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Single Hypothesis Testing

Two Types of Error

Type I Error: False Discovery
Type II Error: Missed Discovery
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Multiple Hypothesis Testing Problems in Genomics

I High-throughput microarray gene expression experiments

⇒ Identification of differentially expressed genes by testing for
associations between gene expression measures and clinical
covariates and outcomes

⇒ Identification of co-expressed genes by testing for associations
in the expression measures of sets of genes across biological
samples

I Biological annotation metadata analysis

⇒ Tests of association between gene expression measures and
biological annotation metadata
e.g.Gene Ontology(GO, www.geneontology.org annotation.

Statistical Considerations of Multiple Testing

www.geneontology.org


Multiple Hypothesis Testing Problems in Genomics

I High-throughput microarray gene expression experiments

⇒ Identification of differentially expressed genes by testing for
associations between gene expression measures and clinical
covariates and outcomes

⇒ Identification of co-expressed genes by testing for associations
in the expression measures of sets of genes across biological
samples

I Biological annotation metadata analysis

⇒ Tests of association between gene expression measures and
biological annotation metadata
e.g.Gene Ontology(GO, www.geneontology.org annotation.

Statistical Considerations of Multiple Testing

www.geneontology.org


Multiple Hypothesis Testing Problems in Genomics

I High-throughput microarray gene expression experiments

⇒ Identification of differentially expressed genes by testing for
associations between gene expression measures and clinical
covariates and outcomes

⇒ Identification of co-expressed genes by testing for associations
in the expression measures of sets of genes across biological
samples

I Biological annotation metadata analysis

⇒ Tests of association between gene expression measures and
biological annotation metadata
e.g.Gene Ontology(GO, www.geneontology.org annotation.

Statistical Considerations of Multiple Testing

www.geneontology.org


Multiple Hypothesis Testing Problems in Genomics

I High-throughput microarray gene expression experiments

⇒ Identification of differentially expressed genes by testing for
associations between gene expression measures and clinical
covariates and outcomes

⇒ Identification of co-expressed genes by testing for associations
in the expression measures of sets of genes across biological
samples

I Biological annotation metadata analysis

⇒ Tests of association between gene expression measures and
biological annotation metadata
e.g.Gene Ontology(GO, www.geneontology.org annotation.

Statistical Considerations of Multiple Testing

www.geneontology.org


Multiple Hypothesis Testing Problems in Genomics

I High-throughput microarray gene expression experiments

⇒ Identification of differentially expressed genes by testing for
associations between gene expression measures and clinical
covariates and outcomes

⇒ Identification of co-expressed genes by testing for associations
in the expression measures of sets of genes across biological
samples

I Biological annotation metadata analysis

⇒ Tests of association between gene expression measures and
biological annotation metadata
e.g.Gene Ontology(GO, www.geneontology.org annotation.

Statistical Considerations of Multiple Testing

www.geneontology.org


Multiple Hypothesis Testing Problems in Genomics

I ChIP-chip experiments. Identification of transcription factor
binding sites in ChIP-chip experiments, where chromatin
immunoprecipitation (ChIP) of transcription factor bound
DNA is followed by microarray (chip) hybridization of the
IP-enriched DNA
Test of association between probe intensity measures and
target sample (TF ChIP vs. control sample)

I Protein sequence analysis. Tests of association between
phenotypes and codon/amino acid mutations.
e.g. Association between viral replication capacity and HIV-1
sequence variation.
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Multiplicity Problem

I Now assume we are carrying out multiple tests
Test1: H1 vs A1 with p-value p1

Test2: H2 vs A2 with p-value p2

...
Testm: Hm vs Am with p-value pm

I If we knew which null hypotheses were true and if we had a procedure
to accept/reject each test (p-value < α), then we would have a table
as follows:

Not Significant Significant Total
Null is TRUE U V m0

Null is FALSE T S m-m0

m-R R m
I Note that V is the number of total Type I Errors, and T is the

number of Type II Errors.
I m is known, R (number of rejected null hypotheses) is observed.

U,T,V,and S are all unobservable random variables.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Now assume we are carrying out multiple tests
Test1: H1 vs A1 with p-value p1

Test2: H2 vs A2 with p-value p2

...
Testm: Hm vs Am with p-value pm

I If we knew which null hypotheses were true and if we had a procedure
to accept/reject each test (p-value < α), then we would have a table
as follows:

Not Significant Significant Total
Null is TRUE U V m0

Null is FALSE T S m-m0

m-R R m

I Note that V is the number of total Type I Errors, and T is the
number of Type II Errors.

I m is known, R (number of rejected null hypotheses) is observed.
U,T,V,and S are all unobservable random variables.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Now assume we are carrying out multiple tests
Test1: H1 vs A1 with p-value p1

Test2: H2 vs A2 with p-value p2

...
Testm: Hm vs Am with p-value pm

I If we knew which null hypotheses were true and if we had a procedure
to accept/reject each test (p-value < α), then we would have a table
as follows:

Not Significant Significant Total
Null is TRUE U V m0

Null is FALSE T S m-m0

m-R R m
I Note that V is the number of total Type I Errors, and T is the

number of Type II Errors.

I m is known, R (number of rejected null hypotheses) is observed.
U,T,V,and S are all unobservable random variables.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Now assume we are carrying out multiple tests
Test1: H1 vs A1 with p-value p1

Test2: H2 vs A2 with p-value p2

...
Testm: Hm vs Am with p-value pm

I If we knew which null hypotheses were true and if we had a procedure
to accept/reject each test (p-value < α), then we would have a table
as follows:

Not Significant Significant Total
Null is TRUE U V m0

Null is FALSE T S m-m0

m-R R m
I Note that V is the number of total Type I Errors, and T is the

number of Type II Errors.
I m is known, R (number of rejected null hypotheses) is observed.

