CS295: Convex Optimization

Xiaohui Xie
Department of Computer Science

University of California, Irvine

Course information

- Prerequisites: multivariate calculus and linear algebra
- Textbook: Convex Optimization by Boyd and Vandenberghe
- Course website:
http://eee.uci.edu/wiki/index.php/CS_295_Convex_Optimization_(Winter_2011)
- Grading based on:
- final exam (50\%)
- final project (50\%)

Mathematical optimization

Mathematical optimization problem:

$$
\begin{aligned}
& \operatorname{minimize} \quad f_{0}(\mathbf{x}) \\
& \text { subject to } f_{i}(\mathbf{x}) \leq \mathbf{b}_{i}, \quad i=1, \cdots, m
\end{aligned}
$$

where

- $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$: optimization variables
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$: constraint function

Optimal solution \mathbf{x}^{*} has smallest value of f_{0} among all vectors that satisfy the constraints.

Examples

- transportation - product transportation plan
- finance - portfolio management
- machine learning - support vector machines, graphical model structure learning

Transportation problem

We have a product that can be produced in amounts a_{i} at location i with $i=1, \cdots, m$. The product must be shipped to n destinations, in quantities b_{j} to destination j with $j=1, \cdots, n$. The amount shipped from origin i to destination j is $x_{i j}$, at a cost of $c_{i j}$ per unit.

Transportation problem

We have a product that can be produced in amounts a_{i} at location i with $i=1, \cdots, m$. The product must be shipped to n destinations, in quantities b_{j} to destination j with $j=1, \cdots, n$. The amount shipped from origin i to destination j is $x_{i j}$, at a cost of $c_{i j}$ per unit.

To find the transportation plan that minimizes the total cost, we solve an LP:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} c_{i j} \\
\text { s.t. } & \sum_{j=1}^{n} x_{i j}=a_{i} \quad i=1, \cdots, m \\
& \sum_{i=1}^{m} x_{i j}=b_{j} \quad j=1, \cdots, n \\
& x_{i j} \geq 0
\end{array}
$$

Markowitz portfolio optimization

Consider a simple portfolio selection problem with n stocks held over a period of time:

- $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)$: the optimization variable with x_{i} denoting the amount to invest in stock i
- $\mathbf{p}=\left(p_{1}, \cdots, p_{n}\right)$: a random vector with p_{i} denoting the reward from stock i. Suppose its mean μ and covariance matrix Σ are known.
- $r=\mathbf{p}^{T} \mathbf{x}$: the overall return on the portfolio. r is a random variable with mean $\mu^{T} \mathbf{x}$ and variance $x^{T} \Sigma x$.

Markowitz portfolio optimization

The Markowitz portfolio optimization problem is the QP

$$
\begin{array}{ll}
\min & x^{T} \Sigma \mathbf{x} \\
\text { s.t. } & \mu^{T} \mathbf{x} \geq r_{\min } \\
& 1^{T} x=B \\
& x_{i} \geq 0, \quad i=1, \cdots, n
\end{array}
$$

which find the portfolio that minimizes the return variance subject to three constraints:

- achieving a minimum acceptable mean return $r_{\text {min }}$
- satisfying the total budget B
- no short positions ($x_{i} \geq 0$)

Support vector machines (SVMs)

Input: a set of training data,

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid \mathbf{x}_{i} \in \mathbb{R}^{p}, y_{i} \in\{-1,1\}, i=1, \cdots, n\right\}
$$

where y_{i} is either 1 or -1 , indicating the class to which \mathbf{x}_{i} belongs.
Problem: find the optimal separating hyperplane that separates the two classes and maximizes the distance to the closet point from either class.

Support vector machines (SVMs) 2

Define a hyperplane by $w^{T} x-b=0$. Suppose the training data are linearly separably. So we can find w and b such that $w^{T} x_{i}-b \geq 1$ for all x_{i} from class 1 and $w^{T} x_{i}-b \leq-1$ for all x_{i} from class -1 .

The distance between the two parallel hyperplans, $w^{T} x_{i}-b=1$ and $w^{T} x_{i}-b=-1$, is $\frac{2}{\|w\|}$, called margin.

