of A. det(A) =

∑
k AikCik .

d det(A)

d�
=
∑
i

∑
j

∂ det(A)

∂Aij

dAij

d�

=
∑
i

∑
j

∂

∂Aij

∑
k

AikCik
dAij

d�

=
∑
i

∑
j

Cij
dAij

d�

= tr

(
adj(A)

dA

d�

)
.



Example: the gradient of the log det function

Consider the function f : Sn
++ → ℝ, given by f (X) = log det X.

The first-order approximation of f is

log det(X + ΔX) = log det(X) + tr(X−1ΔX),

which implies that
∇f (X) = X−1.



Example: the gradient of the log det function II

The result can be proved using the formula on the derivative of
det(X ) function. But here we use a different technique based on
the first-order approximation.

log det(X + ΔX ) = log det
(

X 1/2(I + X−1/2ΔXX−1/2)X 1/2
)

= log det X + log det(I + X−1/2ΔXX−1/2)

= log det X +
∑
i

log(1 + �i )

≈ log det X +
∑
i

�i

= log det X + tr(X−1/2ΔXX−1/2)

= log det X + tr(X−1ΔX ),

where �i is the ith eigenvalue of X−1/2ΔXX−1/2.
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