
CS284A: Introduction to Computational Biology Winter 2008

Lecture 10 — February 27

Scribe: Sidharth Shekhar Lecturer: Xiaohui S. Xie

10.1 Markov Chains and Hidden Markov Models

10.1.1 Markov Chains

Consider a set of states X1, X2, ...., Xn. The joint probability is given by

P (X1, X2, ..., Xn) = P (Xn|Xn−1, ...., X1)P (Xn−1|Xn−2, ...., X1)....P (X1) (10.1)

The Markov property states that each state is dependent only on its previous state. i.e.

P (Xi|Xi−1, ..., X1) = P (Xi|Xi−1) (10.2)

Therefore the joint probability can be written as

P (X1, X2, ..., Xn) = P (Xn|Xn−1)P (Xn−1|Xn−2)....P (X2|X1)P (X1) (10.3)

Suppose Xi ∈ {1, 2, ...., k} i.e. X can take one of k possible states. Then we define

Transition probability: akl = P (Xi = l|Xi−1 = k) (10.4)

Initial probability: P (X1 = k) (10.5)

CpG islands

In the human genome, there are certain short stretches of the genome where the dinucleotide
CG, (often written as CpG to distinguish it from the C-G base pair across two strands), has
higher frequency than elsewhere. Such regions are called CpG islands. Let us consider the
following problem. Given a short stretch of genomic sequence X1, X2, ..., XL, we need to
decide if it comes from a CpG island or not. We can model this problem as a Markov chain
by assuming that each nucleotide in the sequence is dependent only on the previous one.
Now, assume that we are given the following probabilities.

For a CpG island Initial probability P+
1 (k) Transition probabilities a+

kl

For a non CpG island Initial probability P−
1 (k) Transition probabilities a−kl

The simple way is to calculate the likelihood of the sequence X1, X2, ..., XL being gener-
ated by the CpG model and by the non CpG model and then take the log ratio of the two.
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i.e.

P (X1, X2, ..., XL|CpG model) = P+
1 (X1)a

+
X1X2

a+
X2X3

....a+
XL−1XL

(10.6)

P (X1, X2, ..., XL|non CpG model) = P−
1 (X1)a

−
X1X2

a−X2X3
....a−XL−1XL

(10.7)

log
P (X1, X2, ..., XL|CpG)

P (X1, X2, ..., XL|non CpG)
= log

P+
1 (X1)

P−
1 (X1)

+
L∑

i=2

log
a+

Xi−1Xi

a−Xi−1Xi

(10.8)

Therefore, if this log likelihood ratio is positive, then it is more likely that the sequence is
from a CpG island, otherwise it is more likely that it is not from a CpG island.

Now consider another problem. Given a long sequence, we need to identify the CpG is-
lands in that sequence. To go about solving this problem, we first need to introduce the
concept of Hidden Markov Models.

10.1.2 Hidden Markov Models

To understand the basic concepts of Hidden Markov Models we look to a simple problem
from Vegas. Consider a casino dealer who has 2 dice with him. One is a fair die i.e. each of
the six numbers has an equal probability of turning up on a roll of the die. The other die
is biased towards the number 6. The dealer can start with either one of the two dice and
generally uses the same die most of the time. But sometimes he will switch the dice and once
switched he again uses the die for most of the time. Now all we have is a sequence of obser-
vations, i.e. values that die in play turned up in each roll. Given these observations our task
is to best predict which die was in use in each of the rolls. Let us now formalize this problem.

As shown in Figure 1, we can model the environment as a finite state machine. For the game,
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at any time it can be in one of only two possible states i.e. the fair die is in play or the
loaded die is in play. Therefore, our states

Q = {Fair, Loaded} (10.9)

Each die can take only one of 6 possible numbers. Therefore, our alphabet

Σ = {1, 2, 3, 4, 5, 6} (10.10)

The transition probabilities can be given by the following matrix

A =

[
aFF aFL

aLF aLL

]
(10.11)

For our example we can consider these transition probabilities to be as follows

A =

[
0.95 0.05
0.1 0.9

]
(10.12)