To find the optimal separating hyperplane, we choose w and b that maximize the margin:

$$
\begin{array}{ll}
\min & \|w\|^{2} \\
\text { s.t. } & y_{i}\left(w^{T} x_{i}-b\right) \geq 1, \quad i=1, \cdots, n
\end{array}
$$

Undirected graphical models

Input: a set of training data,

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}\right) \mid \mathbf{x}_{i} \in \mathbb{R}^{p} i=1, \cdots, n\right\}
$$

Assume the data were sampled from a Gaussian graphical model with mean $\mu \in \mathbb{R}^{p}$ and covariance matrix $\Sigma \in \mathbb{R}^{p \times p}$. The inverse covariance matrix, Σ^{-1}, encodes the structure of the graphical model in the sense that the variables i and j are connected only if the (i, j)-entry of Σ^{-1} is nonzero.

Problem: Find the maximum likelihood estimation of Σ^{-1} with a sparsity constraint, $\left\|\Sigma^{-1}\right\|_{1} \leq \lambda$.

Undirected graphical models 2

Let S be the empirical covariance matrix:

$$
S:=\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{i}-\mu\right)^{T} .
$$

Denote $\Theta=\Sigma^{-1}$.

The convex optimization problem:

$$
\begin{array}{ll}
\min & -\log \operatorname{det} \Theta+\operatorname{tr}(S \Theta) \\
\text { s. t. } & \|\Theta\|_{1} \leq \lambda \\
& \Theta \succ 0
\end{array}
$$

Solving optimization problems

The optimization problem is in general difficult to solve: taking very long long time, or not always finding the solution

Exceptions: certain classes of problems can be solved efficiently:

- least-square problems
- linear programming problems
- convex optimization problems

Least-squares

$$
\text { minimize } \quad\|A x-b\|_{2}^{2}
$$

where $x \in \mathbb{R}^{n}, b \in \mathbb{R}^{k}$ and $A \in \mathbb{R}^{k \times n}$.

- analytical solution: $x^{*}=\left(A^{T} A\right)^{-1} A^{T} b$ (assuming $k>n$ and rank $A=n$)
- reliable and efficient algorithms available
- computational time proportional to $n^{2} k$, and can be further reduced if A has some special structure

Linear programming

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i}, \quad i=1, \cdots, m
\end{array}
$$

where the optimization variable $x \in \mathbb{R}^{n}$, and $c, a_{i}, b_{i} \in \mathbb{R}^{n}$ are parameters.

- no analytical formula for solution
- reliable and efficient algorithms available (e.g., Dantzig's simplex method, interior-point method)
- computational time proportional to $n^{2} m$ if $m \leq n$ (interior-point method); less with structure

Linear programming: example

The Chebyshev approximation problem:

$$
\operatorname{minimize} \quad\|A x-b\|_{\infty}
$$

with $x \in \mathbb{R}^{n}, b \in \mathbb{R}^{k}$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞}-norm replacing the ℓ_{2}-norm:

$$
\|A x-b\|_{\infty}=\max _{i=1, \cdots, k}\left|a_{i}^{T} x-b_{i}\right|
$$

where $a_{i} \in R^{n}$ is the i th column of A^{T}.

Linear programming: example

The Chebyshev approximation problem:

$$
\operatorname{minimize} \quad\|A x-b\|_{\infty}
$$

with $x \in \mathbb{R}^{n}, b \in \mathbb{R}^{k}$ and $A \in \mathbb{R}^{k \times n}$. The problem is similar to the least-square problem, but with the ℓ_{∞}-norm replacing the ℓ_{2}-norm:

$$
\|A x-b\|_{\infty}=\max _{i=1, \cdots, k}\left|a_{i}^{T} x-b_{i}\right|
$$

where $a_{i} \in R^{n}$ is the i th column of A^{T}.
An equivalent linear programming:

$$
\begin{array}{ll}
\min & t \\
\text { s.t. } & a_{i}^{T} x-t \leq b_{i}, \quad i=1, \cdots, k \\
& -a_{i}^{T} x-t \leq-b_{i}, \quad i=1, \cdots, k
\end{array}
$$

Convex optimization problems

$$
\begin{aligned}
& \operatorname{minimize} \quad f_{0}(\mathbf{x}) \\
& \text { subject to } f_{i}(\mathbf{x}) \leq \mathbf{b}_{i}, \quad i=1, \cdots, m
\end{aligned}
$$

where $x \in \mathbb{R}^{n}$.

