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Position weight matrix

Position weight matrix representation of a motif with width
w:

θ =















θ11 θ21 · · · θw1

θ12 θ22 · · · θw2

θ13 θ23 · · · θw3

θ14 θ24 · · · θw4















(1)

where each column represents one position of the motif,
and is normalized:

4
∑

j=1

θij = 1 (2)

for all i = 1, 2, · · · , w.
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Likelihood

Given the position weight matrix θ, the probability of
generating a sequence S = (S1, S2, · · · , Sw) from θ is

P (S|θ) =
w

∏

i=1

P (Si|θi) (3)

=
w

∏

i=1

θi,Si
(4)

For convenience, we have converted S from a string of
{A,C,G, T} to a string of {1, 2, 3, 4}.
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Likelihood

Suppose we observe not just one, but a set of sequences
S1, S2, · · · , Sn. Assume each of them is generated
independently from θ. Then, the likelihood for observing
these n sequences is

P (S1, S2, · · · , Sn|θ) =

n
∏

k=1

P (Sk|θ) (5)

=

n
∏

k=1

w
∏

i=1

θi,Ski
(6)
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Parameter estimation

Now suppose we do not know θ. How to estimate it from
the observed sequence data S1, S2, · · · , Sn?

One solution: calculate the likelihood of observing the
provided n sequences for different values of θ,

L(θ) = P (S1, S2, · · · , Sn|θ) =
n

∏

k=1

w
∏

i=1

θi,Ski
(7)

Pick the one with the largest likelihood, that is, to find θ∗

that

maxθ P (S1, S2, · · · , Sn|θ) (8)
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Estimating θ using maximum likelihood

The optimal θ∗ can be derived by setting

∂ log L(θ)

∂θij

= 0 (9)

subject to the normalization constraint.

The maximum likelihood estimate is

θij =
nij

n
(10)

which is simply the frequency of different letters at each
position. (nij is the number of letter j at position i).

EM-algorithm for motif discovery – p.6/19



Mixture of sequences

Suppose we have a more difficult situation. Among the
set of n given sequences, S1, S2, · · · , Sn, some of them
are generated by a weight matrix θ, but some of them are
not. How to identify θ in this case?

Let us first define the "non-motif" (also called background)
sequence. Suppose they are generated from a single
distribution

p0 = (p0
A, p0

C , p0
G, p0

T ) = (p0
1, p

0
2, p

0
3, p

0
4) (11)
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Likelihood for mixture of sequences

Now the problem is we do not know which sequence is

generated from the motif (θ) and which one is generated from

the background model (θ0).

Suppose we are provided with such label information:

zi =







1 if Si is generated by θ

0 if Si is generated by θ0
(12)

for all i = 1, 2, · · · , n.

Then, the likelihood of observing the n sequences conditioned

on the label variables

P (S1, S2, · · · , Sn|z, θ, θ0) =

n
∏

i=1

[ziP (Si|θ) + (1 − zi)P (Si|θ
0)]
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Complete likelihood

Suppose we have some prior knowledge on whether a

sequence contains a motif or not, in terms of a prior distribution

P (zi) =







α if zi = 1

1 − α if zi = 0
(13)

Then, we can write down the joint probability of S and the label

variable z ≡ (z1, z2, · · · , zn)

P (S1, S2, · · · , Sn, z|θ, θ0) =

n
∏

i=1

P (zi)[ziP (Si|θ)+(1−zi)P (Si|θ
0)]

which is called the complete likelihood.
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True likelihood

However, the label variables are not directly observable (also

called, hidden or latent). We will need to marginalize the joint

distribution over z via summation:

P (S1, S2, · · · , Sn|θ, θ
0) =

∑

z1,z2,··· ,zn

P (S1, S2, · · · , Sn, z|θ, θ0)

=

n
∏

i=1

[αP (Si|θ) + (1 − α)P (Si|θ
0)]

