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1 Statistics Review

1.1 Generating Functions

We must first define the terms mean and variance. Mean in statistical terms
is defined as the expected value of a random variable, given by

µ = E[K] =
N∑

k=0

kP (K = k), (1)

where K is a random variable from 0 to N , and k is a particular value of
K. Variance is defined as a measure of statistical dispersion [2], essentially
measuring how far out from the mean observed results go. It is given by

σ2 = E[(k − µ)2] = E[k2]− µ2 (2)

For any known distribution, the generating function is

G(s) = E[SK ] (3)

whereG is the function and s is a variable. Therefore, SKε{S0, S1, S2, ..., SN},
corresponding to K = {0, 1, 2, ..., N}. This moment generating function
works for all discrete distributions. It has a number of very interesting prop-
erties. For example,
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1. Firstly, applying the parameter s = 1 to the generating function yields
the sum of all probabilities in the distribution, which must sum to 1:

G(1) = E[1K ] =
N∑

k=0

1 ∗ P (K = k) = 1

2. We can take the derivative of the generating function as well:

G′(s) =
d

ds

[
N∑

k=0

skP (K = k)

]

=
N∑

k=0

d

ds

[
skP (K = k)

]

=
N∑

k=0

ksk−1P (K = k)

Using the derivative of the generating function and applying the pa-
rameter s = 1 to it, we see that

G′(1) =
N∑

k=0

kP (K = k) = E[K] = µ, (4)

the mean of a probability distribution.

3. Similarly, we can take the second derivative of the generating function:

G′′(s) =
d

ds

[
N∑

k=0

ksk−1P (K = k)

]

=
N∑

k=0

k(k − 1)sk−2P (K = k)

Again, applying the parameter s = 1 to the generating function, we see
that

G′′(1) =
N∑

k=0

k(k − 1)P (K = k) = E[K2]− E[K]. (5)

This is almost the variance of a probability distribution, known as σ2.
To actually get σ2, we need to add G′(1) ( = E[K] ) back to G′′(1),
then subtract (E[K])2 to it, thus obtaining σ2 = E[K2]− (E[K])2.
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1.2 Binomial Distribution

For a binomial distribution, in which we pick k out of N items, we say that
the probability is:

P (K = k) =

(
N

k

)
pk(1− p)N−k (6)

Therefore, the generating function associated with the binomial distribution
is:

G(s) = E[sK ] =
N∑

k=0

sk

(
N

k

)
pk(1− p)N−k (7)

=
N∑

k=0

(
N

k

)
(sp)k(1− p)N−k

(Remember that the expansion of (x + y)N =
∑N

k=0

(
N
k

)
xkyN−k.) So, if we

set x = sp and y = 1− p, we can see that

G(s) = (sp+ 1− p)N (8)

and then after setting s = 1, we see that G(1) = 1, as we expected from our
discussion of generating functions in section 1.1.
We can then take the derivative of G with respect to s, in order to obtain
the mean for the binomial distribution:

G′(s) = N(sp+ 1− p)N−1 ∗ p = Np(sp+ 1− p)N−1. (9)

Substituting s = 1 into equation (9), we see that

G′(1) = Np(p+ 1− p)N−1 = Np. (10)

Thus, for any binomial distribution, G′(1) = the mean, µ = Np.
Taking the second derivative and setting s = 1 yields the variance (σ2) of
the binomial distribution:

G′′(1) = Np(1− p). (11)

2 Regulatory Motif Discovery

In regulatory motif discovery, we are looking for certain sequences of DNA
(commonly referred to as k-mers, for a DNA string of length k) in much longer
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sequences. Given a set of N sequences S = {S0, S1, S2, ..., SN−1}, each of
length L, we should be able to obtain the probability that a particular k-mer
would appear in each of these sequences. If we find that the k-mer appears
many more times than we expected, we can say that k-mer is overrepresented.
This is a significant indication that the sequence we looked for is involved in
regulatory processes for the sequences we looked in.[4]

2.1 A Look at Probability and Sequential Data

In the world of DNA, our alphabet consists of the set of 4 letters, {A,C,G, T}.
For simplicity, we will assume that each base is equally likely; that is, PA =
PC = PG = PT = 1

4
. Now, we will look at a specific sequence, S, which is

a random variable of length L. Let us now consider a particular k-mer of
length w, for example, the sequence “ACGTAC.”