U,T,V,and S are all unobservable random variables.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Assume we are looking at each hypothesis in isolation,
rejecting the null hypothesis Hi if pi < α. The probability of
making a Type I Error for a single test is α.

I For multiple tests, the probability of making at least one Type
I Error in m tests is:

1− (1− α)m

I m = 1000, α = 0.01, P(TypeIErrors ≥ 1) = 0.9999568!

I We need to adjust for multiple hypothesis testing.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Assume we are looking at each hypothesis in isolation,
rejecting the null hypothesis Hi if pi < α. The probability of
making a Type I Error for a single test is α.

I For multiple tests, the probability of making at least one Type
I Error in m tests is:

1− (1− α)m

I m = 1000, α = 0.01, P(TypeIErrors ≥ 1) = 0.9999568!

I We need to adjust for multiple hypothesis testing.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Assume we are looking at each hypothesis in isolation,
rejecting the null hypothesis Hi if pi < α. The probability of
making a Type I Error for a single test is α.

I For multiple tests, the probability of making at least one Type
I Error in m tests is:

1− (1− α)m

I m = 1000, α = 0.01, P(TypeIErrors ≥ 1) = 0.9999568!

I We need to adjust for multiple hypothesis testing.

Statistical Considerations of Multiple Testing



Multiplicity Problem

I Assume we are looking at each hypothesis in isolation,
rejecting the null hypothesis Hi if pi < α. The probability of
making a Type I Error for a single test is α.

I For multiple tests, the probability of making at least one Type
I Error in m tests is:

1− (1− α)m

I m = 1000, α = 0.01, P(TypeIErrors ≥ 1) = 0.9999568!

I We need to adjust for multiple hypothesis testing.

Statistical Considerations of Multiple Testing



Family-wise Error Rate

I Definition: The family-wise error rate is the probability of at
least one FP (i.e. Type I error), that is:
FWER = P(#FP ≥ 1)

I FWER is said to be controlled at level α if FWER ≤ α.
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Compute FWER

I Let H1,H2, ...,Hm be independent hypotheses.

I Assume the first m are true, the others false:
FWER = P(#FP ≥ 1) = 1− P(#FP = 0)
P(FP = 0) = P( not reject H1, ...,Hm)
P(FP = 0) = (1− α1)...(1− αm) where αj = P(reject Hj)
FWER = 1−

∏m
j=1 (1− αj)
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Compute FWER

I e.g. 10 hypotheses, αj = 0.05,FWER(m) = 1− 0.95m

FWER(0)=0%, FWER(1)=5%,
FWER(2)≈ 9.8%,FWER(10) ≈ 40.1%

I e.g. 10 hypotheses, αj = 0.167,FWER(m) = 1− 0.83m

FWER(0)=0%, FWER(1)=16.7%,
FWER(2)≈ 31.1%,FWER(10) ≈ 84.5%
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Compute FWER
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Adjusting p-value for FWER control

I Keep FWER below α

I Bonferroni Correction:
Reject any hypothesis with p − value ≤ α

m
Bonferroni adjusted p-values: pBonferroni = min(m.pj , 1)

I Bonferroni Correction controls FWER.
I There are also other methods that control FWER:

⇒ Holm(1979) based on the order of raw p-values
⇒ Westfall-Young (1993) step-up/step-down methods use order

and joint distribution of raw p-values.
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False Discovery Rate

I Alternative measure for multiple testing error introduced by
Benjamini-Hochberg (1995):

FDR = E

[
FP

max(R, 1)

]
where R is the number of rejected hypotheses.

I FDR is the expected proportion of false positives among
rejected hypotheses.

I Why introduce another quantity to control?
⇒ Bonferroni adjustment is too strict for many applications. It

was originally developed for well-crafted experiments with well
designed follow-up questions. It works well for those...

⇒ In theory-poor observational studies(i.e.microarray, ChIP-chip
studies), the strategy is to test everything in sight.

⇒ For genomics experiments, controlling the probability of one or
more Type I errors is too severe but doing nothing at all is also
unacceptable. FDR is a compromise.
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Benjamini-Hochberg Procedure to Control FDR

To control FDR at level α:

I Let p1, p2, ..., pn the p-values of the m tests we carried out.

I Order these p-values from smallest to largest:
p(1), p(2), ..., p(n)

I Calculate the threshold value for each p-value:

k.α

m

I Let k
′

= max
{
k : p(k) ≤ k.α

m

}
,k = 1, 2, ...,m. If it turns out

that k
′

= 0 for all k then take p(k) ≥ k.α
m .

I Decision rule:

⇒ If k
′ ≥ 1, then reject the hypotheses corresponding to

p(1), p(2), ..., p(k).

⇒ If k
′

= 0, don’t reject anything.
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Benjamini-Hochberg Procedure to Control FDR

I Benjamini-Hochberg procedure controls FDR at level α
assuming that the test statistics from each hypothesis is
independent. You are guaranteed that the false discovery rate
for the k hypotheses you have rejected is not bigger than α.

I FDR is a global (for all hypotheses) measure of significance.
It is the expected proportion of false positives among
significant hypotheses.

I This is not the only way to control FDR or other quantities.
See:
Genomics, Prior Probability, and Statistical Tests of Multiple
Hypotheses, Genome Res. 2004 Jun;14(6):997-1001.
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