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1 Background

As discussed in the Lecture 10, we can uniquely define a Hidden Markov
Model (HMM) by specifying

M = (Q, Σ, A, e)

where:

Q = The set of all states that the model can be in

Σ = The set of all alphabets that each state can be in.

A = state transition probability =




a11 a12 . . .
a21 a22 . . .
...

...
. . .





e = emission probability = eQi(j) ∀j : j ε Σ

Going back to our favorite example from previous lecture, we can model a
casino dealer’s operations using an HMM by specifying the above parameters
as:

Q = {Fair ,Loaded} (1.1)

Σ = {1, 2, 3, 4, 5, 6} (1.2)

A =

(
aF,F aF,L

aL,F aL,L

)
(1.3)
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efair(i) =
1

6
, i = 1, 2, . . . , 6 (1.4)

eloaded(i) =

{
1
2 i = 6
1
10 i = 1, 2, . . . , 5

(1.5)

2 Inferring parameters

So far we have used the HMM to infer

1. Decoding Problem: Maximum likelihood of states, given a sequence
of observations of values of die

2. Inference Problem: Probability of observing any sequence of values
of die

Another question that we can ask is - given a sequence of observation of
values of die, what are the most likely values of the HMM parameters. To
put it more precisely -

Learning Problem
Given a sequence of observations X1, X2, X3, . . . , Xn, what are the values of
transition probabilities A and emission probabilities eF/L that best explain
these observations ?

2.1 ML Approach

If we also know the sequence of states Z1 → Z2 → Z3 → . . .→ Zn, we can
solve this problem by counting the number of state transitions.

NFF
.
= Number of transitions from Fair to Fair (2.1)

NFL
.
= Number of transitions from Fair to Loaded (2.2)

NLF
.
= Number of transitions from Loaded to Fair (2.3)

NLL
.
= Number of transitions from Loaded to Loaded (2.4)
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Therefore,

˜aFF =
NFF

NFF + NFL
(2.5)

˜aFL =
NFL

NFF + NFL
(2.6)

˜aLF =
NLF

NLF + NLL
(2.7)

˜aLL =
NLL

NLF + NLL
(2.8)

We can similary count the number of times the dice gives a particular
value i in each state. Solving it for the emission probabilities in Fair state,
we have

efair(i) =
Ni,F

NF
∀ i ε { 1,2,. . . , 6 } (2.9)

where

Ni,F
.
= Number of times observed value was i in Fair state (2.10)

NF
.
= Number of times model is in Fair state (2.11)

Similary, we can find the emission probabilities eL. The above approach of
finding the parameter values is called the Maximum Likelihood method since
it gives the best way of fitting HMM’s parameters to the given data.

2.2 EM Approach

The method described above works well when we know the sequence of
states of HMM. However, this may not always be possible since the states
are typically hidden in HMM. In such scenarios we resort to using itera-
tive approaches for the problem. The basic idea is similar to Expectation-
Maximization (EM) algorithm where we start with an initial estimate of
forward probabilities and backward probabilities and iteratively

• Calculating the transition and emission probabilities from forward and
backward probabilities

• Using the probabilities computed in the previous step to update the
forward and backward probabilities

This iteration is repeated till it converges.
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More specifically, let us define the transition probability from State i to
j for the tth observation as

ξt(i, j) = P (Zt = i, Zt+1 = j|X1, X2, . . . , Xn,A, e) (2.12)

⇒ ξt(i, j) =
P{Zt = i, Zt+1 = j, X1, X2, . . . , Xn|A, e}

P{X1, X2, . . . , Xn|A, e} (2.13)

This can also be expressed using the forward and backward probabilities
as

ξt(i, j) =
ft(i)aij bt+1 (j)ej (Xt+1 )∑n

i=1

∑n
j=1 ft(i)aijbt+1(j)ej(Xt+1)

(2.14)

The posterior probability of model to be in State i during tth observation
can thus be expressed as

γt(i) =
n∑

j=1

ξt(i, j) (2.15)

The probabilities defined in equations 2.14 and 2.15 are calculated in the
Expectation step using an intial or previous iteration estimate of transition
probabilities A and emission probabilities e. These probabilities are then used
in the Maximization step to update A and e using the following identities:

aij =

∑L−1
t=1 ξt(i, j)∑L−1
t=1 γt(i)

(2.16)

and

ej(k) =

∑L
t=1,Xt=k γt(j)
∑L

t=1 γt(j)
(2.17)

This iteration is continued till update in the values of A and e drops
below some predefined convergence threshold. The above approach of using
generalize HMM for learning is also called Baum-Welch Algorithm.
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