Once in a state, the probability of the die turning up a particular value is called the emission
probability. In our problem we can consider them to be as follows

efair(i) =
1

6
, i = 1, 2, ...., 6 (10.13)

eloaded(i) =

{
1
2

i = 6
1
10

i = 1, 2, ..., 5
(10.14)

Therefore, our Hidden Markov Model is completely specified as

M = (Q, Σ, A, e) (10.15)

Now let us consider the actual problem. We are provided with this model M . We also have
a set of observations X1, X2, ...., XL, where Xi stands for the value of the die on the ith roll.
We have to find Z1, Z2, ...., ZL where Zi stands for the state of the die in the ith roll. Let us
represent this pictorially.
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Because of the way our model has been defined, we can clearly see that each state Zi is only
dependent on its previous state Zi−1 (i.e. the Markov Property), and the value of the die
Xi is only dependent on the state Zi of the die. A possible question that could come to
mind here is that why do we call it Hidden Markov Model? The reason is that the states
Z1, Z2, ...., ZL are not directly observable. Only the dealer knows what die is in play. The
only information that we have is the model and the observations. So now our task has be-
come to find the values Z∗

1 , Z
∗
2 , ....., Z

∗
L that best explain the observations X1, X2, ...., XL. In

other words

(Z∗
1 , Z

∗
2 , ....., Z

∗
L) = max

Z1,Z2,...,ZL

P (X1, X2, ...., XL, Z1, Z2, ...., ZL) (10.16)

But due to the Markov Property, we can write this as

(Z∗
1 , ..., Z

∗
L) = max

Z1,...,ZL

P (Z1)P (X1|Z1)P (Z2|Z1)P (X2|Z2)...P (ZL|ZL−1)P (XL|ZL) (10.17)

(Z∗
1 , ..., Z

∗
L) = max

Z1,...,ZL

P (Z1)
L∏

i=2

P (Zi|Zi−1)P (Xi|Zi) (10.18)

A naive way of solving this maximization would be to try all 2L possible combinations of Zis
and choose the maximum. But even in our simple problem where Z can take only 2 states,
it is easy to see that this method quickly becomes infeasible. A more careful look at the
equation suggests a better way of solving the problem. Consider the maximization over the
value of ZL. Most of the terms in the product do not depend on ZL and hence can be taken
out of the maximization to get

(Z∗
1 , ..., Z

∗
L) = max

Z1,...,ZL−1

P (Z1)P (X1|Z1)...P (ZL−1|ZL−2)P (XL−1|ZL−1) max
ZL

P (ZL|ZL−1)P (XL|ZL)

(10.19)
Using the same technique for the other variables, we get

(Z∗
1 , ..., Z

∗
L) = max

Z1

P (Z1)P (X1|Z1) max
Z2

P (Z2|Z1)P (X2|Z2).... max
ZL

P (ZL|ZL−1)P (XL|ZL)

(10.20)

Due to this, we can now write a recursive algorithm to solve the problem. The following
algorithm is known as the Viterbi algorithm.

1. Initialize: V (ZL−1) = maxZL
P (ZL|ZL−1)P (XL|ZL)

2. Repeat for i = L− 2, L− 3, ...., 1

V (Zi) = maxZi+1
P (Zi+1|Zi)P (Xi+1|Zi+1)

3. Final Score = maxZ1 P (Z1)P (X1|Z1)V (Z1)
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Does this algorithm do better than the naive algorithm? Let us compare the time complex-
ities. For the naive algorithm, we try 2L possible values and for each value we will have
to do O(L) calculations. Therefore, time complexity is O(L2L). Viterbi algorithm needs
to calculate L maximizations. Therefore, that is O(L) calculations. For each of these L
maximizations, we have 22 = 4 possible values that we need to check. So in our example,
time complexity of Viterbi algorithm is just O(L). In general, we can have more than 2
states, so we denote the number of states in our model M as |Q|. Therefore time complexity
now becomes, O(L|Q|2).

A question that arises is that we developed the Viterbi algorithm in a backward manner, i.e.
we first maximize over ZL, then ZL−1, and so on. Can we do it in a forward pass as well?
The answer is yes we can. We just have to redefine our functions a little bit. The Viterbi
algorithm using the forward technique is as follows.