Now, the parameter estimation can be formulated as maximize

the true likelihood function

maxθ,θ0
L(θ, θ0) = P (S1, S2, · · · , Sn|θ, θ0) (14)

EM-algorithm for motif discovery – p.10/19



Method I: Gradient Ascend

As before, we use the log likelihood function

log L(θ, θ0) =

n
∑

i=1

log[αP (Si|θ) + (1 − α)P (Si|θ
0)] (15)

Gradient-based method: 1) calculate the gradient of log L(θ, θ0)

with respect to θij ,
∂ log L(θ, θ0)

∂θij
(16)

Then, 2) update θij with

θt+1
ij = θt

ij + η

[

∂ log L(θ, θ0)

∂θij

]

θ=θt

(17)

where η is the step size.
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Problems with gradient-based methods

Gradient is hard to calculate

Need to choose the correct step size

Slow to converge

Solution is only locally optimal
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Method II: EM-algorithm

Instead of optimizing the true likelihood function, we optimize

an approximate likelihood

log L̃(θ, θ0) =

n
∑

i=1

[q(zi = 1) log P (Si|θ) + q(zi = 0) log P (Si|θ
0)]

where is also called average log likelihood. q(zi) is the

posterior distribution of the label variable.

The average log likelihood is a lower bound on the tree log

likelihood function (Jensen’s Inequality).

log[αP (Si|θ) + (1 − α)P (Si|θ
0)] ≥

q log[P (Si|θ)α/q] + (1 − q) log[P (Si|θ)(1 − α)/(1 − q)]
(18)

for all q ∈ [0, 1].
EM-algorithm for motif discovery – p.13/19



Expectation and Maximization

The EM-algorithm iterates between two steps:

Expectation: calculate the posterior distribution of zi,

q(t+1)(zi) ∼







P (zi = 1)P (Si|θ
(t)) if zi = 1

P (zi = 0)P (Si|θ
(t)
0 ) if zi = 0

(19)

Maximization: find optimal θ and θ0,

θ
(t+1)
kl ∼

n
∑

i=1

q(t+1)(zi)I(Sik = l) (20)

The two steps are guaranteed to converge to a locally optimal

solution.
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Pros and Cons of EM-algorithm

Pros:

No need to choose step size

Guaranteed to converge

Fast

Cons:

Locally optimal

Sensitive to the initialization of parameters
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Method III: Gibbs Sampling

Motivation: the key problem is that the label variable z is unknown.

Maybe we should try to generate a sample of these labels.

Initialization: Randomly assign zi to be 1 or 0 according to the

prior probability P (zi).

Estimation step: Traverse through Si from i = 1 to n. Suppose

we are considering Si. Calculate the absolute frequency matrix

of all other sequences (excluding Si) with label 1. Let nij

denote the number of letter j at position i. Set

θij =
nij + γ

n + 4γ
(21)

where γ is a small number (called pseudocount). n is the total

number of sequences with label 1, excluding Si. Same for θ0.
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Gibbs Sampling

Sampling step

Provided with current estimation of θ, θ0. For sequence Si,

we can calculate the posterior probability of zi:

q(zi) ∼







P (zi = 1)P (Si|θ) if zi = 1

P (zi = 0)P (Si|θ0) if zi = 0
(22)

that is q(zi = 1) = αP (Si|θ)/[αP (Si|θ) + (1 − α)P (Si|θ0)].

Randomly assign zi to be 1 or 0 according to probability

q(zi).

Go to another sequence and repeat.
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Pros and Cons of Gibbs sampling algorithm

Pros:

Less susceptible to local optimal

Can naturally incorporate prior information

Guaranteed to converge

Cons:

Can be slow

No good criterion on when to stop
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Summary

We have discussed three algorithms for probabilistic motif

discovery:

Gradient-based method

EM-algorithm

MEME:

http://meme.sdsc.edu/meme/meme.html

Gibbs sampling

BioProspector:

http://ai.stanford.edu/∼xsliu/BioProspector/

AlignACE:

http://atlas.med.harvard.edu/
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