Statistical Considerations of Multiple Testing

BE561

Single Hypothesis Testing

Two Types of Error

Type I Error: False Discovery
Type II Error: Missed Discovery

	Not Reject	Reject
H ₀ True	TN	FP (Type I Error)
H ₀ False	FN(Type II Error)	TP

► High-throughput microarray gene expression experiments

- ► High-throughput microarray gene expression experiments
 - ⇒ Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes

- ▶ High-throughput microarray gene expression experiments
 - ⇒ Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
 - ⇒ Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples

- ► High-throughput microarray gene expression experiments
 - ⇒ Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
 - ⇒ Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples
- ▶ Biological annotation metadata analysis

- ▶ High-throughput microarray gene expression experiments
 - ⇒ Identification of differentially expressed genes by testing for associations between gene expression measures and clinical covariates and outcomes
 - ⇒ Identification of co-expressed genes by testing for associations in the expression measures of sets of genes across biological samples
- Biological annotation metadata analysis
 - ⇒ Tests of association between gene expression measures and biological annotation metadata e.g.Gene Ontology(GO, www.geneontology.org annotation.

- ChIP-chip experiments. Identification of transcription factor binding sites in ChIP-chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray (chip) hybridization of the IP-enriched DNA
 - Test of association between probe intensity measures and target sample (TF ChIP vs. control sample)

- ► ChIP-chip experiments. Identification of transcription factor binding sites in ChIP-chip experiments, where chromatin immunoprecipitation (ChIP) of transcription factor bound DNA is followed by microarray (chip) hybridization of the IP-enriched DNA
 - Test of association between probe intensity measures and target sample (TF ChIP vs. control sample)
- ▶ Protein sequence analysis. Tests of association between phenotypes and codon/amino acid mutations. e.g. Association between viral replication capacity and HIV-1
 - sequence variation.

▶ Now assume we are carrying out multiple tests

Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

▶ Now assume we are carrying out multiple tests

Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

	Not Significant	Significant	Total
Null is TRUE	U	V	m ₀
Null is FALSE	Т	S	m-m ₀
	m-R	R	m

▶ Now assume we are carrying out multiple tests

Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

	Not Significant	Significant	Total
Null is TRUE	U	V	m ₀
Null is FALSE	Т	S	m-m ₀
	m-R	R	m

Note that V is the number of total Type I Errors, and T is the number of Type II Errors.

▶ Now assume we are carrying out multiple tests

Test1: H_1 vs A_1 with p-value p_1 Test2: H_2 vs A_2 with p-value p_2

Testm: H_m vs A_m with p-value p_m

If we knew which null hypotheses were true and if we had a procedure to accept/reject each test (p-value $< \alpha$), then we would have a table as follows:

	Not Significant	Significant	Total
Null is TRUE	U	V	m_0
Null is FALSE	Т	S	m-m ₀
	m-R	R	m

- ▶ Note that V is the number of total Type I Errors, and T is the number of Type II Errors.
- ▶ m is known, R (number of rejected null hypotheses) is observed. U,T,V,and S are all unobservable random variables.

Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .

- Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- For multiple tests, the probability of making at least one Type I Error in m tests is:

$$1-(1-\alpha)^m$$

- Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- For multiple tests, the probability of making at least one Type I Error in m tests is:

$$1 - (1 - \alpha)^m$$

▶ m = 1000, α = 0.01, $P(TypelErrors \ge 1) = 0.9999568!$

- ▶ Assume we are looking at each hypothesis in isolation, rejecting the null hypothesis H_i if $p_i < \alpha$. The probability of making a Type I Error for a single test is α .
- For multiple tests, the probability of making at least one Type I Error in m tests is:

$$1 - (1 - \alpha)^m$$

- ▶ m = 1000, α = 0.01, $P(TypelErrors \ge 1) = 0.9999568!$
- We need to adjust for multiple hypothesis testing.

Family-wise Error Rate

▶ Definition: The family-wise error rate is the probability of at least one FP (i.e. Type I error), that is: $FWER = P(\#FP \ge 1)$

Family-wise Error Rate

- ▶ Definition: The family-wise error rate is the probability of at least one FP (i.e. Type I error), that is: $FWER = P(\#FP \ge 1)$
- ▶ FWER is said to be controlled at level α if FWER $\leq \alpha$.