- both objective and constraint functions are convex

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for any $0 \leq \theta \leq 1$, and any x and y in the domain of f_{0} and f_{i} for all i.

- includes least-square and linear programming problems as special cases.
- no analytical formula for solution
- reliable and efficient algorithms available

Topics to be covered

- Convex sets and convex functions
- Duality
- Unconstrained optimization
- Equality constrained optimization
- Interior-point methods
- Semidefinite programming

Brief history of optimization

- 1700s: theory for unconstrained optimization (Fermat, Newton, Euler)
- 1797: theory for equality constrained optimization (Lagrange)
- 1947: simplex method for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco, McCormick, Dikin, etc)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar)
- 1990s: polynomial-time interior-point methods for nonlinear convex optimization (Nesterorv \& Nemirovski)
- 1990-now: many new applications in engineering (control, signal processing, communications, etc); new problem classes (semidefinite and second-order cone programming, robust optimization, convex relaxation, etc)

Convex set

Definition

A set C is called convex if

$$
\mathbf{x}, \mathbf{y} \in C \Longrightarrow \theta \mathbf{x}+(1-\theta) \mathbf{y} \in C \quad \forall \theta \in[0,1]
$$

In other words, a set C is convex if the line segment between any two points in C lies in C.

Convex combination

Definition
A convex combination of the points x_{1}, \cdots, x_{k} is a point of the form

$$
\theta_{1} x_{1}+\cdots+\theta_{k} x_{k},
$$

where $\theta_{1}+\cdots+\theta_{k}=1$ and $\theta_{i} \geq 0$ for all $i=1, \cdots, k$.
A set is convex if and only if it contains every convex combinations of the its points.

Convex hull

Definition

The convex hull of a set C, denoted conv C, is the set of all convex combinations of points in C :

$$
\operatorname{conv} C=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid x_{i} \in C, \theta_{i} \geq 0, i=1, \cdots, k, \sum_{i=1}^{k} \theta_{k}=1\right\}
$$

Properties:

- A convex hull is always convex
- conv C is the smallest convex set that contains C, i.e., $B \supseteq C$ is convex $\Longrightarrow \operatorname{conv} C \subseteq B$

Convex cone

A set C is called a cone if $x \in C \Longrightarrow \theta x \in C, \forall \theta \geq 0$.
A set C is a convex cone if it is convex and a cone, i.e.,

$$
x_{1}, x_{2} \in C \Longrightarrow \theta_{1} x_{1}+\theta_{2} x_{2} \in C, \quad \forall \theta_{1}, \theta_{2} \geq 0
$$

The point $\sum_{i=1}^{k} \theta_{i} x_{i}$, where $\theta_{i} \geq 0, \forall i=1, \cdots, k$, is called a conic combination of x_{1}, \cdots, x_{k}.

The conic hull of a set C is the set of all conic combinations of points in C.

Hyperplanes and halfspaces

A hyperplane is a set of the form $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ where $a \neq 0, b \in \mathbb{R}$.

A (closed) halfspace is a set of the form $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x} \leq b\right\}$ where $a \neq 0, b \in \mathbb{R}$.

- a is the normal vector
- hyperplanes and halfspaces are convex

Euclidean balls and ellipsoids

Euclidean ball in R^{n} with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

Euclidean balls and ellipsoids

Euclidean ball in R^{n} with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

ellipsoid in R^{n} with center x_{c} :

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

where $P \in S_{++}^{n}$ (i.e., symmetric and positive definite)

- the lengths of the semi-axes of \mathcal{E} are given by $\sqrt{\lambda_{i}}$, where λ_{i} are the eigenvalues of P.
- An alternative representation of an ellipsoid: with $A=P^{1 / 2}$

$$
\mathcal{E}=\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}
$$

Euclidean balls and ellipsoids

Euclidean ball in R^{n} with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

ellipsoid in R^{n} with center x_{c} :

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

where $P \in S_{++}^{n}$ (i.e., symmetric and positive definite)

- the lengths of the semi-axes of \mathcal{E} are given by $\sqrt{\lambda_{i}}$, where λ_{i} are the eigenvalues of P.
- An alternative representation of an ellipsoid: with $A=P^{1 / 2}$

$$
\mathcal{E}=\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}
$$

Euclidean balls and ellipsoids are convex.

