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1 Gene Regulation

The task of identifying regulatory motifs is an important problem in com-
putational biology. In this section we first introduce the relevant biological
concepts. A basic method for solving the motif discovery problem is described
in Section 2.

1.1 The Central Dogma

Genetic information is stored in living organisms in DNA, RNA and protein
molecules. The primary structure of these molecules is a linear chain, and
hence they can be viewed as sequences of letters. This sequential biological
information can be transferred between DNA, RNA and protein molecules.
The so-called “central dogma of molecular biology” describes which types
of transfers are allowed: information cannot be transferred from protein to
either protein, DNA or RNA, but all other transfers are allowed.

Under normal conditions, only three transfers typically occur: DNA to
DNA (DNA replication), DNA to mRNA (transcription), and RNA to pro-
tein (translation). This article is about transcription, where DNA informa-
tion is copied to messenger RNA (mRNA), a type of RNA which encodes
the information required to create a protein product.
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1.2 Transcriptional Regulation

Genes (the functional parts of our DNA) can be divided into coding regions
and non-coding regions. Coding regions contain the genetic information that
is transcribed into RNA. In the non-coding regions, there are binding sites
which affect the transcription process. When DNA-binding proteins bind
to these sites, they influence the transcription process. When proteins bind
to an activator binding site, the rate of transcription is increased, while
proteins binding to repressor binding sites reduce or prevent transcription.
The term transcriptional regulation refers to such processes that control the
rate of transcription. The DNA-binding proteins involved in transcription
regulation are called transcription factors.

1.3 Regulatory Motifs

Transcription factors are capable of binding to specific parts of DNA, de-
termined by the DNA sequence information. Hence, strings in the DNA
sequence that encode these transcription factor binding sites can be directly
related to gene regulation. Such strings are called motifs. Biologists are in-
terested in understanding gene regulation, and hence are interested in iden-
tifying these motifs.

It is known that motifs are generally short (roughly 6 — 20 binding pairs).
Motifs are located somewhere within the vicinity of the coding region, usually
upstream (earlier in the sequence).

2 Regulatory Motif Discovery

To introduce the motif discovery problem, we will consider an example sce-
nario. A scientist is studying gene regulation in yeast. Using a gene chip
microarray, she has recorded the level of expression of each gene, in terms of
the number of copies of the mRNA sequences, at 15 regular intervals through-
out a single cell cycle. Thus, for each gene she has a profile, which can be
visualized as a graph of expression level over time, with 15 data points.

Using a clustering algorithm such as k-means, she has identified a set of
genes that have similar profiles. The scientist hypothesizes that the similar
patterns of expression that these genes share may be triggered by a common
transcription factor binding site; i.e. the genes share a common motif. To
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test this hypothesis, she needs to find candidate motifs, and evaluate the
significance of the observed motif occurences.

The problem can now be stated formally as follows: We have a set S
containing N sequences of length L over the alphabet A = {A,G, T, C}.
Each sequence represents the sequence data in a fixed-size window upstream
from the coding region of a gene. The goal is to identify subsequences that
occur in significantly more of the N sequences than we would expect to occur
by random chance, i.e. are overrepresented. If a string is overrepresented,
this is evidence that it may be involved in the regulatory processes for the
set of genes.

2.1 Enumeration

A very simple method for finding motifs is to simply consider all subsequences
of a given length k (referred to as k-mers), and find the one that occurs in
the most elements of S. Since there are 4 letters in our alphabet, there are 4k

k-mers to consider. For each k-mer, we simply iterate over the N sequences,
and add one to a count for that k-mer for each sequence that containts that
k-mer as a subsequence. If we assume that all k-mers are equally likely to
occur, the k-mer with the highest count value is the most likely to be a motif.
We can visualize this as constructing a histogram of the occurrences of each
k-mer in distinct sequences, and simply selecting the k-mer with the largest
value in the histogram.

Although we only consider the simplest form of the enumeration strategy
here, the method can easily be extended to consider degenerate patterns,
such as by combining smaller overrepresented words into a more flexible
motif description. In practice, the assumption that all k-mers are equally
likely to occur is not particularly accurate, and overrepresentation must be
assessed with respect to a more sophisticated statistical background model,
which could for instance be a Markov model derived from the count data.

2.2 Measuring Significance

It is important to evalute potential motifs with respect to statistical sig-
nificance — how surprised are we that a k-mer m occured in j of the N
sequences? If it is very unlikely that this result was observed due to random
chance, this supports the hypothesis that m is a true motif.
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Here, for simplicity we will rely upon the unrealistic assumption that
each letter is equally likely: (p(A), p(G), p(C), p(T )) = (1

4
, 1

4
, 1

4
, 1

4
). Let us

first consider one sequence by itself: how likely is a particular k-mer to occur
(at least once) in a sequence s of length L?

Since all k-mers are equally likely, and there are 4k of them, it is easy to
see that the probability that a specific k-mer occurs in a sequence of length
k is 1

4k . The probability that it does not occur in such a sequence is hence
1 − 1

4k . There are L − k + 1 subsequences of length k in the sequence s, so
the probability that it does not occur at all in the sequence is (1− 1

4k )L−k+1,
and hence the probability p that it does occur in s is one minus that, i.e.

p = 1− (1− 1

4k
)
L−k+1

.

The test “does a sequence si ∈ S contain a subsequence m” can be viewed
as a Bernoulli trial (i.e. similar to a weighted coin toss) with probability p
of success. The probability distribution of repeated independent Bernoulli
trials is binomial, i.e. the probability of j out of the N sequences containing
the word m can be described by

P (j) =

(
N

j

)
pj(1− p)N−j .

To evaluate the significance of our observation, we need to compute a p-
value, which represents the probability of the occurence of an event at least as
extreme as the observed result, under the assumption that the null hypothesis
is true (all letters are equally likely). This can be evaluated by summing the
probabilities of all of the outcomes where the number of occurrences is j or
higher, i.e.

p value =
N∑

i=j

P (i) =
N∑

i=j

(
N

i

)
pi(1− p)N−i .

If the p value is very small, this is evidence that the null hypothesis is
false, as it indicates that the observed result is very unlikely to occur given
the null hypothesis. Normally, before looking at the data we decide upon a
significance level α, which is the highest value of p for which we will reject
the null hypothesis. The value α = 0.05 is most often used in the scientific
literature, corresponding to a five percent chance that the result was observed
given the null.
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If the p value is less than α, the result is sufficiently unlikely given the
null hypothesis for us to conclude that the null hypothesis is probably false.
This gives credence to the alternative hypothesis, that the word m is a true
motif that is somehow involved in regulation.
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