Reinforcement Learning

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Sameer Singh, David Silver

Machine Learning

Intro to Reinforcement Learning

Reinforcement Learning

What makes it different?

No direct supervision, only rewards

Feedback is delayed, not instantaneous

Time really matters, i.e. data is sequential
Agent’s actions affect what data it will receive

* Fly stunt maneuvers in a helicopter

* Defeat the world champion at Backgammon or Go

* Manage an investment portfolio

* Control a power station

* Make a humanoid robot walk

* Play many different Atari games better than humans

wn

iy
o
S
©
x

L

Agent-Environment Interface

e decides on an action
* receives next observation
* receives next reward

Environment

* executes the action
* computes next observation
* computes next reward

Reward, R,

+, positive (Good) Nothing about WHY it is
Howtwe:]: the ’rlxoegative (Bad) doing well, could have
agent is doing - . .
little to do with At_1

Agent is trying to maximize its cumulative reward

Example of Rewards

* Fly stunt maneuvers in a helicopter
* +ve reward for following desired trajectory
* —ve reward for crashing
* Defeat the world champion at Backgammon
* +/-ve reward for winning/losing a game
* Manage an investment portfolio
* +ve reward for each S in bank
* Control a power station
* +ve reward for producing power
* =—ve reward for exceeding safety thresholds
* Make a humanoid robot walk
* +ve reward for forward motion
* —ve reward for falling over
* Play many different Atari games better than humans
* +/—-ve reward for increasing/decreasing score

Sequential Decision Making

Actions have long term consequences
Rewards may be delayed

May be better to sacrifice short term reward for long term benefit

A financial investment (may take months to mature)

- Refueling a helicopter (might prevent a crash later)

+ Blocking opponent moves (might eventually help win)

« Spend a lot of money and go to college (earn more later)
« Don’t commit crimes (rewarded by not going to jail)

« (Get started on final project early (avoid stress later)

ENTIES

A key aspect of intelligence: How far ahead are you able to plan?

Reinforcement Learning

Given an environment
(produces observations and rewards)

Reinforcement

Learning

Automated agent that selects actions
to maximize total rewards in the environment

Let’s look at the Agent

observation action

What does the choice of action depend on?

* Canyou ignore O_completely?
* Isjust O, enough? Or (O,A)?

* Is it last few observations?

* |s it all observations so far?

Agent State, S,

agent state S}

History: everything that happened so far

observation

H =

t
O,RAORAOR,... A OR

State, S, can be O,
Oth
A OR

-1t t

0 ,0 .0 .0

t-37t2 t1t

You, as Al designer,
specify this function

In general, S, =f(H)

Agent Policy, 1

Next action

T ” A

Current state
S

t

t

Deterministic Policy: A, = m(S;)
Stochastic Policy: n(a|s) = P(A; = a|S; = s)

Good policy: Leads to larger cumulative reward
Bad policy: Leads to worse cumulative reward
(we will explore this later)

Example: Atari

observation

reward

Rules are unknown

* What makes the score increase?
Dynamics are unknown

* How do actions change pixels?

Video Time!

> M) 0277142

Google DeepMind's Deep Q-learning playing Atari Breakout

. Two Minute Papers
provesy Subscribed M | 40,641 i
g ubscribed @ 562,870 views

i@ 1572 B 26

+ Add to AP Share ess More

https://www.youtube.com/watch?v=V1eYniJORnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
http://www.youtube.com/watch?v=V1eYniJ0Rnk

Example: Robotic Soccer

https://www.youtube.com/watch?v=CIF2SBVY-JO

africlean

Subscribe J <
15,617 views
= Addto AP Share ees More & 2 Po

http://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0

AlphaGo

https://www.youtube.com/watch?v=12WFvGl4y8c

ALPHAGO
00:05:30

0Oqle Deep O
—-4‘.: enage
3
4\.“
T AD
oy

T

https://www.youtube.com/watch?v=I2WFvGl4y8c
https://www.youtube.com/watch?v=I2WFvGl4y8c
http://www.youtube.com/watch?v=I2WFvGl4y8c

Overview of Lecture

States

Markov

Processes

+ Rewards

Markov Reward
Processes

+ Actions

Markov Decision
Processes

Machine Learning

Markov Property

“The future is independent of the past given the present”

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P[St+1 | St] —]P)[St+1 | Sl,...,St]

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_{_l | St] —]P)[St+1 | Sl,...,St]

m The state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. The state is a sufficient statistic of the future

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

Psst =P [St-i—l =¥ | S = S]

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

Psst =P [St-l—l =¥ | S = S]

State transition matrix P defines transition probabilities from all
states s to all successor states s,

to

P]_]_ B % P]_n
P = from :

Pnl S Pnn

where each row of the matrix sums to 1.

Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

Markov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Pss’ — IED [St+]_ — S, | St — S]

Student Markov Chain

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from §; = C1

517 527 oy ST

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from §; = C1

815505 w5 T

m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1 FBFBC1C2C3PubCl1FBFB
FB C1 C2 C3 Pub C2 Sleep

Student MC: Transition
Matrix

Cc1 c2 C3 Pass Pub FB Sleep

c9 0.8 0.2
1.0 C3 0.6 0.4

P = Pass 1.0
Pub : 0.4 0.4

FB 0.9
Sleep 1

o o
= N

Machine Learning

| |

Markov Reward Processes

| |

Markov Reward Process

A Markov reward process is a Markov chain with values.

Markov Reward Process

A Markov reward process is a Markov chain with values.
A Markov Reward Process is a tuple (S,P,R,~)

m S is a finite set of states

m P is a state transition probability matrix,
P.or=P[Ste1 =59 | S: = 9]

m R is a reward function, Rs = E[Rt11 | St = 5]

m 7 is a discount factor, v € [0, 1]

The Student MRP

Return

The return G; is the total discounted reward from time-step t.

0
Gt = Rep1 + YRep2 + ... = ZWth+k+1
k=0

Return

The return G; is the total discounted reward from time-step t.

0
Gt = Rep1 + YRep2 + ... = ZWth+k+1
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is Y*R.

Return

The return G; is the total discounted reward from time-step t.

0
Gt = Rep1 + YRep2 + ... = Z7th+k+1
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is Y*R.

m This values immediate reward above delayed reward.

m 7 close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation

Why discount?

Most Markov reward and decision processes are discounted. Why?

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.

Value Function

The value function v(s) gives the long-term value of state s

Value Function

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G; | §; = 5]

Student MRP: Returns

Sample returns for Student MRP:
Starting from S; = C1 with v = %

Gi=Ro+~vRs+ ...+ 4T %Rt

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep
Cl1 FB'FB €1 €2 C3 Pub Cl. ...
FB FB FB C1 C2 C3 Pub C2 Sleep

Student MRP: Returns

Sample returns for Student MRP:
Starting from $; = C1 with v = %

Gi=Ro+~vRs+ ...+ 4T %Rt

C1 C2 C3 Pass Sleep i=-2—2%3—2x%1+10%3 = —2.25

C1 FB FB C1 C2 Sleep i=—-2—1%x2—1xz—2x1-2xL = —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep v1=—2—2*%—2*%+1*%—2*%... = —3.41
- 1 il 1 1

Cl FB'FB Cl1 €2 €3 Pub Cl. .. v ==2—=1% 5 =1z =25 — 20K gz _ —3.90

FB FB FB C1 C2 C3 Pub C2 Sleep

Student MRP: Value Function

v(s) for y =0

0.9
0 |a—
L/ =] R=0
|05 ‘ 0.2
0.5 0.8
R=-2 R=-2

Student MRP: Value Function

Student MRP: Value Function

Bellman Equations for MRP

The value function can be decomposed into two parts:

m immediate reward R;i;

m discounted value of successor state yv(S+1)

v(s) =E[G; | St = 5]
=E [Rey1 + YRe2 + Y’Riy3+ ... | St = s
=E[Re+1+ 7 (Rev2 +YRey3 +..) | St = 9]
= E[Rty1 +vGeq1 | St = §]
=E[Ret1 +vv(St41) | St = 5]

Backup Diagrams for MRP

v(s) = E[Ret1 + yv(St41) | Se = 5]

v(s)f\g
v(s') ¢

v(s) =Rs+7 Y Pessrv(s)

s'eS

Student MRP: Bellman Eqg

4.3=-2+0.6*10+ 0.4%0.8

Matrix Form of Bellman Eq

The Bellman equation can be expressed concisely using matrices,

v=R+~vPv

where v is a column vector with one entry per state

—V(l)- R1 P11 ... Pin -V(l)-

v(n) R P11 ... Pan] |v(n)

Solving the Bellman Equation

m T[he Bellman equation is a linear equation

m It can be solved directly:

v=R+~yPv
(Il —yP)v=TR
v=(—-9P)"'R

Solving the Bellman Equation

m T[he Bellman equation is a linear equation

m |t can be solved directly:

v=R+~yPv
(Il —yP)v=TR
v=(—-9P)"'R

m Computational complexity is O(n3) for n states

m Direct solution only possible for small MRPs

m [here are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation
m Temporal-Difference learning