Norms

A function $f: R^{n} \rightarrow R$ is called a norm, denoted $\|x\|$, if

- nonegative: $f(x) \geq 0$, for all $x \in R^{n}$
- definite: $f(x)=0$ only if $x=0$
- homogeneous: $f(t x)=|t| f(x)$, for all $x \in R^{n}$ and $t \in R$
- satisfies the triangle inequality: $f(x+y) \leq f(x)+f(y)$ notation: $\|\cdot\|$ denotes a general norm; $\|\cdot\|_{\text {symb }}$ denotes a specific norm

Distance: $\operatorname{dist}(x, y)=\|x-y\|$ between $x, y \in R^{n}$.

Examples of norms

- ℓ_{p}-norm on $R^{n}:\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$
- ℓ_{1}-norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- ℓ_{∞}-norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
- Quadratic norms: For $P \in S_{++}^{n}$, define the P-quadratic norm as

$$
\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}
$$

Equivalence of norms

Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on R^{n}. Then $\exists \alpha, \beta>0$ such that $\forall x \in R^{n}$,

$$
\alpha\|x\|_{a} \leq\|x\|_{b} \leq \beta\|x\|_{a} .
$$

Norms on any finite-dimensional vector space are equivalent (define the same set of open subsets, the same set of convergent sequences, etc.)

Norm balls and norm cones

norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $C=\{(x, t) \mid\|x\| \leq t\} \subseteq \mathbb{R}^{n+1}$

- the second-order cone is the norm cone for the Euclidean norm
norm balls and cones are convex

Polyhedra

A polyhedron is defined as the solution set of a finite number of linear equalities and inequalities:

$$
\mathcal{P}=\{x \mid A x \preceq b, C x=d\}
$$

where $A \in \mathbb{R}^{m \times n}, A \in \mathbb{R}^{p \times n}$, and \preceq denotes vector inequality or componentwise inequality.

A polyhedron is the intersection of finite number of halfspaces and hyperplanes.

Simplexes

The simplex determined by $k+1$ affinely independent points $v_{0}, \cdots, v_{k} \in \mathbb{R}^{n}$ is

$$
C=\operatorname{conv}\left\{v_{0}, \cdots, v_{k}\right\}=\left\{\theta_{0} v_{0}+\cdots+\theta_{k} v_{k} \mid \theta \succeq 0, \mathbf{1}^{T} \theta=1\right\}
$$

The affine dimension of this simplex is k, so it is often called k-dimensional simplex in \mathbb{R}^{n}.

Some common simplexes: let e_{1}, \cdots, e_{n} be the unit vectors in R^{n}.

- unit simplex: $\boldsymbol{\operatorname { c o n v }}\left\{0, e_{1}, \cdots, e_{n}\right\}=\left\{x \mid x \succeq 0, \mathbf{1}^{T} \theta \leq 1\right\}$
- probability simplex: $\operatorname{conv}\left\{e_{1}, \cdots, e_{n}\right\}=\left\{x \mid x \succeq 0, \mathbf{1}^{T} \theta=1\right\}$

Positive semidefinite cone

notation:

- S^{n} : the set of symmetric $n \times n$ matrices
- $S_{+}^{n}=\left\{X \in S^{n} \mid X \succeq 0\right\}$: symmetric positive semidefinite matrices
- $S_{++}^{n}=\left\{X \in S^{n} \mid X \succ 0\right\}$ symmetric positive definite matrices
S_{+}^{n} is a convex cone, called positive semidefinte cone. S_{++}^{n} comprise the cone interior; all singular positive semidefinite matrices reside on the cone boundary.

