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CpG islands

Example: CpG islands

CpG site: CpG is a pair of nucleotides C and G, appearing
successively in this order along one DNA strand. "CpG" stands for
cytosine and guanine separated by a phosphate, which links the two
nucleosides together in DNA.

CpG is relative rare in vertebrate genomes due to certain
biochemical properties.

Frequency of CpG dinucleotides in the human genome:
Based on 42% GC content (like the human genome).

1. Expected frequency: 0.21*0.21 = 4.41%

2. Actual frequnency: 1%
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CpG islands detection

CpG islands
Regions of the DNA that have a higher concentration of CpG sites,
typically several hundreds of nucleotides long.
What are CpG islands interesting? They are typically associated with
the promoter regions of genes. About half of the genes in human
have a CpG island present in their promoters.

CpG island detection problem
Input: A long DNA sequences X = (x1, · · · , xL) ∈ Σ∗

Question: Locate all CpG lands within X.
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An occasionally dishonest casino dealer

Suppose a dealer in a casino rolls a die. The dealer use a fair die most of
the time, but occasionally he switches to a loaded die. The loaded die has
probability 0.5 of a six and probability 0.1 for the numbers 1 to 5.
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Hidden Markov Model

Definition: A hidden Markov model (HMM) is a triplet M = (Σ, Q,Θ),
where

Σ is an alphabet of symbols, e.g. Σ = {1, 2, 3, 4, 5, 6}.

Q is a finite set of states, capable of emiting symbols from Σ, e.g.
Q = {F, L}.

Θ is a set of probabilities, consisting of
1) State transition probabilities, akl for all k, l ∈ Q. and 2) Emission
probabilities.
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Hidden Markov Model

State transition probabilities,akl for all k, l ∈ Q.

a =





aFF aFL

aLF aLL



 =





0.95 0.05

0.1 0.9





Emission probabilities: ek(b) for all k ∈ Q and b ∈ Σ.

eF =(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) (1)

eL =(0.1, 0.1, 0.1, 0.1, 0.1, 0.5) (2)

Denote Θ = (a, eF , eL).
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Path and joint prob

A path Π = (π1, · · · , πL) in the model M is a sequence of states,
modeled by a Markov chain.

P (πi = l|πi−1 = k) = akl

Joint probability:

P (X, Π) = aπ0,π1

L
∏

i=1

eπi
(xi)aπi,πi+1

where π0 = begin and πL+1 = end.

A sequence X = (x1, · · · , xL) ∈ Σ∗:

P (xi = b|πi = k) = ek(b)
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Decoding problem

The decoding problem
Input: A HMM M = (Σ, Q,Θ) and a sequence X = Σ∗, for which the
generating path Π = (π1, · · · , πL) is unknown.
Question: Find the most probable path Π̂ for X, i.e.

Π̂ = arg max
Π

P (X, Π)
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Decoding problem: Viterbi algorithm

Consider a path ending at k ∈ Q, and the probability of Π generating the
prefix (x1, · · · , xi) of X.

vk(i) = max
Π:πi=k

P (x1, · · · , xi, Π)

Initialize

vbegin(0) = 1; vk(0) = 0 ∀k 6= begin

For i = 0, · · · , L − 1 and l ∈ Q,

vl(i + 1) = el(xi+1) max
k∈Q

{vk(i)akl}

Finally

P (X, Π̂) = max
k∈Q

{vk(L)ak,end}
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The posterior decoding problem

The posterior decoding problem
Input: A HMM M = (Σ, Q,Θ), and a sequence X ∈ Σ∗, for which the
generating path Π = (π1, · · · , πL) is unknown.
Question: For all 1 ≤ i ≤ L and k ∈ Q, find P (πi = k|X).
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Posterior decoding: forward algorithm

Denote by fk(i) the prob of emitting the prefix (x1, · · · , xi) and eventually
reaching state πi = k:

fk(i) = P (x1, · · · , xi, πi = k)

Initialize

fbegin(0) = 1; fk(0) = 0 ∀k 6= begin

For i = 0, · · · , L − 1 and l ∈ Q,

fl(i + 1) = el(xi+1)
∑

k∈Q

fk(i)akl

Finally

P (X) =
∑

k∈Q

fk(L)ak,end
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Posterior decoding: backward algorithm

Denote by bk(i) the prob of emitting the suffix (xi=1, · · · , xL) given πi = k:

bk(i) = P (xi+1, · · · , xL|πi = k)

Initialize

bk(L) = ak,end ∀k ∈ Q

For i = L − 1, · · · , 1 and l ∈ Q,

bl(i) =
∑

l∈Q

aklel(xi+1)bk(i + 1)

Finally

P (X) =
∑

l∈Q

abegin,lel(x1)bl(1)
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The posterior decoding problem

The posterior decoding problem

P (X, πi = k) =P (x1, · · · , xi, πi = k)P (xi+1, · · · , xL|x1, · · · , xi, πi = k)

(3)

=P (x1, · · · , xi, πi = k)P (xi+1, · · · , xL|πi = k) (4)

=fk(i)bk(i) (5)

Hence,

P (πi = k|X) =
fk(i)bk(i)

P (X)
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Parameter estimation

Parameter estimation for HMM
Input: Given n example sequences X(1), · · · , X(n) ∈ Σ∗ of length
L(1), · · · , L(n), respectively, which were generated from a HMM
M = (Σ, Q,Θ) with unknown Θ.
Question: Find the most probable Θ̂, that is

Θ̂ = arg max
Θ

P (X(1), · · · , X(n)|Θ)
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Parameter estimation I: state is known

When the state sequence is known
Suppose we know the state sequences Π(1), · · · , Π(n) ∈ Σ∗

corresponding to X(1), · · · , X(n) ∈ Σ∗, respectively. We can then
scan the sequences and compute
1. Akl - the number of transitions from state k to l.
2. Ek(b) - the number of times that an emission of the symbol b

occurred in state k.
Then the ML estimators will be

akl =
Akl

∑

q∈Q Akq

(6)

ek(b) =
Ek(b)

∑

σ∈Σ Ek(σ)
(7)
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Parameter estimation I: state is unknown

When the state sequence is unknown: Baum-Welch algorithm
1. Initialization: Assign random values to Θ.
2. Expectation
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EM-algorithm: Expectation

Calculate the expected number of state transtions from statet k to l.
Note that

P (πi = k, πi+1 = l|X, Θ) =
fk(i)aklel(xi+1)bl(i + 1)

P (X)

Let {f (j)
k (i), b

(j)
k } denote the forward and backward probabilities of

the sequence X(j). Then the expectation is

Akl =

n
∑

j=1

1

P (X(j))

L(j)
∑

i=1

f
(j)
k (i) akl el(x

(j)
i+1) b

(j)
l (i + 1)
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EM-algorithm: Expectation

Calculate the expected number of emissions of the symbol b that
occurred at the state k,

Ek(b) =
n

∑

j=1

1

P (X(j))

∑

{i:x
(j)
i

=b}

f
(j)
k (i) b

(j)
k (i)
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EM-algorithm: Expectation

Initialize

Repeat until convergence

Expectation

Maximization: Update Θ using Akl and Ek(b).
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