Dynamic Programming

v2(C1) =-2 +v (.5 Vv(FB) +.5v}C2))

v?(FB)=-1+vy (.9 Vv}FB)+.1v}(C1))

v>(FB) =-1+v (.9 v¥(FB) +.1 v*(C1))

AW [t c2 [c3 [Pa |Pub FB [sp
t=1 -2 -2 -2 10 1 -1 O

t=2 -275 -28 12 10 0 -155 O
t=3 -3.09 -152 1 10 041 -1.83 O

t=4 -2.84 -16 108 10 0.59 -1.98 O

Machine Learning

|
| |

-

Markov Decision Processes

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P, R,)

m S is a finite set of states

m A is a finite set of actions
m P is a state transition probability matrix,
2 =P[Sty1=5 | St =5,A: = 4]
m R is a reward function, RZ = E[Riy1 | St = 5, Ar = 3]

m 7 is a discount factor v € [0, 1].

The Student MDP

Facebook
R=-1

Facebook

Policies

A policy 7 is a distribution over actions given states,

n(als) =P[Ar=a | §; = 5]

Policies

A policy 7 is a distribution over actions given states,

n(als) =P[Ar=a | §; = 5]

m A policy fully defines the behaviour of an agent

m MDP policies depend on the current state (not the history)

Policies

A policy 7 is a distribution over actions given states,

n(als) =P[Ar=a | §; = 5]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At G W('lst),\V/t >0

MPs — MRPs — MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7

MPs — MRPs — MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, S, ... is a Markov process (S, P™)

m [he state and reward sequence S1, R>, S, ... is a Markov
reward process (S, P™, R"™,)

m where

;r,s’ a ZTF(3|S) o

acA

Ri = Z m(a|s)R2

acA

Value Function

The state-value function v,(s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) = E [G: | St = 5]

Value Function

The state-value function v,(s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) = Ex [Gt | St =]

The action-value function q,(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

gr(s,a) =E; [G: | St = s, A: = 4]

Student MDP: Value Function

Facebook va(s) for z(a|s)=0.5, y =1
R=-1

Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(s) = Er [Res1 + v (Se41) | St = 5]

Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(s) = Er [Res1 + v (Se41) | St = 5]
The action-value function can similarly be decomposed,

dx(s,a) = Ex [Rer1 + 7Gx (St41, Ats1) | St = 5, Ar =

Bellman Expected Equation,
V

q=(s,a) <1 a

V’ﬂ'(s) = Z 7T(a|5)q7r(57 a)

acA

Bellman Expected Equation,

(s, a) = Rg T Z P Vﬂ'(s,)

s’eS

Bellman Expected Equation,
V

Bellman Expected Equation,

Q

q=(s,a) < s,a

q-(s',a") < d

Gn(s,a) =R+~) P Y w(d]s)an(s', d)

s'eS aeA

Student MDP: Bellman Exp
EqQ.

Facebook A =05%¢l +02%13+04%2 7 +04¢d% 74
R=-1 +0.5*%10

Bellman Exp Eq: Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R"T 4+ 4P vy

with direct solution

Ve = (I —4P™) ' R”

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

)] = max Vr(S)

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

)] = max Vr(S)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

g«(s,a) = max qr(s, a)

Optimal Value Function

The optimal state-value function vi(s) is the maximum value
function over all policies

)] = max Vr(S)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

g«(s,a) = max qr(s, a)
m The optimal value function specifies the best possible

performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.

Student MDP: Optimal V

Facebook v(s) for y =1
R=-1

Facebook

Quit
R= R=-1

0
Study

R=+10

Student MDP: Optimal Q

Facebook q«(s,a) fory =1
R=-1
g =5

Optimal Policy

Define a partial ordering over policies

> 7 if ve(s) > vp(s), Vs

Optimal Policy

Define a partial ordering over policies

> 7 if ve(s) > v(s),Vs

For any Markov Decision Process

m [here exists an optimal policy w, that is better than or equal
to all other policies, m, > w, V7

m All optimal policies achieve the optimal value function,
Vr, (8) = va(s)

m All optimal policies achieve the optimal action-value function,
Ar, (57 a) — q*(s, a)

Finding Optimal Policy

An optimal policy can be found by maximising over g.(s, a),

acA

(als) 1 if a=argmax g«(s,a)
0 otherwise

m There is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy

Student MDP: Optimal Policy

Facebook Tx(als) fory =1
R=-
qs=J
0 |e—

Quit Facebook
= R=-1
= =5
gx =6 qx Study
R=+10

Bellman Optimality Eq, V

The optimal value functions are recursively related by the Bellman
optimality equations:

