EM-algorithm for motif discovery

Xiaohui Xie

University of California, Irvine

Position weight matrix

Position weight matrix representation of ^a motif with width w :

$$
\theta = \begin{bmatrix} \theta_{11} & \theta_{21} & \cdots & \theta_{w1} \\ \theta_{12} & \theta_{22} & \cdots & \theta_{w2} \\ \theta_{13} & \theta_{23} & \cdots & \theta_{w3} \\ \theta_{14} & \theta_{24} & \cdots & \theta_{w4} \end{bmatrix}
$$
 (1)

where each column represents one position of the motif, and is normalized:

$$
\sum_{j=1}^{4} \theta_{ij} = 1 \tag{2}
$$

$$
for all i = 1, 2, \cdots, w.
$$

Likelihood

Given the position weight matrix $\theta,$ the probability of generating a sequence $S=(S_1,S_2,\cdots,S_w)$ from θ is

$$
P(S|\theta) = \prod_{i=1}^{w} P(S_i|\theta_i)
$$
\n
$$
= \prod_{i=1}^{w} \theta_{i,S_i}
$$
\n(3)

For convenience, we have converted S from a string of $\{A,C,G,T\}$ to a string of $\{1,2,3,4\}.$

Likelihood

■ Suppose we observe not just one, but a set of sequences S_1, S_2, \cdots, S_n . Assume each of them is generated independently from $\theta.$ Then, the likelihood for observing
... these n sequences is

$$
P(S_1, S_2, \cdots, S_n | \theta) = \prod_{k=1}^n P(S_k | \theta)
$$
(5)

$$
= \prod_{k=1}^n \prod_{i=1}^w \theta_{i, S_{ki}}
$$
(6)

Parameter estimation

- Now suppose we do not know $\theta.$ How to estimate it from the observed sequence data $S_1, S_2,$ $, \cdots, S_n$?
- One solution: calculate the likelihood of observing the provided n sequences for different values of $\theta,$

$$
L(\theta) = P(S_1, S_2, \cdots, S_n | \theta) = \prod_{k=1}^{n} \prod_{i=1}^{w} \theta_{i, S_{ki}}
$$
 (7)

Pick the one with the largest likelihood, that is, to find θ^* that

$$
\max_{\theta} P(S_1, S_2, \cdots, S_n | \theta) \tag{8}
$$

Estimating ^θ **using maximum likelihood**

The optimal θ^* can be derived by setting

$$
\frac{\partial \log L(\theta)}{\partial \theta_{ij}} = 0 \tag{9}
$$

subject to the normalization constraint.

• The maximum likelihood estimate is

$$
\theta_{ij} = \frac{n_{ij}}{n} \tag{10}
$$

which is simply the frequency of different letters at eachposition. $(n_{ij}%)_{ij}=n_{ij}\left(i\right) ,$ is the number of letter j at position i).

Mixture of sequences

- **•** Suppose we have a more difficult situation. Among the set of n given sequences, $S_1, S_2,$ \ldots, S_n , some of them are generated by a weight matrix $\theta,$ but some of them are not. How to identify θ in this case?
- Let us first define the "*non-motif*" (also called *background*) sequence. Suppose they are generated from ^a singledistribution

$$
p^{0} = (p_{A}^{0}, p_{C}^{0}, p_{G}^{0}, p_{T}^{0}) = (p_{1}^{0}, p_{2}^{0}, p_{3}^{0}, p_{4}^{0})
$$
 (11)

Likelihood for mixture of sequences

- Now the problem is we do not know which sequence isgenerated from the motif (θ) and which one is generated from the background model (θ^0 $^{\mathrm{o}}$).
- Suppose we are provided with such label information:

$$
z_i = \begin{cases} 1 & \text{if } S_i \text{ is generated by } \theta \\ 0 & \text{if } S_i \text{ is generated by } \theta^0 \end{cases}
$$
 (12)

for all $i=1,2,\cdots,n$.

Then, the likelihood of observing the n sequences conditioned on the label variables

$$
P(S_1, S_2, \cdots, S_n | z, \theta, \theta^0) = \prod_{i=1}^n [z_i P(S_i | \theta) + (1 - z_i) P(S_i | \theta^0)]
$$

Complete likelihood

Suppose we have some prior knowledge on whether ^asequence contains ^a motif or not, in terms of ^a prior distribution

$$
P(z_i) = \begin{cases} \alpha & \text{if } z_i = 1 \\ 1 - \alpha & \text{if } z_i = 0 \end{cases}
$$
 (13)

Then, we can write down the *joint probability* of S and the label variable $z \equiv (z_1, z_2, \cdots, z_n)$

$$
P(S_1, S_2, \cdots, S_n, z | \theta, \theta^0) = \prod_{i=1}^n P(z_i) [z_i P(S_i | \theta) + (1 - z_i) P(S_i | \theta^0)]
$$

which is called the *complete likelihood*.

