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I. Motif Discovery via Enumeration 
 

A. A Model for Motif Discovery (Review from Lecture 2) 
 

We want to identify biologically significant motifs in a set S of n 
sequences, s1, s2,…, sn.  Each potentially significant motif mi of length w is 
associated with a summation variable ki, which is the total number of 
sequences from S in which the motif appears.  To systematically measure this 
significance, we must first find the underlying probability p any sequence of 
length l contains any theoretical motif of length w.  With the overriding 
assumption that the four bases are uniformly distributed, or 
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.  We use p as the probability of success for finding this 

theoretical motif each time we sample a sequence from set S.  For k out of n 
trials, the probability of success is binomial, 
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as a motif either is in a sequence or is not.  To test the significance of our 
specific motif mi, we evaluate a p-value, or the probability, based on our 
distribution, that mi would appear in at least ki sequences: 
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If the p-value is smaller than a chosen significance level,1 we can say with 

some confidence that our motif mi is biologically significant.  For large n the 
binomial distribution is approximated by a normal distribution, and we can 
map ki to a new distribution and compute the z-score to determine the 
significance of our motif mi. 
 
 

B. Problems with this Model 
 

1. The assumption that the four bases are uniformly distributed in the 
sequences is not necessarily correct.  To be more accurate, we would need 
to model the first-order statistics (i.e., P(A), P(C), P(G), and P(T)) of the 
nucleotide distribution.   

 
2. The model ignores second-order statistics.  Two bases might be more 

likely paired together than distributed at random (e.g. 

! 

P(GA) " P(G)P(A) ).  The same could be also said for higher-order 
statistics. 

 
 

C. Control Sequences 
 

In order not to rely on the assumption of uniform distribution of bases 
to measure significance, we can generate a set of N control sequences, s1

o, 
s2

o,…,sN
o.  The assumption is that our motif of interest mi is not significant 

in the control sequences.    Now we have two sets of sequences.  Each mi 
is associated with two values ki and ki

o, which correspond with the number 
of different sequences this motif appears in the sets of sequences S and So, 
respectively.  Now to find out if our motif mi is biologically significant, 
we choose the appropriate probability distribution for successfully finding 
a motif in k out of n trials.  There are two types to choose from: 
 
1. The binomial distribution  
 

If the set S is independent of So, we can still model the probability 
of success P(k) on finding a motif in k out of n trials using the 
binomial distribution.  If

! 

S " S
o (i.e., the set S is a subset of So), 

choosing the appropriate distribution now depends on the size of both 
sets and the distribution of our motif mi in them.  If the number N of So 
sequences and the number ki

o of sequences containing our motif are 
large compared to the number n of S sequences, then the probability p 
of randomly picking a sequence with our motif remains essentially 
unchanged for n trials, and we could still model the probability P(k) 
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using the binomial distribution.2  For these scenarios the only change 
we need to make from the model in Part A is to adopt a different 
underlying probability p of success for finding a motif every time we 

sample a sequence.  For p we will use the relative frequency 

! 

k
i

o

N
our 

motif mi is found in the set So.  This way, when we run k trials, we can 
compare the distributions from both S and So to see if our motif indeed 
stands out in S.  The probability of success on k out of n trials may be 
written as 
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To test the significance of our motif, we calculate the p-value in 

the same fashion as we did before: 
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P(k)
k= k

i

n

" .  For large n we can again 

map ki to a normal distribution with mean np and variance np(1-p) and 
compute the z-score. 

 
2. The hypergeometric distribution 
 

If 

! 

S " S
o and if either N or ki

o is not large compared to n for a 
given mi, the sequence of n trials is analogous to sampling without 
replacement.  The probability p of randomly picking a sequence with 
our motif changes significantly over n trials.  Hence, we cannot use the 
binomial distribution, which assumes the same p for all trials.  The 
appropriate distribution is hypergeometric, where the probability of 
success on finding a motif in k out of n trials is 
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motif from the total number K of sequences with that motif, 
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number of ways of choosing n sequences from the total number N 
sequences.   
 

While using this distribution to test the significance of our 
particular motif mi, we assign ki

o to the value K.  Like before we 

calculate the p-value using the summation
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i
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" .  We cannot 

compute a z-score here, as a normal distribution does not approximate 
a hypergeometric distribution for large n. 

 
 
 

II. Representation of a Motif Using a Position Weight Matrix 
 

A. What is a Position Weight Matrix? 
 

Motifs are hardly ever represented accurately by a unique consecutive 
sequence of A’s, C’s, G’s and T’s.   Instead, we create a position weight 
matrix (PWM) to represent the frequencies of each base at each position in the 
motif: 

 
 

 
 
 
 

Sometimes a position weight matrix is represented by a sequence logo, 
where the height of the letters representing the nucleotides correlates with the 
frequency that base is found in n different sequences containing the motif: 

 
 
 
 

 
From the example above, position 1 is said to be degenerate; there is no 

single nucleotide that represents the motif here.  On the other hand position 3 
is said to be stringent because the motif is well represented by adenosine. 