Example:

$$
X=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \in S_{+}^{2} \Longleftrightarrow x \geq 0, z \geq 0, x z \geq y^{2}
$$

Operations that preserve complexity

- intersection
- affine function
- perspective function
- linear-fractional functions
$-$

Inner product, Euclidean norm

- Standard inner product on $R^{n}:\langle x, y\rangle=x^{T} y=\sum_{i} x_{i} y_{i}$
- Euclidean norm (ℓ_{2} norm): $\|x\|_{2}=\langle x, x\rangle^{1 / 2}$
- Cauchy-Schwartz inequality: $\langle x, y\rangle \leq\|x\|_{2}\|y\|_{2}$
- Standard inner product on $R^{m \times n}$:

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}
$$

- Frobenius norm: $\|X\|_{F}=\langle X, X\rangle^{1 / 2}$

Norms and distance

- A function $f: R^{n} \rightarrow R$ with dom $f=R^{n}$ is called a norm, written as $f(x)=\|x\|$, if
- $f(x) \geq 0$, for all $x \in R^{n}$
- $f(x)=0$ only if $x=0$
- $f(t x)=|t| f(x)$, for all $x \in R^{n}$ and $t \in R$
- $f(x+y) \leq f(x)+f(y)$
- Distance: $\operatorname{dist}(x, y)=\|x-y\|$ between $x, y \in R^{n}$.
- Unit ball: $B=\left\{x \in R^{n} \mid\|x\| \leq 1\right\}$
- B is convex
- B is closed, bounded, and has nonempty interior
- B is symmetric about the origin, i.e., $x \in B$ iff $-x \in B$.

Examples of norms

- ℓ_{p}-norm on $R^{n}:\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$
- ℓ_{1}-norm: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
- ℓ_{∞}-norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$
- Quadratic norms: For $P \in S_{++}^{n}$, define the P-quadratic norm as

$$
\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}
$$

Equivalence of norms

Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on R^{n}. Then $\exists \alpha, \beta>0$ such that $\forall x \in R^{n}$,

$$
\alpha\|x\|_{a} \leq\|x\|_{b} \leq \beta\|x\|_{a} .
$$

In fact, norms on any finite-dimensional vector space are equivalent (define the same set of open subsets, the same set of convergent sequences, etc.)

- Let $\|\cdot\|$ be a norm on R^{n}. Then \exists a quadratic norm $\|\cdot\|_{P}$ such that $\forall x \in R^{n}$,

$$
\|x\|_{P} \leq\|x\| \leq \sqrt{n}\|x\|_{P}
$$

"Minimum Norms" Lemma

Lemma

Suppose X is an n-dimensional normed vector space over \mathbb{R} or (\mathbb{C}) with basis $\left\{x_{1}, \cdots, x_{n}\right\}$. There exists a $c>0$ such that

$$
\left\|\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right\| \geq c\left(\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|\right)
$$

for any selection of $\alpha_{1}, \cdots, \alpha_{n}$ in the field.

Operator norms

Let $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ be norms on R^{m} and R^{n}, respectively. The operator norm of $X \in R^{m \times n}$, induced by $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, is defined to be

$$
\|X\|_{a, b}=\sup \left\{\|X u\|_{a} \mid\|u\|_{b} \leq 1\right\}
$$

- Spectral norm (ℓ_{2}-norm):

$$
\|X\|_{2}=\|X\|_{2,2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{\top} X\right)\right)^{1 / 2}
$$

- Max-row-sum norm:

$$
\|X\|_{\infty}=\|X\|_{\infty, \infty}=\max _{i=1, \cdots, m} \sum_{j=1}^{n}\left|X_{i j}\right|
$$

- Max-column-sum norm:

$$
\|X\|_{1}=\|X\|_{1,1}=\max _{j=1, \cdots, n} \sum_{i=1}^{m}\left|X_{i j}\right|
$$

