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1 Gene Regulation

Much of the study of molecular biology is concerned with the processes by
which genetic codes are transformed into living organisms. As such, the
various processes of gene regulation, transcription, and translation must for
the basis of any investigation in the field.

1.1 The Central Dogma

The most fundamental idea in molecular biology, often called the central

dogma is the two-step process which leads from DNA to protein. The idea
is that DNA is used as a template to produce RNA, via the process of
transcription, and then RNA is used to produce protein, via the process of
translation.

The central dogma has been modified over time by the discovery of an-
cillary processes and constrtucts, such as microRNA, reverse transcriptase,
and alternative splicing; nonetheless, it is still crucial to our understanding
of molecular biology.

1.2 Transcriptional Regulation

Proteins called transcription factors (TFs) bind to regions upstream of
genes, and either promote or inhibit gene transcription. Amino acids in the
TFs recognize particular patterns in the DNA, and bind to them. Then, the
presence of the protein can affect transcription. If the transcription factor’s
effect is to inhibit transcription, it may simply physically block transcription.
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If the effect is to enhance transcription, it may act to recruit the molecular
machinery necessary to begin transcription. One factor which complicates
this picture is that amino acid-DNA recognition is not straight-forward.

Three types of TFs are zinc finger, helix-turn-helix, and leucine zipper.

1.3 Regulatory Motifs

Sequence motifs are patterns of nucleotides which are common in a genome,
or appear to be evolutionarily conserved. Because of their prevalence, these
sequences are often believed to have biological significance.

In particular, regulatory motifs are patterns which are recognized, and
in some cases bound, by transcription factors, transcriptional coactivators,
and other transcriptional regulators. These patterns are not transcribed,
but are nevertheless necessary for synthesis of proteins.

Transcription factor binding sites are the particular regulatory sequences
to which transcription factors bind.

2 Regulatory Motif Discovery

Given the importance of transcriptional regulation, one natural question is,
“how can we identify regulatory motifs in sequenced genomes?” One way
to solve this problem is to collect many sequences which are upstream of
the start codons for genes, and therefore are believed to be likely places for
finding regulatory motifs, and to then attempt to find subsequences which
appear in many of these. If we can find a string which appears many more
times than random chance says it should, then we may have found a good
candidate regulatory motif.

This, then, gives us a new problem: given a set of sequences, how can
we find the subsequences which appear many times. One method is enu-

meration.

2.1 Enumeration

The idea behind enumeration is to restrict ourselves to a fixed size of po-
tential motif, and to list all of the possible motifs of that length, and simply
count the number of different sequences in which each appears.

More formally, we suppose that we have a set S of N sequences, s1, s2, . . . , sN ,
each of length l. We choose a length w < l, and create a list of M possible
motifs with length w, called m1,m2, . . . ,mM . If we consider every possible
motif with length w, then M = 4w.
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Now, for each sequence si and each motif mj we create an indicator

variable zij . Then, if mj appears as a substring inside of si we set zij to 1,
and otherwise we set it to 0. If motif mj appears more than once inside of
si, zij is still only set to 1.

Next, we associate with motif mj a summation variable kj, where kj =
∑N

i=1 zij , the total number of different sequences in which mj appears.
Now we can say that the most likely regulatory motif, m∗, is the one

with the largest summation variable, k∗. This process can be thought of as
drawing a histogram of the number of appearances of each motif, and then
ordering the motifs with the largest values in the histogram, and conjecturing
that this represents the order in which each motif is likely to be biologically
conserved.

2.2 Measuring Significance

Assuming that we have found the most likely motif, as in the above example,
can we go further to say how confident we are that this sequence is, in fact,
biologically conserved, and therefore significant? Put another way, can we
say how likely (or, hopefully, unlikely) it is that the motif m∗ would appear
in k∗ out of n sequences of length l simply by chance? If this probability
of chance is very low, then we can be confident that the motif is genuinely
interesting.

To begin with, let us ask: What is the probability that, for a given se-
quence si and motif mj, zij = 0? This is just the probability that the motif
does not appear inside the sequence. We can compute that by first com-
puting the probability that the motif does not match the first w characters
of si, and then repeat this probability as many times as there are sets of w

characters which mj could match.
The probability that mj is not matched is just one minus the probability

that it is matched, which is one over the total number of strings of length
w. That is, the probability that the first w characters are not equal to mj

is 1 −
1

4w
.

Then, since there are l−w+1 strings of length w inside a string of length
l, the probability that mj doesn’t appear inside si at all is (1− 1

4w
)l−w+1. If

l is much larger than w, and if w is large enough that 1
4w

is much less than

1, then this can be approximated by l−w+1
4w

.
Now that we have the probability that a motif of length w does not

appear inside of a given sequence of length l, we know that the probability
p that the motif is present is p = 1 − (1 −

1
4w

)l−w+1. With this, we can
also compute the probability that the motif appears in exactly k out of
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N sequences. The test “does sequence mj appear in sequence si” can be
viewed as a Bernouli trial with probability p of success, and we know that
the probability of success on k out of N Bernouli trials is governed by the
binomial distribution

p(kj = k) =

(

N

k

)

pk(1 − p)N−k

.
In order to test the significance of our motif m∗ appearing in k∗ se-

quences, we really want to evaluate the p-value of this occurance. For this,
we need the probability that m∗ appears in at least k∗ sequences. If we use
the shorthand p(k) for p(kj = k), this value is given by p(k∗) + p(k∗ + 1) +
· · · + p(N), or

N
∑

k=k∗

p(k) =
N

∑

k=k∗

(

N

k

)

pk(1 − p)N−k

.
If N becomes large, this binomial distribution is well approximated by

a Gaussian distribution with the same mean and variance as the binomial
distribution. The mean of a binomial distribution with parameters N and p

is Np, and the variance is Np(1− p). With this knowledge in hand, we can
map the value of k∗ into a new distribution, but one which is now Gaussian
with mean 0 and unit variance. We do this by computing the z-score of k∗,
given by k∗−Np

√
Np(1−p)

.

This saves us from having to compute the sum from k∗ to N , because the
process of mapping data to a Gaussian distribution with 0 mean and variance
of 1 gives a standard, well-understood way of measuring significance. The
process of integrating over this distribution has been done before, and is
available in tables of z-scores and their associated cumulative probabilities.

Therefore, once we have a z-score, we can immediately make statements
of the form “this outcome would occur purely by chance one time in X”,
and if X is large enough (or 1

X
is small enough), then we believe that having

observed this outcome is signficant. We do this by taking our z-score to a
table and looking up the value associated with our z-score in that table. In
such a table, we will find the cumulative probability of our z-score. This
number represents the probabilities of all of the more-likely events occuring,
summed together. In our case, this means the total probability of finding
fewer than k∗ copies of the motif. If this number is very high, then the
probability that we have observed k∗ copies simply by chance is very low, and
we can say with some confidence that the motif m∗ is probably biologically
significant.
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