Motif representation using position weight matrix

Xiaohui Xie

University of California, Irvine

Position weight matrix

Position weight matrix representation of a motif with width w:

$$\theta = \begin{bmatrix} \theta_{11} & \theta_{21} & \cdots & \theta_{w1} \\ \theta_{12} & \theta_{22} & \cdots & \theta_{w2} \\ \theta_{13} & \theta_{23} & \cdots & \theta_{w3} \\ \theta_{14} & \theta_{24} & \cdots & \theta_{w4} \end{bmatrix}$$
 (1)

where each column represents one position of the motif, and is normalized:

$$\sum_{i=1}^{4} \theta_{ij} = 1 \tag{2}$$

for all $i = 1, 2, \dots, w$.

Likelihood

• Given the position weight matrix θ , the probability of generating a sequence $S = (S_1, S_2, \dots, S_w)$ from θ is

$$P(S|\theta) = \prod_{i=1}^{w} P(S_i|\theta_i)$$
 (3)

$$= \prod_{i=1}^{w} \theta_{i,S_i} \tag{4}$$

For convenience, we have converted S from a string of $\{A,C,G,T\}$ to a string of $\{1,2,3,4\}$.

Likelihood

Suppose we observe not just one, but a set of sequences S_1, S_2, \dots, S_n . Assume each of them is generated independently from θ . Then, the likelihood for observing these n sequences is

$$P(S_1, S_2, \cdots, S_n | \theta) = \prod_{k=1}^n P(S_k | \theta)$$
 (5)

$$= \prod_{k=1}^{n} \prod_{i=1}^{w} \theta_{i,S_{ki}} \tag{6}$$

Parameter estimation

- Now suppose we do not know θ . How to estimate it from the observed sequence data S_1, S_2, \dots, S_n ?
- One solution: calculate the likelihood of observing the provided n sequences for different values of θ ,

$$L(\theta) = P(S_1, S_2, \dots, S_n | \theta) = \prod_{k=1}^{n} \prod_{i=1}^{w} \theta_{i, S_{ki}}$$
 (7)

Pick the one with the largest likelihood, that is, to find θ^* that

$$\max_{\theta} P(S_1, S_2, \cdots, S_n | \theta) \tag{8}$$

Estimating θ using maximum likelihood

• The optimal θ^* can be derived by setting

$$\frac{\partial \log L(\theta)}{\theta_{ij}} = 0 \tag{9}$$

subject to the normalization constraint.

The maximum likelihood estimate is

$$\theta_{ij} = \frac{n_{ij}}{n} \tag{10}$$

which is simply the frequency of different letters at each position. (n_{ij} is the number of letter j at position i).

Mixture of sequences

- Suppose we have a more difficult situation. Among the set of n given sequences, S_1, S_2, \dots, S_n , some of them are generated by a weight matrix θ , but some of them are not. How to identify θ in this case?
- Let us first define the "non-motif" (also called background) sequence. Suppose they are generated from a single distribution

$$p^{0} = (p_{A}^{0}, p_{C}^{0}, p_{G}^{0}, p_{T}^{0}) = (p_{1}^{0}, p_{2}^{0}, p_{3}^{0}, p_{4}^{0})$$
(11)

Likelihood for mixture of sequences

- Now the problem is we do not know which sequence is generated from the motif (θ) and which one is generated from the background model (θ^0) .
- Suppose we are provided with such label information:

$$z_i = \begin{cases} 1 & \text{if } S_i \text{ is generated by } \theta \\ 0 & \text{if } S_i \text{ is generated by } \theta^0 \end{cases}$$
 (12)

for all $i = 1, 2, \dots, n$.

Then, the likelihood of observing the n sequences

$$P(S_1, S_2, \dots, S_n | z, \theta, \theta^0) = \prod_{i=1}^n [z_i P(S_i | \theta) + (1 - z_i) P(S_i | \theta^0)]_{-}$$