Dual norm

Let $\|\cdot\|$ be a norm on R^{n}. The associated dual norm, denoted $\|\cdot\|_{*}$, is defined as

$$
\|z\|_{*}=\sup \left\{z^{T} x \mid\|x\| \leq 1\right\}
$$

- $z^{T} x \leq\|x\|\|z\|_{*}$ for all $x, z \in R^{n}$
- $\|x\|_{* *}=\|x\|$ for all $x \in R^{n}$
- The dual of the Euclidean norm is the Euclidean norm
- The dual of the ℓ_{∞} norm is the ℓ_{1} norm
- The dual of the ℓ_{p}-norm is the ℓ_{q}-norm, where $1 / p+1 / q=1$
- The dual of the ℓ_{2}-norm on $R^{m \times n}$ is the nuclear norm,

$$
\begin{aligned}
\|Z\|_{2 *} & =\sup \left\{\operatorname{tr}\left(Z^{T} X\right) \mid\|X\|_{2} \leq 1\right\} \\
& =\sigma_{1}(Z)+\cdots+\sigma_{r}(Z)=\operatorname{tr}\left(Z^{T} Z\right)^{1 / 2}
\end{aligned}
$$

where $r=\operatorname{rank} Z$.

Continuity

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $x \in \operatorname{dom} f$ if $\forall \epsilon>0 \exists \delta>0$ such that

$$
\|y-x\|<\delta \Longrightarrow\|f(y)-f(x)\|<\epsilon
$$

Continuity can also be described in terms of limits: whenever the sequence (x_{i}) converges to a point $x \in \operatorname{dom} f$, the sequence $\left(f\left(x_{i}\right)\right)$ converges to $f(x)$,

$$
\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f\left(\lim _{i \rightarrow \infty} x_{i}\right)
$$

A function f is continuous if it is continuous at every point in its domain.

Derivatives

The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $x \in \operatorname{int} \operatorname{dom} f$ if there exists a matrix $D f(x) \in \mathbb{R}^{m \times n}$ that satisfies

$$
\lim _{z \rightarrow x} \frac{\|f(z)-f(x)-D f(x)(z-x)\|}{\|z-x\|}=0
$$

with $z \in \operatorname{dom} f \backslash\{x\} . D f(x)$ is called the derivative of f at x. The function f is differentiable if $\operatorname{dom} f$ is open, and it is differentiable at every point in its domain.

The derivative can be found from partial derivatives:

$$
D f(x)_{i j}=\frac{\partial f_{i}(x)}{\partial x_{j}}
$$

for all $i=1, \cdots, m$, and $j=1, \cdots, n$.

Gradient

The gradient of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

$$
\nabla f(x)=D f(x)^{T}
$$

which is a (column) vector in \mathbb{R}^{n}. Its components are the partial derivatives of f :

$$
\nabla f(x)_{i}=\frac{\partial f(x)}{\partial x_{j}}, \quad i=1, \cdots, n
$$

The first-order approximation of f at $x \in \operatorname{int} \operatorname{dom} f$ is

$$
f(x)+\nabla f(x)^{T}(z-x)
$$

Chain rule

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $x \in \operatorname{int} \operatorname{dom} f$, and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are differentiable at $f(x) \in$ int dom g. Define the composition $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ by $h(x)=g(f(x))$. Then h is differentiable at x, with derivative

$$
D h(x)=D g(f(x)) D f(x)
$$

Examples:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}:$

$$
\nabla(g \circ f)(x)=g^{\prime}(f(x)) \nabla f(x)
$$

- $h(x)=f(A x+b)$, where $A \in \mathbb{R}^{n \times m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$:

$$
\nabla h(x)=A^{T} \nabla f(A x+b)
$$

Second derivative

The second derivative or Hessian matrix of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $x \in \operatorname{int} \operatorname{dom} f$, denoted $\nabla^{2} f(x)$, is given by

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}, \quad i=1, \cdots, n, j=1, \cdots, n
$$

provided f is twice differentiable at x.

