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Position weight matrix
.

# Position weight matrix representation of a motif with widt

w.
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where each column represents one position of the motif,

and Is normalized:
4

Z%‘Zl (2)
j=1
foralli=1,2,--- , w. J
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Likelihood

- .

#® Given the position weight matrix 6, the probability of

generating a sequence S = (51,9, ,5,) from 6 is
P(slo) = ][] P(silo:) 3)
1=1

= |]b:s (4)
1=1

For convenience, we have converted S from a string of
{A,C,G, T} toastring of {1,2,3,4}.

o -
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Likelihood
- -

#® Suppose we observe not just one, but a set of sequences
S1,59,---,.5,. Assume each of them is generated
iIndependently from 6. Then, the likelihood for observing
these n sequences is

n

H P(Sk|0) ()
k=1

n w

= 11]]%s. (6)

k=1 1=1

P(S1, S, -, S,|0)

o -
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Parameter estimation

- .

#® Now suppose we do not know 6. How to estimate it from
the observed sequence data S;, S5, -+, 5,7

#® One solution: calculate the likelihood of observing the
provided n sequences for different values of 6,

L(e) — P(Sla SZ? toe 7Sn‘(9) — H Hei,ski (7)
k=1 1=1

Pick the one with the largest likelihood, that is, to find 6*
that
maXgp P(Slas%“' 7S’n’9) (8)

o -
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Estimating 6 using maximum likelthood

- .

#® The optimal 6* can be derived by setting

0log L(0)

p— 9
5, =" (9)

subject to the normalization constraint.

® The maximum likelihood estimate is

nij

0i; = (10)

n

which is simply the frequency of different letters at each
position. (n;; is the number of letter j at position ).

o -
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Mixture of sequences

- .

#® Suppose we have a more difficult situation. Among the
set of n given sequences, 51,53, - , S, some of them
are generated by a weight matrix ¢, but some of them are
not. How to identify 6 in this case?

® Let us first define the "non-motif" (also called background)
sequence. Suppose they are generated from a single
distribution

P’ = (ph, &, Py Py) = (P, P9, D3, DY) (11)

o -
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Likelihood for mixture of sequences

=

|7 ® Now the problem is we do not know which sequence is
generated from the motif (#) and which one is generated from
the background model (6°).

® Suppose we are provided with such label information:

)
1 if S; is generated by 6

Zi = 4 (12)
0 if S; is generated by §°

\
forall:=1,2,--- ,n.

® Then, the likelihood of observing the n sequences conditioned
on the label variables

n

L P(S1,S2, -+, Snlz,0,00) = H[zip(si\e) + (1 — z)P(5;]6°)] J
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Completelikelihood

- .

® Suppose we have some prior knowledge on whether a
sequence contains a motif or not, in terms of a prior distribution

.
8% ifZi:1
P(zi) = { | (13)
1l —« IfZi:O

\

® Then, we can write down the joint probability of S and the label
variable z = (z1, 22, -+ , zn)

n

P(S1,S2, -+, 80, 2|0,0°) = HP(zi)[ziP(SZ-]é’)+(1—zi)P(S7;]6’O)]

1=1

which is called the complete likelihood.

o -
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True likelthood
=

f ® However, the label variables are not directly observable (also
called, hidden or latent). We will need to marginalize the joint
distribution over z via summation:

P(S1,S5,--,5,]0,60°) = Z P(sl,s2, ., S, 2]60,6%

Z19R22,""

n

= [TleP(s:i|6) + (1 — @) P(S;]6°)

1=1

® Now, the parameter estimation can be formulated as maximize
the true likelihood function

maxg g, L(@,Ho) = P(Sl,SQ,"' ,Sn|9,90) (14)

o -
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® As before, we use the log likelihood function

Method |: Gradient Ascend

=

log L(6,60) = Y log[aP(Si]6) + (1 — a)P(S:]6%)]  (15)

® Gradient-based method: 1) calculate the gradient of log L(6, 6,)

with respect to 6, ,
dlog L(6, 0y)

16
90;, (16)
Then, 2) update 6;; with
dlog L(6,0)
L+l _ gt ) 17
O~ = 03 +n [ 90 ]Ht (17)
where 7 is the step size. J
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Problems with gradient-based methods

- .

® Gradientis hard to calculate
® Need to choose the correct step size
® Slow to converge

® Solution is only locally optimal

o -
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® Instead of optimizing the true likelihood function, we optimize

Method |l: EM-algorithm
=

an approximate likelinood

n

log L(6,0) = Z[Q(Zz‘ = 1)log P(5;]0) + q(z; = 0) log P(S;|6")]

where is also called average log likelihood. ¢(z;) is the
posterior distribution of the label variable.

The average log likelihood is a lower bound on the tree log
likelihood function (Jensen’s Inequality).

log[aP(Si0) + (1 — a) P(Si]6")] >
qlog|P(Si|0)cr/q] + (1 — q) log|P(5i|0)(1 — a)/(1 — )]

for all ¢ € [0, 1]. J
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Expectation and Maximization

- .

® The EM-algorithm iterates between two steps:

» Expectation: calculate the posterior distribution of z;,

( .
(t+1) (.. Pz =1)P(S;|00)) ifz =1
) ~ 0 (19
| P(2i = 0)P(Sil0y") if 2z =0
o Maximization: find optimal 8 and 6,
9/(5“) ~ Z ¢ (2)1(Si = 1) (20)
1=1

® The two steps are guaranteed to converge to a locally optimal
solution.

o -
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Pros and Cons of EM-algorithm
|7 ® Pros:
» No need to choose step size
» Guaranteed to converge

» Fast

® Cons:
» Locally optimal

# Sensitive to the initialization of parameters

o -
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Method I 11: Gibbs Sampling
=

|7Motivation: the key problem is that the label variable z is unknown.
Maybe we should try to generate a sample of these labels.

® Initialization: Randomly assign z; to be 1 or 0 according to the
prior probability P(z;).

® Estimation step: Traverse through S; from ¢ = 1 to n. Suppose
we are considering S;. Calculate the absolute frequency matrix
of all other sequences (excluding S;) with label 1. Let n;;
denote the number of letter 5 at position . Set

Nij + 7

0. —
Y n4 4y

(21)

where ~ is a small number (called pseudocount). n is the total
\_ number of sequences with label 1, excluding S;. Same for 6. J
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Gibbs Sampling
=

® Sampling step T

» Provided with current estimation of 4, ;. For sequence S;,
we can calculate the posterior probability of z;:

p
PZ@ZlPS@H ifZi:1
(o | FE=DPSI0 .
P(ZZ = O)P<Sz’6)0) If z; =0

\
thatis q(z; = 1) = aP(S;]0)/|aP(S;|0) + (1 — a)P(S;]00)].

o Randomly assign z; to be 1 or 0 according to probability
q(z).

® (o to another sequence and repeat.

o -
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Pros and Cons of Gibbs sampling algorithm

- .

® Pros:
» Less susceptible to local optimal
» Can naturally incorporate prior information

» Guaranteed to converge

® Cons:
o Can be slow

» No good criterion on when to stop

o -
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Summary

-

We have discussed three algorithms for probabilistic motif
discovery:

® Gradient-based method

® EM-algorithm

s MEME:
http://meme.sdsc.edu/meme/meme.html

® Gibbs sampling

o BioProspector:
http://ai.stanford.edu/~xsliu/BioProspector/

o AlignACE:
http://atlas.med.harvard.edu/

o -
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