Statistical Considerations of Multiple Testing

BE561

メロメ メ御メ メ君メ メ君メート

活

 299

Two Types of Error

Type I Error: False Discovery Type II Error: Missed Discovery

 $2Q$

目

 \blacktriangleright High-throughput microarray gene expression experiments

 $2Q$

扂

- \blacktriangleright High-throughput microarray gene expression experiments
	- \Rightarrow Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes

- \blacktriangleright High-throughput microarray gene expression experiments
	- \Rightarrow Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
	- \Rightarrow Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples

- \blacktriangleright High-throughput microarray gene expression experiments
	- \Rightarrow Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
	- \Rightarrow Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples
- Biological annotation metadata analysis

- \blacktriangleright High-throughput microarray gene expression experiments
	- \Rightarrow Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
	- \Rightarrow Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples
- \triangleright Biological annotation metadata analysis
	- \Rightarrow Tests of association between gene expression measures and biological annotation metadata
		- e.g.Gene Ontology(GO, <www.geneontology.org> annotation.

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

 \triangleright ChIP-chip experiments. Identification of transcription factor binding sites in ChIP-chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray (chip) hybridization of the IP-enriched DNA

Test of association between probe intensity measures and target sample (TF ChIP vs. control sample)

 \triangleright ChIP-chip experiments. Identification of transcription factor binding sites in ChIP-chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray (chip) hybridization of the IP-enriched DNA

Test of association between probe intensity measures and target sample (TF ChIP vs. control sample)

 \triangleright Protein sequence analysis. Tests of association between phenotypes and codon/amino acid mutations. e.g. Association between viral replication capacity and HIV-1 sequence variation.

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

...

 \triangleright Now assume we are carrying out multiple tests Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

A

 \leftarrow \Box

 $2Q$

重

扂

...

 \triangleright Now assume we are carrying out multiple tests Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

つくい

...

 \triangleright Now assume we are carrying out multiple tests Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

 \triangleright Note that V is the number of total Type I Errors, and T is the number of Type II Errors.

...

 \triangleright Now assume we are carrying out multiple tests Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

- \triangleright Note that V is the number of total Type I Errors, and T is the number of Type II Errors.
- \triangleright m is known, R (number of rejected null hypotheses) is observed. U,T,V,and S are all unobservable random variables.

 \triangleright Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .

A + + = +

 290

- \triangleright Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- \triangleright For multiple tests, the probability of making at least one Type I Frror in *m* tests is:

$$
1-(1-\alpha)^m
$$

つくい

- \triangleright Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- \triangleright For multiple tests, the probability of making at least one Type I Frror in *m* tests is:

$$
1-(1-\alpha)^m
$$

 \bullet m = 1000, $\alpha = 0.01$, P(TypeIErrors > 1) = 0.9999568!

- \triangleright Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- \triangleright For multiple tests, the probability of making at least one Type I Frror in *m* tests is:

$$
1-(1-\alpha)^m
$$

- \bullet m = 1000, $\alpha = 0.01$, P(TypeIErrors > 1) = 0.9999568!
- \triangleright We need to adjust for multiple hypothesis testing.

 \triangleright Definition: The family-wise error rate is the probability of at least one FP (i.e. Type I error), that is: $FWER = P(\#FP \geq 1)$

A + + = +

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 \leftarrow \Box

 $2Q$

目

- \triangleright Definition: The family-wise error rate is the probability of at least one FP (i.e. Type I error), that is: $FWER = P(\#FP \geq 1)$
- FWER is said to be controlled at level α if FWER $\leq \alpha$.

つくい

Let $H_1, H_2, ..., H_m$ be independent hypotheses.

AT H - 4 E \equiv \rightarrow 重 299

 $4.171 +$

- Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- Assume the first m are true, the others false:

 $2Q$

扂

- Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- \triangleright Assume the first m are true, the others false: $FWER = P(\#FP \geq 1) = 1 - P(\#FP = 0)$

 $2Q$

- Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- Assume the first m are true, the others false: $FWER = P(\#FP > 1) = 1 - P(\#FP = 0)$ $P(FP = 0) = P$ (not reject $H_1, ..., H_m$) $P(FP = 0) = (1 - \alpha_1)...(1 - \alpha_m)$ where $\alpha_i = P(reject H_i)$

- Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- \triangleright Assume the first m are true, the others false: $FWER = P(\#FP > 1) = 1 - P(\#FP = 0)$ $P(FP = 0) = P$ (not reject $H_1, ..., H_m$) $P(FP = 0) = (1 - \alpha_1)...(1 - \alpha_m)$ where $\alpha_i = P(reject H_i)$ $FWER = 1 - \prod_{j=1}^{m} (1 - \alpha_j)$

 \blacktriangleright e.g. 10 hypotheses, $\alpha_i = 0.05$, $FWER(m) = 1 - 0.95^m$ $FWER(0)=0\%$, $FWER(1)=5\%$, FWER(2) \approx 9.8%, FWER(10) \approx 40.1%

► e.g. 10 hypotheses, $\alpha_i = 0.167$, $FWER(m) = 1 - 0.83^m$ FWER(0)=0%, FWER(1)=16.7%, FWER(2)≈ 31.1%, *FWER*(10) ≈ 84.5%

つくい

[Statistical Considerations of Multiple Testing](#page-0-0)

