Notes on Motif Finding via Gradient Decent, EM,
and Gibb’s Sampling

Julian E. Yarkony

Index Terms— Gibbs sampling, EM, motifs

Abstract—This is an explanation of motif finding for intro
computational biology students.

I. INTRODUCTION

HAT IS A SEQUENCE MOTIF? Motifs are specific
patterns found in the DNA. Such patterns could be a
string of 5 As followed by a C or could by an A or a T followed
by 7 Gs. Patterns can be more elaborate and have all kinds of
unique relationships within themselves. A motif should not be
thought of as having a specific length or exact pattern (though
a particular motif could have one or both of these) however it
should be though of as describing a set of related sequences.
In class we used motifs which can be described by a position
weight matrix which is described below.
A motif of length m is represented using Position weight
matrix

011 02 01
o 012 02 G2
013 0Oa3 03
014 Oo4 Owa

In the above diagram each column represents the a particular
spot in the sequence, each row an amino acid. so the value
in row i column j is the probability amino acid i will
occur in the jth spot in the sequence. Note dependencies exist
between elements of the sequence once the motif’s parameters
are known (conditionally independent given motif parameters).

II. PURPOSE

what purpose does finding them serve? Motifs can be though
of as common words in the language of the code of life (DNA).
DNA is not a random sequence nor is the conservation of
features over time in the DNA a random phenomenon. Motifs
have been conserved over evolution for a reason; for they have
biological significance.
Motifs are found all over the DNA; they exist in exons (the
sections of DNA which describe a protein/little machine that
exists inside the cell); they exist in introns which are sections
of DNA which do not describe proteins but describe other
stuff like protein regulation; some segments associated with a
particular motif provide spots for regulatory proteins to bind
to the DNA allowing them to regulate protein production.
Discovering motifs is a difficult question and a seemingly
subjective question however modern artificial intelligence and
statistical methods give great insight into determining what is
a motif and what is not.

III. POINT OF NOTE

The clustering of sequences into groups which can be
represented as a motif may seem to be a rather arbitrary
process. Who is to say in that case which features are so
important as they must be conserved in every sequence or
where there are some distinct groups inside a set weather
they need their own set. These are all good questions however
they do not save biologists from dealing with motifs simply
because of the fuzziness of their boundaries and definition.
Without the ability to generalize intelligence would be a rather
shallow shell. Labels are used all over our culture and society
to great effect in regards to making decisions. America for
example classifies its politicians into liberals moderates and
conservatives. While these definitions are not perfect (more
categories can always be created liberal/moderate, conserva-
tive/ moderate and then conservative/conservative/moderate)
depending on the precision needed generalizations are made
for a given situation. These generalizations allow for the
compaction of data and enables the citizens to make decisions.
Memory, training data and computation time are limited and
hence generalization and the reduction of complex data into
a small number of features is essential to decision making
regardless of whether humans of machines make the decision.
However when making a generalization it is essential to
make sure that the representation is a valid one (principle
component analysis is often helpful but not always sufficient) .
Experimentation, domain knowledge and mathematical theory
inform that decision.

IV. GENERAL MODELS FOR A MOTIF, AND SOME COOLER
ONES

As stated above, the motifs that we saw in class are describe
using position weight matrixes which permit descriptions of a
motif without regard to interdependencies. This is a simple yet
powerful model but in instances where dependence is crucial it
can prove insufficient. However there exist a class of graphical
models called hidden markov models. These allow for the
varying of the length of a sequence generated by the motif
and for dependencies between inputs at position x and position
x+1 (more elaborate models allow for even more powerful
and high level dependencies). Depending on the needs of the
experimenter different models and model parameters are used.

V. CLUSTERING

The fundamental idea behind the motif detection methods
is to take the set of sequences and split their subsequences
into background and one of a certain number of motifs k



where k is the number of motifs present. The problems that
are run into are the following:

1. how many clusters or motifs should be defined

2. how should different subsets be grouped into which motif
(distance metric)

3. what about points not really in either cluster

4. In the context of motifs how long and how variable should
cluster lengths be.

The problems above are of significant mathematical diffi-
culty and have many approaches to dealing with them. The
study of the over fitting, the bias variance trade off, and the
k-means algorithm provide a great deal of insight into this
problem however due to the length of time required to go
over that material I will simply refer you to the bishop book.

VI. FINDING MOTIFS VIA, GRADIENT DECENT:

Gradient decent is arguably the most important method

in machine learning and artificial intelligence. It dominates
neural networks, optimization theory, and a variety of other
crucial theories, methods, and applications in machine
learning and Al. However in motif finding, gradient decent
is a poor match given teh nature of the problem and is not
used in finding motifs in the real world. Gradient decent is
a process used to determine global and local minimum (or
maximum if desired) a function that has one of the following
properties
1. Is not of closed form that is to say one can send in an
input x and get out an output y but one can not write the
function like y=mx+b
2. Has no closed form solution and has a lot of data points
associated with it.
Gradient decent can be likened to a blind man walking down
a hill. He starts in a given position x and checks all the
spots around him then moves to the lowest of the points. He
repeats this until he can go down no more. The problem is
local minima. How does he know he has reached the true
bottom of the hill or just fallen into a small pit? Adding noise
(sometimes going in the wrong direction) and random restarts
(putting the blind man at a different part of the hill in hopes
that in the new position he will find a deeper bottom) help
this process find the true bottom called the global minima.
However this process is not guaranteed (save for infinite time)
to find the true global minima.