 
 

B. Mathematical Representation of a Position Weight Matrix 
 

The position weight matrix for a motif of width w can be expressed as 
 

G    0   1.0     0    0     0.7  1.0    0      0    0.4   0.8 
A  0.4    0    1.0   0      0      0    1.0    0      0      0 
T     0.6    0      0   1.0   0.3    0      0    1.0   0.4   0.2 
C     0      0      0     0       0    0      0      0    0.2    0 
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where each row j represents A, C, G, or T, and each column i represents one 
position of the motif, and is normalized:  
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for all i = 1, 2,…w.  For example θ23 is the relative frequency that guanine is 
found in position 2 of the motif.  

 
 
C. Likelihood of a Sequence 
 

If all the relative frequencies θij are given for the position weight matrix θ, 
we can measure the probability of generating a sequence S = (s1, s2,…, sw).  
This is also known as the likelihood L(θ) of the sequence.  For example we 
can use a position weight matrix of width w = 3 to calculate likelihood of the 
sequence GGG.  It is simply the product of three relative frequencies θ13, θ23, 
and θ33.   

 
Generalizing this using mathematics, we find the likelihood of a sequence 

S = (s1, s2,…, sw) given θi is 
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where 
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I si = j( ) =
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0  if not
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Let us briefly go over a few syntax elements.  First of all, the expression 

P(S|θ) represents a conditional probability:  We are asking,  “What is the 
likelihood of sequence S given the condition that the position weight matrix is 
θ?”  Secondly, the 

! 

" (i.e., capital pi) notation means we take the product of 
the associated terms.  Finally, for convenience we converted the alphabetical 
string (A, C, G, T) into a numerical one (1, 2, 3, 4).  These numbers are 
represented by the variable j in the above expression.   

 
Other ways of expressing the likelihood L(θ) are 
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The conditional probability P(si|θi) is the probability of generating a 

nucleotide element si given its relative frequency θi.    
 
We can expand this idea further and measure the likelihood for a set of 

sequences S1, S2,…, Sn given θ.  Since we are assuming each sequence Sk is 
generated independently from θ, this probability is simply the product of the 
relative frequencies 
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 representing each nucleotide element ski: 
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Note that the syntax P(S1, S2,…,Sn|θ) represents a joint probability—the 

probability of generating sequences S1, S2,…, Sn —as well as a conditional 
probability—the probability given θ. 

 
 
D. Using Maximum Likelihood to Estimate the Positional Weight Matrix θ 
 

Often times we want to construct a position weight matrix θ of length w 
from observed sequence data.  For a set of sequences S1, S2,…, Sn represented 
by the same θ, our strategy is to maximize the likelihood L(θ) over all 
possible values of θij.  This could be done by setting the partial derivative 
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"L(#)

"#ij
 equal to zero and solving for θij; however, it is much easier to take the 

partial derivative with respect to the log-likelihood function (i.e., the logarithm 
of the likelihood) and set it to zero 
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because the product associated with the likelihood L(θ) turns into a sum.  Note 
that there are only 3w and not 4w parameters for which we need to solve, 

since if we figure out θi1, θi2, and θi3, we can use the relation 
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us θi4.   
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Using this method on a set of sequences S1, S2,…, Sn, all with the same θ, 

we can derive an expression for the relative frequency 
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which is simply the absolute frequency of each nucleotide j for every column 
i, divided by the total number of sequences n. 

 
Often times it is much harder to solve for the position weight matrix θ.  It 

is quite likely within a set of n given sequences S1, S2,…, Sn that only some 
sequences contain the motif, and thus only this subset can generate the weight 
matrix θ.  The problem is we do not know which sequences form this subset.  
Let us assume the rest of the “non-motif” (also called background) sequences 
form a subset generated from a single distribution (i.e., from a second position 
weight matrix θo made up of identical columns of po = (po

A, po
C, po

G, po
T) = 

(po
1, po

2, po
3, po

4).  The likelihood L(θ, θo) for this set of sequences S1, S2,…, 
Sn is now 
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The problem of not knowing if a sequence Sk belongs to the motif (θ) or 

the background model (θo) can now be expressed mathematically as not 
knowing which value 0 or 1 to use for the binary function zk associated with 
each Sk.  Fortunately, we can remove z from the equation by integrating the 
likelihood L(θ, θo) over all possible events z:3 
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After integration, we are left with 
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We may be fortunate to know the probability P(zk =1) for the set of 
sequences S1, S2,…, Sn.  Representing this probability as the constant α, the 
likelihood of the set may now be written as 
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Having successfully expressed the likelihood as a function of 3w 

independent variables 
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 and 3 independent variables
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"
i ,ski

o , we can now use 
our strategy of solving for 
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and
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"
i ,ski

o  when the likelihood is at a maximum.  
However, setting the partial derivatives of the log-likelihood function equal to 
zero is too difficult a task because the likelihood L(θ, θo) in this case is simply 
not just a product of the independent variables.  We will implement the EM 
Algorithm next lecture to solve this maximum likelihood estimation problem. 

 
 
 
                                                
1 Wikipedia, “P-value,” http://en.wikipedia.org/wiki/P-value. 
2 The relative frequency 
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 must also not be close to 0 or 

1. 
3 In general we can calculate a marginal probability from a conditional or joint 
probability by removing one of the variables using integration 
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where we take the sum over all possible events Y.  From R. Durbin, S. Eddy, A. Krogh, 
and G. Mitchison, Biological Sequence Analysis, Cambridge University Press, 2006, p. 6. 