1. Initialize: V (Z2) = maxZ1 P (Z1)P (X1|Z1)P (Z2|Z1)

2. Repeat for i = 3, 4, ...., L

V (Zi) = maxZi−1
P (Zi|Zi−1)P (Xi−1|Zi−1)V (Zi−1)

3. Final Score = maxZL
P (ZL|ZL−1)P (XL|ZL)V (ZL)

Inference Problem

The problem that we just solved is known as the decoding problem. Another problem we
have is known as the Inference problem. Here, we want to know, what is the probability of
observing the sequence that we have, i.e. we want to find P (X1, X2, ....., XL). But

P (X1, X2, ....., XL) =
∑

Z1,Z2,....,ZL

P (X1, X2, ....., XL, Z1, Z2, ....., ZL) (10.21)

Equation (10.21) is very similar to equation equation (10.16), except that the maximization
operator has been replaced by the summation operator. Therefore, we can follow the exact
same methodology that we developed for the decoding problem and use it to solve this
problem. The steps are exactly the same, except that at each stage instead of taking maxZi

we will take
∑

Zi
.

Forward Algorithm for Inference

Let us define the function fk(i) as follows

fk(i) = P (X1, X2, ...., Xi, Zi = k) (10.22)
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Hence, we can write

fl(i + 1) = P (X1, X2, ...., Xi+1, Zi+1 = l) (10.23)

fl(i + 1) =
∑

k

P (X1, ...., Xi, Xi+1, Zi = k, Zi+1 = l) (10.24)

fl(i + 1) =
∑

k

P (X1, ...., Xi, Zi = k)P (Zi+1 = l|Zi = k)P (Xi+1|Zi+1 = l) (10.25)

fl(i + 1) =
∑

k

fk(i)P (Zi+1 = l|Zi = k)P (Xi+1|Zi+1 = l) (10.26)

Therefore, the final likelihood can be written as

P (X1, X2, ...., XL) =
∑

k

fk(L) (10.27)

Backward Algorithm for Inference

Let us define the function bk(i) as follows

bk(i) = P (Xi+1, Xi+2, ...., XL|Zi = k) (10.28)

Hence we can write

bl(i− 1) = P (Xi, ....., XL|Zi−1 = l) (10.29)

bl(i− 1) =
∑

k

P (Xi, Xi+1, ...., XL, Zi = k|Zi−1 = l) (10.30)

bl(i− 1) =
∑

k

P (Xi|Zi = k)P (Zi = k|Zi−1 = l)bk(i) (10.31)

Therefore, the final likelihood can be written as

P (X1, X2, ...., XL) =
∑

k

P (X1|Z1 = k)P (Z1 = k)bk(1) (10.32)

Posterior Inference

We now look at the problem, wherein given that we have observed a particular sequence
{X1, X2, ....., XL}, we want to find the probability that a particular state Zi takes on the
value k. i.e. we want to find P (Zi = k|X1, X2, ....., XL). We can write this posterior
probability in terms of the joint probability as follows

P (Zi = k|X1, X2, ....., XL) =
P (X1, X2, ....., XL, Zi = k)

P (X1, X2, ....., XL)
(10.33)
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We already know how to calculate the denominator. We need to find a simple way to
calculate the numerator, which can be done as follows

P (X1, ..., XL, Zi = k) = P (X1, X2, ..., Xi, Zi = k, Xi+1, ...., XL) (10.34)

P (X1, ..., XL, Zi = k) = P (X1, .., Xi, Zi = k)P (Xi+1, .., XL|X1, .., Xi, Zi = k)(10.35)

P (X1, ..., XL, Zi = k) = fk(i)P (Xi+1, ..., XL|Zi = k) (10.36)

P (X1, ..., XL, Zi = k) = fk(i)bk(i) (10.37)

We can go from (10.35) to (10.36) because of the Markov Property. Thus, the final posterior
can be calculated using

P (Zi = k|X1, X2, ....., XL) =
fk(i)bk(i)

P (X1, X2, ....., XL)
(10.38)

An extension to this posterior inference is to calculate P (Zi = k, Zi+1 = l|X1, X2, ....., XL).
We can again do this using the joint probability