▶ Let $H_1, H_2, ..., H_m$ be independent hypotheses.

- ▶ Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- Assume the first *m* are true, the others false:

- ▶ Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- Assume the first m are true, the others false: $FWER = P(\#FP \ge 1) = 1 P(\#FP = 0)$

- ▶ Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- ▶ Assume the first *m* are true, the others false:

FWER =
$$P(\#FP \ge 1) = 1 - P(\#FP = 0)$$

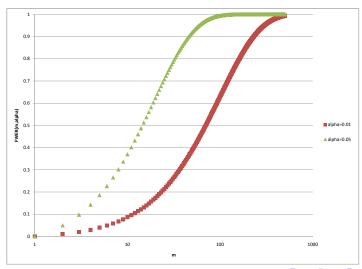
 $P(FP = 0) = P(\text{ not reject } H_1, ..., H_m)$
 $P(FP = 0) = (1 - \alpha_1)...(1 - \alpha_m) \text{ where } \alpha_j = P(\text{reject } H_j)$

- ▶ Let $H_1, H_2, ..., H_m$ be independent hypotheses.
- Assume the first *m* are true, the others false:

FWER =
$$P(\#FP \ge 1) = 1 - P(\#FP = 0)$$

 $P(FP = 0) = P(\text{ not reject } H_1, ..., H_m)$
 $P(FP = 0) = (1 - \alpha_1)...(1 - \alpha_m) \text{ where } \alpha_j = P(\text{reject } H_j)$
 $FWER = 1 - \prod_{i=1}^{m} (1 - \alpha_i)$

- ▶ e.g. 10 hypotheses, $\alpha_j = 0.05$, $FWER(m) = 1 0.95^m$ FWER(0)=0%, FWER(1)=5%, $FWER(2)\approx 9.8\%$, $FWER(10)\approx 40.1\%$
- ▶ e.g. 10 hypotheses, $\alpha_j = 0.167$, $FWER(m) = 1 0.83^m$ FWER(0)=0%, FWER(1)=16.7%, $FWER(2)\approx 31.1\%$, $FWER(10)\approx 84.5\%$



ightharpoonup Keep FWER below lpha

- Keep FWER below α
- ▶ Bonferroni Correction: Reject any hypothesis with $p-value \leq \frac{\alpha}{m}$ Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$

- Keep FWER below α
- ▶ Bonferroni Correction: Reject any hypothesis with $p-value \leq \frac{\alpha}{m}$ Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$
- Bonferroni Correction controls FWER.

- Keep FWER below α
- ▶ Bonferroni Correction: Reject any hypothesis with $p-value \leq \frac{\alpha}{m}$ Bonferroni adjusted p-values: $p_{Bonferroni} = min(m.p_j, 1)$
- Bonferroni Correction controls FWER.
- ▶ There are also other methods that control FWER:
 - \Rightarrow Holm(1979) based on the order of raw p-values
 - \Rightarrow Westfall-Young (1993) step-up/step-down methods use order and joint distribution of raw p-values.

▶ Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

▶ Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

where R is the number of rejected hypotheses.

FDR is the expected proportion of false positives among rejected hypotheses.

► Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

- FDR is the expected proportion of false positives among rejected hypotheses.
- Why introduce another quantity to control?

▶ Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

- FDR is the expected proportion of false positives among rejected hypotheses.
- Why introduce another quantity to control?
 - ⇒ Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...

▶ Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

- FDR is the expected proportion of false positives among rejected hypotheses.
- Why introduce another quantity to control?
 - ⇒ Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...
 - \Rightarrow In theory-poor observational studies(i.e.microarray, ChIP-chip studies), the strategy is to test everything in sight.