The reason you want the blind man to go down the
hill because the lower he goes the better position he is in (the
better parameters for your model). The reason all positions
cannot be probed is because there are too many of them
costing too much computing power, and memory and often
requires too much training data. In the context of motifs we
can imagine that we are trying to maximize the likelihood of
the observed data being generated by our model by modifying
the parameters of our model. That is to say make the motifs
that we have look like they came from the data. Gradient
Decent can be thought of as a method of directed search.

Example: Lets suppose we have a set of n sequences each
of length k. We know (determining the number of motifs is
non-trivial but just flow with me) that there is a background
model with each space independent and equally likely any
amino acid and there is a SINGLE motif of length k with
its members independent but each being weighted towards
different amino acids.

1. Create a guess distribution for each position.
2. Determine the likelihood of your model

logL(#,0°) = ilog[aP(Sﬂ@) + (1 —a)P(S;|6°)]
i=1

Adding logs is like multiplying the contents of those
logs. see my note on logs towards the bottom. So the above
statement says multiply the probabilities of each sequence
being generated where the probability of a sequence being
generated is: the probability the sequence was generated
by the motif plus the probability it was generated by the
background both multiplied by their respective probabilities .

3. If youre getting stuck at the same likelihood quit or
do a random restart of your motifs parameters.

4. Increase or decrease each position in the direction of
the gradient. That is to say adjust all the parameters a very
small bit but choosing the direction which best improves the

likelihood of the data.

0,: alogL(9,0“)|

t- 90, 0

the last statement encodes this idea mathmatically. If the

gradient is positive (updating parameters with respect
to the gradient will improve the liklihood of the model)
then update your modeol using the following formula.
GZH = 0} + n[%ﬁf’e)bt] the important thing here is
the parameter 1 which limits the amount of movement of
the parameters. The reason the gradient is not followed for
long distances is the direction of fastest decent changes. This
means that the direction which takes you down the hill fastest
is different on different parts of the hill and hence needs to
be updated frequently. Smaller 1 values mean smaller step
sizes

5. Add noise. Mess up your model a little bit this can
help get through local minima. This means simply adjust the
parameters of your model randomly. Don’t change them too
much, the degree of noising depends on the data set.

6. go back to step 2.

VII. FINDING MOTIFS VIA EXPECTATION MAXIMIZATION
OR THE EM ALGORITHM

One can imagine EM as an election. Everybody picks
the positions that they want to take. They vote to alter the
positions of both parties to a degree depending on how
much they share the current platform . Then the people who
are closest to the winning positions get more votes during
the next election and so on. That is the core of EM EM



consists of 2 steps the E step and the M step. The e step
determines the likelihood that a given sequence is a member
of each motif (or the background). The M step assumes the
membership in each motif group and than maximizes the
motifs parameters to reflect that group.

To do the E-step for a given sequence
Determine the probability that sequence Si was generated
by all the motifs. Then normalize this by dividing by the
sum of the probabilities. We divide because we know that
the sequence was generated by one motif. Do this for all
sequences. To determine the probability of a motif generating
a sequence use the following formula

L
P(sy)l0) =[] i,
i=1

this is to say multiply the likelihoods of motif m generating
each each position. This assumes independence of positions
(in math terms conditional independence of each position
given the motif or background parameters associated with a
given sequence).

Another thing to note is that the probiblity of the motif
generating the sequence must be taken into account. The
way to think about this is suppose that a sequence S has a 1
percent liklihood of being all A’s when being generated by
the background and 100 percent of being all A’s when being
generated by the motif. However suppose the motif is very
rare and generates only .0000001 percent of the sequences.
In this case it is much more likely that is S (which is all A’s)
was generated by the background than by the motif. Below
is the mathematical description

On this step algorithm calculates posterior distribution
q(z;) which is the probability a given sequence was generated
by each model.

q(z)" " ~ {

z refers to whether the sequence was generated by the motif
or not (1 being generated by the motif.

S refers to a reference sequence

theta 1 refers to the parameters of the motif and theta 0 the
parameters of the background

P(z; = 1)P(S;6")
P(z; = 0)P(S;]65)

To do the M step for a given motif group Assume we are
just working with the simple motifs from class. The probability
that a given position k produces an amino acid 1 is set to the
weighted likelihood of the data. This is like taking an average
but with some sequences (the sequences which were more
likely generated by the motif group being considered getting
more votes). This can be written mathematically as follows.
On this step we calculate new 6s:

055 ~ 3 g () H(Sim = 1)
=1

Here the I term is a boolean(1 if true zero if false) for whether
a particular amino acid in a particular position was generated
and the q term is the likelihood that the sequence is part of
the motif. Do this step for all motif groups though if the
background is known no need to do it for the background.