 299

 \blacktriangleright Keep FWER below α

A. -4 E **IN** ∢ 重う

重

 299

 $4.171 +$

 \blacktriangleright Keep FWER below α

▶ Bonferroni Correction: Reject any hypothesis with $p - value \leq \frac{\alpha}{m}$ m Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$

つくい

- \blacktriangleright Keep FWER below α
- ▶ Bonferroni Correction: Reject any hypothesis with $p - value \leq \frac{\alpha}{m}$ m Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$
- ▶ Bonferroni Correction controls FWER

- \blacktriangleright Keep FWER below α
- ▶ Bonferroni Correction: Reject any hypothesis with $p - value \leq \frac{\alpha}{m}$ m Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$
- Bonferroni Correction controls FWER.
- \triangleright There are also other methods that control $FWFR$.
	- \Rightarrow Holm(1979) based on the order of raw p-values
	- ⇒ Westfall-Young (1993) step-up/step-down methods use order and joint distribution of raw p-values.

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

 $2Q$

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

 \triangleright FDR is the expected proportion of false positives among rejected hypotheses.

つくい

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

- \triangleright FDR is the expected proportion of false positives among rejected hypotheses.
- \triangleright Why introduce another quantity to control?

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

- \triangleright FDR is the expected proportion of false positives among rejected hypotheses.
- \triangleright Why introduce another quantity to control?
	- \Rightarrow Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

- \triangleright FDR is the expected proportion of false positives among rejected hypotheses.
- \triangleright Why introduce another quantity to control?
	- \Rightarrow Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...
	- \Rightarrow In theory-poor observational studies(i.e.microarray, ChIP-chip studies), the strategy is to test everything in sight.

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

 \triangleright Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$
FDR = E\left[\frac{FP}{max(R, 1)}\right]
$$

where R is the number of rejected hypotheses.

- \triangleright FDR is the expected proportion of false positives among rejected hypotheses.
- \triangleright Why introduce another quantity to control?
	- \Rightarrow Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...
	- \Rightarrow In theory-poor observational studies(i.e.microarray, ChIP-chip studies), the strategy is to test everything in sight.
	- \Rightarrow For genomics experiments, controlling the probability of one or more Type I errors is too severe but doing nothing at all is also unacceptable. FDR is a compromise.

 Ω

To control FDR at level α :

In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.

 $2Q$

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 290

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 \triangleright Calculate the threshold value for each p-value:

 $k.\alpha$ m

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 \triangleright Calculate the threshold value for each p-value:

$$
\frac{k.\alpha}{m}
$$

Let
$$
k' = max \{k : p_{(k)} \le \frac{k \cdot \alpha}{m}\}, k = 1, 2, ..., m
$$
. If it turns out that $k' = 0$ for all k then take $p_{(k)} \ge \frac{k \cdot \alpha}{m}$.

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 \triangleright Calculate the threshold value for each p-value:

$$
\frac{k.\alpha}{m}
$$

Let
$$
k' = max \{k : p_{(k)} \le \frac{k \cdot \alpha}{m}\}, k = 1, 2, ..., m
$$
. If it turns out that $k' = 0$ for all k then take $p_{(k)} \ge \frac{k \cdot \alpha}{m}$.

^I Decision rule:

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 \triangleright Calculate the threshold value for each p-value:

$$
\frac{k.\alpha}{m}
$$

Let
$$
k' = max \{k : p_{(k)} \le \frac{k \cdot \alpha}{m}\}, k = 1, 2, ..., m
$$
. If it turns out that $k' = 0$ for all k then take $p_{(k)} \ge \frac{k \cdot \alpha}{m}$.

- \blacktriangleright Decision rule:
	- \Rightarrow If $\kappa^{'}\geq1,$ then reject the hypotheses corresponding to $p_{(1)}, p_{(2)}, \ldots, p_{(k)}$.

To control FDR at level α :

- In Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- \triangleright Order these p-values from smallest to largest:

 $p_{(1)}, p_{(2)}, \ldots, p_{(n)}$

 \triangleright Calculate the threshold value for each p-value:

$$
\frac{k.\alpha}{m}
$$

Let
$$
k' = max \{k : p_{(k)} \le \frac{k \cdot \alpha}{m}\}, k = 1, 2, ..., m
$$
. If it turns out that $k' = 0$ for all k then take $p_{(k)} \ge \frac{k \cdot \alpha}{m}$.

- \blacktriangleright Decision rule:
	- \Rightarrow If $\kappa^{'}\geq1,$ then reject the hypotheses corresponding to $p_{(1)}, p_{(2)}, \ldots, p_{(k)}$. \Rightarrow If $k' = 0$, don't reject anything.

 \blacktriangleright Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .

- \blacktriangleright Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .
- \triangleright FDR is a global (for all hypotheses) measure of significance. It is the expected proportion of false positives among significant hypotheses.

- \blacktriangleright Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .
- \triangleright FDR is a global (for all hypotheses) measure of significance. It is the expected proportion of false positives among significant hypotheses.
- \triangleright This is not the only way to control FDR or other quantities. See:

[Genomics, Prior Probability, and Statistical Tests of Multiple](http://www.genome.org/cgi/content/full/14/6/997) [Hypotheses, Genome Res. 2004 Jun;14\(6\):997-1001.](http://www.genome.org/cgi/content/full/14/6/997)

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

Acknowledgement

• Slides are due to Zhiping Weng, BU