1. What is the probability that the k-mer will appear in S?

p = 1−
(

1− 1

4w

)L−w+1

2. Suppose we have N random variables, S = {S0, S1, S2, ..., SN−1}. Then
the probability of the k-mer appearing in k of the N sequences is bi-
nomial:

P (K = k) =

(
N

k

)
pk(1− p)N−k

3. Suppose that, in these N sequences, we observed the k-mer in a total of
y sequences. Now we can calculate the significance (“surprise”) of the
observation by using p-values. A p-value is the probability of observing
a result as least as extreme as the one actually observed [1]. In other
words, it is a measure of the observed value’s distance from the mean.
The farther from the mean the result is found, the more surprising
(significant) that result is. A p-value is given by:

α = P (K = y) + P (K = y + 1) + ...+ P (K = N) =
N∑

k=y

P (K = k)

The lower a p-value is (in absolute value), the more significant the
result. The line marking where the cutoff for significance is somewhat
arbitrary, but α = 0.05 is a commonly accepted value, meaning the
occurrence of a result of 5% or less probability is a significant find.
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2.2 Enumeration-Based Method of Motif Discovery

Using an enumeration-based method of motif discovery, we would just list
all the possible k-mers out in a table. For each k-mer in our table, we can
see how many sequences it is found in as a subsequence. If there are N
sequences, then we can model it as a binomial distribution, where yi is a
particular k-mer and pi is its associated probability:

pi =
N∑

k=yi

(
N

k

)
pk(1− p)N−k.

However simple this may seem in theory, it can be quite problematic in
practice. For instance, consider k-mers only of length 6. Since we have 4
bases that can each fill 6 positions, we quickly see that there are 46 = 4096
different k-mers of length 6! Clearly, then, the formula above for calculating
is too computationally-intensive to actually be of much value. (Remember

that
(

N
k

)
evaluates to N !

k!(N−k)!
, so just for 6-mers, the formula given above

would work out to 4096 ∗ 3 = 12288 factorials!)

2.3 Normal Distribution Approximation

To alleviate the problems of the enumeration-based method above, we note
that the binomial distribution is well modeled by the normal distribution,
for large values of N . The formula for a normal distribution is:

f(x) =
1

σ
√

2π
e−

(X−µ)2

2σ2 (12)

Using the normal distribution defined above, we can calculate z-scores, which
are standardized versions of raw data[3]. Using standardized data, we can
then compare our obtained values to the values we expected to see more
easily in order to view its significance. A z-score is quite similar to a p-value;
in fact, a z-score can be converted into a p-value.
If we say that X is a random variable, then the z-score is given by the
equation

Z =
X − µ
σ

. (13)

5



Recall that for the binomial distribution, µ = E [X] = Np and σ2 =

E
[
(k − µ)2

]
= Np(1− p), so the z-score for a given k-mer is:

zyi =
yi −Np√
Np(1− p)

This is indicative of a standard normal distribution, shifted and scaled such
that µ = 0 and σ2 = 1.

2.4 Assumptions

In the analyses we performed today, we made a number of assumptions to
simplify our work. In reality, things are not that simple, so we must address
the assumptions we made.

1. We assumed that the probability of each base was equal. In other
words, we assumed,

PA = PC = PG = PT =
1

4

but this is most likely not the case. To fix this assumption, let us assume
that the sum of the probabilities still add up to 1, but they are not
necessarily equal. This means that the 1

4w
term we had in our previous

equation, P = 1−
(
1− 1

4w

)L−w+1
will need to change. We obtained 1

4w

by performing w multiplications of 1
4
, since all the probabilities were

equal. We now need to use probabilities specific to the bases in the
k-mer we are interested in, i.e. if the k-mer we are interested in is
“ACGTAC,” then the 1

4w
term changes to PAPCPGPTPAPC . Thus, the

new formula for obtaining the probability of this k-mer in a sequence
S is

P = 1− (1− PAPCPGPTPAPC)L−w+1

Using this new definition of probability creates no problems in the use
of the other formulas given earlier in section 2.1, since they only rely
on the probability, which we have now updated.

2. We assumed that each base was independent of other bases. In a real
scenario, it is quite possible, for instance, that almost every A encoun-
tered is followed immediately by a T , but our model does not account
for this possibility.
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3. When we checked to see if a particular k-mer was in a sequence S, we
merely checked to see if that sequence appeared, returning true if it
was found, and false if it wasn’t. However, this does not keep track
of whether a k-mer could have appeared multiple times in the same
sequence.

4. We did all our calculations based on a particular k-mer, or k-mers of a
certain length, but it is entirely possible that k-mers of other lengths
exist.

5. We picked a k-mer to search for, and searched for exactly that pattern,
not allowing any variation to occur. It is quite possible, for exam-
ple, that the k-mer “CAACTG” could be substituted with the k-mer
“CAAGTG” and provide exactly the same result. To account for this,
one solution is using a positional weight matrix . This matrix would
be of dimensions 4× L, where L is the length of the k-mer. Each row
in the matrix is for 1 of the 4 bases, and each column stands for each
position in a sequence. The sum of each column adds to 1, since they
are probabilities of bases occurring in that particular position. Here is
an example positional weight matrix:


PA1 PA2 PA3 PA4 PA5 PA6

PC1 PC2 PC3 PC4 PC5 PC6

PG1 PG2 PG3 PG4 PG5 PG6

PT1 PT2 PT3 PT4 PT5 PT6

 =


0 1 0 0 0 1
1 0 1 .5 0 0
0 0 0 .5 0 0
0 0 0 0 1 0


This matrix would either correspond to the sequence “CACCTA” or
the sequence “CACGTA.”
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