Stop when the parameters of the motif stop changing.

Just a note: genetic algorithms (a really powerful Al technique
based on biological evolution) have been shown to help EM
get out of local minima. Also EM is used everywhere in Al
and if you look through chapter 21 in Russel and Norvig (the
green book) really carefully you too can make your own EM
based algorithms. For more cool applications of EM look to
Pierre Baldi’s book Bioinformatics particularly chapter 7. It is
really dense but really good. There is lots of math in it but if
you crank through it trust me it is worth it.

VIII. FINDING MOTIFS VIA GIBBS SAMPLING

Gibbs sampling is a very similar procedure. If you are
familiar with Markov Chain Monte Carlo (not the place to
gamble) then this should look familiar as the to procedures
are very similar. In this Gibbs sampling algorithm sequences
are selected one at a time and reassigned randomly (they are
reassigned according to a probability distribution. The idea is
for the samples to gradually converge to the proper answer,
noise is added (via not always choosing the max likelihood
estimate) to counter local minima.

Example: assume one motif and one known background
model. 10 percent of sequences are members of the motif
and 90 percent are background.

Stepl: randomly assign sequences according to the prior
probability. That is to say assign each sequence to 0 with 90
percent probability and to 1 with 10 percent probability.

Step 2: Select a sequence at random and call it Si

Step 3: determine the parameters of the motif. For each
position determine the likelihood that the members take on a
certain value.

To do this calculate the likelihoods that the sequences
currently labeled as motif (excluding the sequence being
relabeled if it is set as a member of the motif) would generate
each amino acid in each position. Let n;; be the number of

letter j at position i. Set 0;; = Z’izy ,

here v is some small parameter which is called pseudo-count
which prevents probabilities from being zero a condition
which would make the algorithm less able to reach good
answers. n - the total number of sequences with label 1,
excluding S;. We do the same estimations for 6°

Step 4 reassign: Determine the probability Si was generated
by each. THen based on these probabilities randomly reassign
the sequence. This can be written mathematically as follows.
Here q is the label (the t+1 indicates the new label). The
probability of z term indicates likelihood of the motif (1
being motif 0 being background)



Step 5: select another sequence go to step 3 unless you

have done this for a really long time, see little change in the
assignment or have a better stopping criteria satisfied

IX. PLUSES AND MINUSES OF THE METHODS

Gradient Decent: Totally unsuited for this problem and
is not used. Local minima prevent the motif model from
reaching accurate values. A parameter called the step size
must be chosen and this is a difficult parameter to determine
and must be calculated for each new application and often
each data set. This algorithm is also slow to converge on
motif answers. In the context of motifs the gradient is also
hard to calculate. This means that approximate gradients may
have to be used further inhibiting convergence to a good
answer.

EM: EM unlike gradient decent is fast, and guaranteed
to reach a final answer and not jitter around an answer.
While it is a similar to a gradient decent algorithm at a deep
mathematical level it requires no step size which is a huge
plus. However two problems come up (both of which can be
diminished though not eliminated via the use of simulated
annealing and or genetic algorithms). These two problems
are local minima and sensitivity to initial parameters. Genetic
algorithms and simulated annealing additions to EM help
resolve these problems these by having many sets of initial
parameters via random restarts and get out of local minima
via noise and crossover.

Gibbs Sampling

This method is less susceptible to local minima (unlike EM
which is effected by this). It is also good at incorporating
information known before the clustering process has begun.
Like EM it is guaranteed to reach a definite answer. However
the algorithm can be much slower than EM and unlike EM it
is difficult to know when to stop training the model.

X. DEALING WITH MULTIPLE MOTIFS (BEYOND THE TWO
DIMENSIONAL CASE)

The methods described here can be scaled to high numbers
of motifs. In real world research prior determination of the
number of motifs is essential. There is one algorithm, which
determines the number of motifs but requires a size of the
motifs. The obvious thing to do is then to use (abuse) this
algorithm to determine the number of motif of each size;
unfortunately this does not work, as you would have sub-
motifs inside of motifs. Hence determining the number of
motifs is non-trivial.

XI. JUST A NOTE ALL THAT STUFF ABOUT LOGS

This is just a computer thing that makes stuff easier to
multiply in a computer. When multiplying lots of really
small numbers together on computers data is lost. This is not

because computers forget but because computers do not have
infinite precision. To get around that problem we use logs.
How is this done?

Example: P(Xx)P(y)P(z)=e to the power of (
log(P(x))+log(P(y))+log(P(z)) ) and look we added logs
and hence got around the multiplication problem. Also
it helps when solving differential equation and doing
optimizations because it makes it easier to take derivatives.

Cheers Julian Yarkony jyarkony@uci.edu