▶ Alternative measure for multiple testing error introduced by Benjamini-Hochberg (1995):

$$FDR = E\left[\frac{FP}{max(R,1)}\right]$$

- ► FDR is the expected proportion of false positives among rejected hypotheses.
- Why introduce another quantity to control?
 - ⇒ Bonferroni adjustment is too strict for many applications. It was originally developed for well-crafted experiments with well designed follow-up questions. It works well for those...
 - ⇒ In theory-poor observational studies(i.e.microarray, ChIP-chip studies), the strategy is to test everything in sight.
 - ⇒ For genomics experiments, controlling the probability of one or more Type I errors is too severe but doing nothing at all is also unacceptable. FDR is a compromise.

To control FDR at level α :

Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.

- Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- ▶ Order these p-values from smallest to largest:

$$p_{(1)}, p_{(2)}, ..., p_{(n)}$$

To control FDR at level α :

- ▶ Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- ▶ Order these p-values from smallest to largest:

$$p_{(1)}, p_{(2)}, ..., p_{(n)}$$

► Calculate the threshold value for each p-value:

$$\frac{\mathbf{k}.\alpha}{\mathbf{m}}$$

To control FDR at level α :

- Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- ▶ Order these p-values from smallest to largest: $P(1), P(2), \dots, P(n)$
- Calculate the threshold value for each p-value:

$$\frac{k.\alpha}{m}$$

▶ Let $k' = max \left\{ k : p_{(k)} \leq \frac{k.\alpha}{m} \right\}$, k = 1, 2, ..., m. If it turns out that k' = 0 for all k then take $p_{(k)} \geq \frac{k.\alpha}{m}$.

- Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- ▶ Order these p-values from smallest to largest: $P(1), P(2), \dots, P(n)$
- ► Calculate the threshold value for each p-value:

$$\frac{k.\alpha}{m}$$

- ▶ Let $k' = max \left\{ k : p_{(k)} \leq \frac{k.\alpha}{m} \right\}$, k = 1, 2, ..., m. If it turns out that k' = 0 for all k then take $p_{(k)} \geq \frac{k.\alpha}{m}$.
- Decision rule:

- Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- ▶ Order these p-values from smallest to largest: $P(1), P(2), \dots, P(n)$
- ► Calculate the threshold value for each p-value:

$$\frac{k.\alpha}{m}$$

- ▶ Let $k' = max \{k : p_{(k)} \leq \frac{k.\alpha}{m}\}, k = 1, 2, ..., m$. If it turns out that k' = 0 for all k then take $p_{(k)} \geq \frac{k.\alpha}{m}$.
- Decision rule:
 - \Rightarrow If $k^{'} \geq 1$, then reject the hypotheses corresponding to $p_{(1)}, p_{(2)}, ..., p_{(k)}$.

- Let $p_1, p_2, ..., p_n$ the p-values of the m tests we carried out.
- Order these p-values from smallest to largest: $p_{(1)}, p_{(2)}, ..., p_{(n)}$
- Calculate the threshold value for each p-value:

$$\frac{k.\alpha}{m}$$

- ▶ Let $k' = max \{k : p_{(k)} \leq \frac{k \cdot \alpha}{m}\}, k = 1, 2, ..., m$. If it turns out that k'=0 for all k then take $p_{(k)} \geq \frac{k \cdot \alpha}{m}$.
- Decision rule:
 - \Rightarrow If $k^{'} \geq 1$, then reject the hypotheses corresponding to $p_{(1)}, p_{(2)}, ..., p_{(k)}.$ \Rightarrow If k' = 0, don't reject anything.

▶ Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .

- ▶ Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .
- ► FDR is a global (for all hypotheses) measure of significance. It is the expected proportion of false positives among significant hypotheses.

- ▶ Benjamini-Hochberg procedure controls FDR at level α assuming that the test statistics from each hypothesis is independent. You are guaranteed that the false discovery rate for the k hypotheses you have rejected is not bigger than α .
- ► FDR is a global (for all hypotheses) measure of significance. It is the expected proportion of false positives among significant hypotheses.
- ► This is not the only way to control FDR or other quantities. See:
 - Genomics, Prior Probability, and Statistical Tests of Multiple Hypotheses, Genome Res. 2004 Jun;14(6):997-1001.

Acknowledgement

Slides are due to Zhiping Weng, BU