P (Zi = k, Zi+1 = l|X1, ..., XL) =
P (X1, ..., XL, Zi = k, Zi+1 = l)

P (X1, ..., XL)
(10.39)

Now, the joint probability can be written as

P (X1, ..., XL, Zi, Zi+1) = P (X1, .., Xi, Zi = k)P (Xi+1, .., XL, Zi+1 = l|Zi = k)(10.40)

= fk(i)P (Zi+1 = l|Zi = k)P (Xi+1, .., XL|Zi+1 = l) (10.41)

= fk(i)P (Zi+1 = l|Zi = k)P (Xi+1|Zi+1 = l)bl(i + 1) (10.42)

Thus, the required posterior can be calculated as

P (Zi = k, Zi+1 = l|X1, ..., XL) =
fk(i)P (Zi+1 = l|Zi = k)P (Xi+1|Zi+1 = l)bl(i + 1)

P (X1, ..., XL)
(10.43)

10.1.3 Extensions by Sohail Jahid

CpG islands

They are called CpG islands or CpG-rich islands (CGIs) because they are found in a ”sea”
of DNA sequences low in CG content and the p denotes the phosphodiester bond between
cytosine and guanine. CGIs are generally associated with promoters; genes, whose promoters
are especially rich in CpG sequences, tend to be expressed in most tissues. CGIs have an
average 60% GC content as compared to 40% in random DNA sequences and they extend
over 100-1000 nucleotides. They are usually found just upstream of a promoter and extend
downstream into the transcribed regions of a gene. Furthermore, genes that are constitu-
tively expressed (on all the time) are surrounded by CGIs in the 5 region. Most CpGIs are
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found in the 5 region of genes. All of the housekeeping genes are constitutively expressed and
have CGIs which makes up 50% of all the CGIs and the other 50% of CGIs are associated
with promoter activity of tissue specific genes. It is been shown that half of all human genes
are associated with CGIs.

Genes without TATA boxes or initiator elements contain CGIs in upstream of the start
site (ATG). Usually transcription of genes with promoter containing a TATA box or ini-
tiator element begins at a well defined initiation site. However, some genes are controlled
by the state of CGIs methylation through the addition of a methyl group at position 5
on the cytosine changing it to 5-methylcytosine. DNA methylation is an epigenetic (”on”
genes, refers to all modifications to genes other than changes in the DNA sequence itself)
modification that occurs in some eukaryotes whereby CpG dinucleotides are methylated at
the C5 position of cytosine. The methylation of the 5 regulatory regions of genes results in
gene silencing. CGI is important in gene expression control through methylation where non-
methylated islands are found near active genes. Promoters are molecular modules, which
are controlled by their surrounding DNA sequence and state. Methylation of a CGI at the
promoter of a gene renders that gene inactive. This is why nonmethylated animal cells in
tissue culture (vitro) becomes methylated and stops expressing certain proteins.

In the laboratory CGIs are identified by their susceptibility to restriction enzymes (found in
bacteria, cuts double strand DNA by recognizing specific DNA patterns) that recognize CG
sequences. The enzyme HpaII cleaves the sequence CCGG, but if the second is methlyated,
the enzyme can no longer recognize the site. There are other enzymes that would cleave
CG irrespective of the methylation state of the CG. There are also methylated DNA im-
munoprecipitation along with Nimbelgen array technology to detect CGIs in the genome.
These arrays allow you to determine methylation of the promoter regions as well as within
the genome, also compare differential methylation between cells, tissues, and tumor samples.

CpG dinucleotides tend to change to TpG/CpA and this is why its believed that in the hu-
man genome there is about 5% less CGIs. Methylated cytosines tend to turn into thymines
because of spontaneous deamination (loss of NH2 group) this accounts for the less frequency
of the CGIs in the genome.

CpG island aberrant hypermethylation is associated with different cancer, where many im-
portant genome maintanence genes are silenced through CGI methylation. Normally, tumor
suppressor genes may be silenced by deletion (reflected in loss of heterozygosity) or by point
mutations, but there is increasing evidence for a third mechanism CGIs methylation.
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