True likelihood

However, the label variables are not directly observable (alsocalled, hidden or latent). We will need to marginalize the joint distribution over z via summation:

$$
P(S_1, S_2, \cdots, S_n | \theta, \theta^0) = \sum_{\substack{z_1, z_2, \cdots, z_n \\ i=1}} P(S_1, S_2, \cdots, S_n, z | \theta, \theta^0)
$$

=
$$
\prod_{i=1}^n [\alpha P(S_i | \theta) + (1 - \alpha) P(S_i | \theta^0)]
$$

Now, the parameter estimation can be formulated as maximizethe true likelihood function

$$
\max_{\theta, \theta_0} L(\theta, \theta_0) = P(S_1, S_2, \cdots, S_n | \theta, \theta_0)
$$
 (14)

Method I: Gradient Ascend

As before, we use the log likelihood function

$$
\log L(\theta, \theta_0) = \sum_{i=1}^n \log[\alpha P(S_i|\theta) + (1-\alpha)P(S_i|\theta^0)] \qquad (15)
$$

Gradient-based method: 1) calculate the gradient of $\log L(\theta, \theta_0)$ with respect to $\theta_{ij},$

$$
\frac{\partial \log L(\theta, \theta_0)}{\partial \theta_{ij}} \tag{16}
$$

Then, 2) update θ_{ij} with

$$
\theta_{ij}^{t+1} = \theta_{ij}^t + \eta \left[\frac{\partial \log L(\theta, \theta_0)}{\partial \theta_{ij}} \right]_{\theta = \theta^t}
$$
 (17)

where η is the step size.

Problems with gradient-based methods

- Gradient is hard to calculate
- Need to choose the correct step size
- **Slow to converge**
- Solution is only locally optimal \bullet

Method II: EM-algorithm

Instead of optimizing the true likelihood function, we optimizean approximate likelihood

$$
\log \tilde{L}(\theta, \theta_0) = \sum_{i=1}^{n} [q(z_i = 1) \log P(S_i | \theta) + q(z_i = 0) \log P(S_i | \theta^0)]
$$

where is also called *average log likelihood.* $q(z_i)$ *is the* posterior distribution of the label variable.

The average log likelihood is ^a lower bound on the tree loglikelihood function (Jensen's Inequality).

$$
\log[\alpha P(S_i|\theta) + (1-\alpha)P(S_i|\theta^0)] \ge
$$

$$
q \log[P(S_i|\theta)\alpha/q] + (1-q) \log[P(S_i|\theta)(1-\alpha)/(1-q)]
$$
 (18)

for all $q \in [0,1]$.

Expectation and Maximization

- The EM-algorithm iterates between two steps:
	- Expectation: calculate the posterior distribution of $z_i,$

$$
q^{(t+1)}(z_i) \sim \begin{cases} P(z_i = 1)P(S_i|\theta^{(t)}) & \text{if } z_i = 1\\ P(z_i = 0)P(S_i|\theta_0^{(t)}) & \text{if } z_i = 0 \end{cases}
$$
 (19)

Maximization: find optimal θ and $\theta_0,$

$$
\theta_{kl}^{(t+1)} \sim \sum_{i=1}^{n} q^{(t+1)}(z_i) I(S_{ik} = l)
$$
 (20)

The two steps are guaranteed to converge to ^a locally optimal solution.

Pros and Cons of EM-algorithm

- Pros:
	- No need to choose step size
	- **Guaranteed to converge**
	- Fast
- Cons:
	- **Locally optimal**
	- **Sensitive to the initialization of parameters**

Method III: Gibbs Sampling

Motivation: the key problem is that the label variable z is unknown. Maybe we should try to generate ^a sample of these labels.

- **Initialization**: Randomly assign z_i to be 1 or 0 according to the prior probability $P(z_i).$
- $\bm{\mathsf{Estimation\ step}}\text{:}\ \textsf{Traverse\ through\ }S_i \text{ from }i=1 \text{ to }n. \ \textsf{Suppose}$ we are considering $S_i.$ Calculate the absolute frequency matrix of all other sequences (excluding S_i) with label 1. Let n_{ij} denote the number of letter j at position $i.$ Set

$$
\theta_{ij} = \frac{n_{ij} + \gamma}{n + 4\gamma} \tag{21}
$$

where γ is a small number (called pseudocount). n is the total number of sequences with label 1, excluding $S_i.$ Same for $\theta_0.$

Gibbs Sampling

Sampling step

Provided with current estimation of $\theta, \theta_0.$ For sequence $S_i,$ we can calculate the posterior probability of $z_i\mathrm{:}$

$$
q(z_i) \sim \begin{cases} P(z_i = 1)P(S_i|\theta) & \text{if } z_i = 1\\ P(z_i = 0)P(S_i|\theta_0) & \text{if } z_i = 0 \end{cases}
$$
 (22)

that is $q(z_i = 1) = \alpha P(S_i | \theta) / [\alpha P(S_i | \theta) + (1$ $-\alpha)P(S_i|\theta_0)].$

- Randomly assign z_i to be 1 or 0 according to probability $q(z_i)$.
- Go to another sequence and repeat.

Pros and Cons of Gibbs sampling algorithm

- Pros:
	- **Less susceptible to local optimal**
	- Can naturally incorporate prior information \bullet
	- **Guaranteed to converge**
- Cons:
	- **Can be slow**
	- No good criterion on when to stop

Summary

We have discussed three algorithms for probabilistic motif discovery:

- Gradient-based method
- **C** EM-algorithm
	- MEME:

http://meme.sdsc.edu/meme/meme.html

- Gibbs sampling \bullet
	- **BioProspector:**

http://ai.stanford.edu/∼xsliu/BioProspector/

AlignACE:

http://atlas.med.harvard.edu/