CS284A: Algorithms for Molecular Biology Assignment #3

Exercise 1

Perform pair-wise alignment between the following two sequences: Seq A: ACCGCGCATGCC and Seq B: ACCGCATAGCA. Use the following scoring scheme: match = 2, mismatch = -1, and gap = -2.

1. Perform Needleman-Wunsch global alignment by filling in the following dynamic programming matrix. Report the best alignment score and pair-wise alignment.

	-	Α	С	С	G	С	G	С	Α	Т	G	С	С
-													
Α													
С													
С													
G													
С													
Α													
Т													
Α													
G													
С													
Α													

2. Perform Smith-Waterman local alignment by filling in the following dynamic programming matrix. Report the best alignment score and pair-wise alignment.

	-	Α	С	С	G	С	G	С	Α	Т	G	С	С
-													
Α													
С													
С													
G													
С													
Α													
Т													
Α													
G													
С													
Α													

Exercise 2

JU	rresponds to DNA sequences that are not from CpG Islands.							
	Dinucleotide	(+) Set Count	(-) Set Count					
	AA	180	300					
	\mathbf{AC}	274	205					
	AG	426	285					
	AT	120	210					
	CA	170	322					
	$\mathbf{C}\mathbf{C}$	368	298					
	CG	274	78					
	CT	188	302					
	\mathbf{GA}	161	248					
	GC	339	246					
	GG	375	298					
	GT	125	208					
	TA	79	177					
	TC	355	239					
	TG	384	292					
	TT	182	292					

Suppose we have derived the following dinucleotide counts from two sets of human DNA sequences. The (+) set corresponds to DNA sequences from CpG islands and the (-) set corresponds to DNA sequences that are not from CpG islands.

- 1. Draw 2 separate Markov chains, one Markov chain (MC+) to represent DNA sequences from CpG islands and a second Markov chain (MC-) to represent DNA sequences that are not from CpG islands.
- 2. Find the maximum likelihood estimates for transition probabilities in both Markov chains (MC+ and MC-). Fill in the transition probabilities in the following table:

MC+	A	C	G	Т
А				
С				
G				
Т				
MC-	A	С	G	Т
А				
С				
G				
Т				

3. Suppose we want to use these models for discrimination of the following two DNA

sequences seq1=GCAC and seq2 = GCTC.

Calculate the log-likelihood ratios S(seq1) and S(seq2) for these two DNA sequences $(log_2 based, ratio between MC+ and MC-)$. Which sequence do you think is from a CpG island? Explain.