The second-order approximation of f, at or near x, is:

$$
\hat{f}(z)=f(x)+\nabla f(x)^{T}(z-x)+\frac{1}{2}(z-x)^{T} \nabla^{2} f(x)(z-x) .
$$

Chain rule for second derivative

Some special cases:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}:$

$$
\nabla^{2}(g \circ f)(x)=g^{\prime}(f(x)) \nabla^{2} f(x)+g^{\prime \prime}(f(x)) \nabla f(x) \nabla f(x)^{T}
$$

- $h(x)=f(A x+b)$, where $A \in \mathbb{R}^{n \times m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$:

$$
\nabla^{2} h(x)=A^{T} \nabla^{2} f(A x+b) A
$$

Matrix calculus

Suppose $A \in \mathbb{R}^{n \times n} . \operatorname{adj}(A)$ denotes the adjugate of A, the transpose of the cofactor matrix of A. The derivative of $\operatorname{det}(A)$,

$$
\frac{\mathrm{d} \operatorname{det}(\mathrm{~A})}{\mathrm{d} \alpha}=\operatorname{tr}\left(\operatorname{adj}(\mathrm{A}) \frac{\mathrm{dA}}{\mathrm{~d} \alpha}\right) .
$$

If A is invertible,

$$
\frac{\mathrm{d} \operatorname{det}(\mathrm{~A})}{\mathrm{d} \alpha}=\operatorname{det}(\mathrm{A}) \operatorname{tr}\left(\mathrm{A}^{-1} \frac{\mathrm{dA}}{\mathrm{~d} \alpha}\right)
$$

In particular,

$$
\begin{aligned}
& \frac{\partial \operatorname{det}(\mathrm{A})}{\partial \mathrm{A}_{i j}}=\operatorname{adj}(\mathrm{A})_{j i}=\operatorname{det}(\mathrm{A})\left(\mathrm{A}^{-1}\right)_{j i} \\
& \frac{\partial \log \operatorname{det}(\mathrm{~A})}{\partial \mathrm{A}_{i j}}=\left(\mathrm{A}^{-1}\right)_{j i}
\end{aligned}
$$

Derivative of $\operatorname{det}(A)$

Proof.

Denote C the cofactor matrix of A. $\operatorname{det}(A)=\sum_{k} A_{i k} C_{i k}$.

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{det}(\mathrm{~A})}{\mathrm{d} \alpha} & =\sum_{i} \sum_{j} \frac{\partial \operatorname{det}(\mathrm{~A})}{\partial \mathrm{A}_{i j}} \frac{\mathrm{dA}_{i j}}{\mathrm{~d} \alpha} \\
& =\sum_{i} \sum_{j} \frac{\partial}{\partial \mathrm{~A}_{i j}} \sum_{k} \mathrm{~A}_{i k} c_{i k} \frac{\mathrm{dA}_{i j}}{\mathrm{~d} \alpha} \\
& =\sum_{i} \sum_{j} c_{i j} \frac{\mathrm{dA} i j}{\mathrm{~d} \alpha} \\
& =\operatorname{tr}\left(\operatorname{adj}(\mathrm{A}) \frac{\mathrm{dA}}{\mathrm{~d} \alpha}\right) .
\end{aligned}
$$

Example: the gradient of the log det function

Consider the function $f: S_{++}^{n} \rightarrow \mathbb{R}$, given by $f(X)=\log \operatorname{det} X$. The first-order approximation of f is

$$
\log \operatorname{det}(X+\Delta X)=\log \operatorname{det}(X)+\operatorname{tr}\left(X^{-1} \Delta X\right)
$$

which implies that

$$
\nabla f(\mathrm{X})=\mathrm{X}^{-1}
$$

Example: the gradient of the log det function II

The result can be proved using the formula on the derivative of $\operatorname{det}(X)$ function. But here we use a different technique based on the first-order approximation.

$$
\begin{aligned}
\log \operatorname{det}(X+\Delta X) & =\log \operatorname{det}\left(X^{1 / 2}\left(I+X^{-1 / 2} \Delta X X^{-1 / 2}\right) X^{1 / 2}\right) \\
& =\log \operatorname{det} X+\log \operatorname{det}\left(I+X^{-1 / 2} \Delta X X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\sum_{i} \log \left(1+\lambda_{i}\right) \\
& \approx \log \operatorname{det} X+\sum_{i} \lambda_{i} \\
& =\log \operatorname{det} X+\operatorname{tr}\left(X^{-1 / 2} \Delta X X^{-1 / 2}\right) \\
& =\log \operatorname{det} X+\operatorname{tr}\left(X^{-1} \Delta X\right)
\end{aligned}
$$

where λ_{i} is the i th eigenvalue of $X^{-1 / 2} \Delta X X^{-1 / 2}$.