V4 (8) < 8

g+(s,a) < a

Vi (S) = max g.(s, a)
a

Bellman Optimality Eq, Q

q«(s,a) <4 s,a
r
Vi (8") = 8

a(s,a) = R2+7 3 PLw(s)

s'eS

Bellman Optimality Eq, V

- a a /
V*(S) o maax RS + Y EE;SPSS’V*(S)
S/

Bellman Optimality Eq, Q

Student MDP: Bellman
Optimality

Facebook 6 =max {-2+8, -1+6}
R=-1

Solving Bellman Equations in
MDP

Not easy

e Not a linear equation
e No “closed-form” solutions

Overview

States, Transitions, Actions, Rewards

()

Prediction Given Policy 1T, Estimate State Value Functions, Action Value Functions

Control Estimate Optimal Value Functions, Optimal Policy

Does the agent know the MDP?

It’s “planning” It’s “Model-free RL”
Agent knows everything Agent observes everything as it goes

Overview

Evaluate Policy, Find Best Policy,
T *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Q-Learning

Overview

Evaluate Policy, Find Best Policy,
L m*
Planning
MDP Known Policy Evaluation Policy/Value Iteration
-

MDP Unknown

Dynamic Programming

Dynamic sequential or temporal component to the problem
Programming optimising a “program’, i.e. a policy
m c.f. linear programming

m A method for solving complex problems

m By breaking them down into subproblems

m Solve the subproblems
m Combine solutions to subproblems

Requirements for Dynamic
Programming

Dynamic Programming is a very general solution method for
problems which have two properties:

Requirements for Dynamic
Programming

Dynamic Programming is a very general solution method for
problems which have two properties:

m Optimal substructure
m Principle of optimality applies
m Optimal solution can be decomposed into subproblems

Planning by Dynamic Programming

m Dynamic programming assumes full knowledge of the MDP

m It is used for planning in an MDP

m For prediction:
m Input: MDP (S, A4,P,R,~) and policy 7
m or: MRP (S§,P",R™,~)
m QOutput: value function v,
m Or for control:
m Input: MDP (S, A4,P,R,~)
m Output: optimal value function v,
& and: optimal policy .

Applications of DPs

Dynamic programming is used to solve many other problems, e.g.
m Scheduling algorithms
m String algorithms (e.g. sequence alignment)
m Graph algorithms (e.g. shortest path algorithms)
m Graphical models (e.g. Viterbi algorithm)

m Bioinformatics (e.g. lattice models)

Overview

Evaluate Policy, Find Best Policy,
T *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup

BV — Vo —72 .. Vg

Iterative Policy Evaluation

m Problem: evaluate a given policy 7

m Solution: iterative application of Bellman expectation backup
BV — V...V

m Using synchronous backups,

m At each iteration k+ 1

m For all states s € S

m Update vk41(s) from vi(s’)

m where s’ is a successor state of s

Iterative Policy Evaluation

Vp41(8) 1 s

a
r

vi(s') < s’

Vika1(s) = Z 7(als) (Ri + oy Z P vk(s'))

acA
VKL — R 4 APy

s’'eS

Random Policy: Grid World

1 2 3
4 |5 |6 |7 o =i
on all transitions
8 |9 |10 |11
actions
12 [13 |14

m Undiscounted episodic MDP (v = 1)

m Nonterminal states 1, ..., 14

m One terminal state (shown twice as shaded squares)
m Actions leading out of the grid leave state unchanged
m Reward is —1 until the terminal state is reached

m Agent follows uniform random policy

m(n]-) = m(el-) = n(s]-) = w(w]-) = 0.25

Policy Evaluation: Grid World

V[forthe
Random Policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0|-

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

-1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

Time 0 : do nothing, stop; no cost.

Time 1 : move (reward -1); then k=0
Unless in goal: reward O

Time 2 : move (reward -1); then k=1
Most: move (-1) + [vl =-1] =-2
Some: move (-1) + % [vl =-1] + %4 [v1=0] = 1.75

Policy Evaluation: Grid World

V[forthe
Random Policy

0.0]-2.4|-2.9]-3.0
-2.4(-2.9]|-3.0|-2.
=13 9 9
-2.9(-3.0]-2.9|-2.4
-3.0]-2.9(-2.4/ 0.0

0.0]-6.1|-8.4]-9.0

-8.4|-8.4(-7.7(-6.1
-9.0(-8.4/-6.1| 0.0

Policy Evaluation: Grid World

V. for the Greedy Policy
Random Policy wrt U
0.0/ 0.0[0.0/ 0.0 .<——>< i A
0.0/ 0.0/ 0.0/ 0.0 B S W R P 2 random
k=0 sl ol olic
0.0/ 0.0{ 0.0/ 0.0 Tl policy
0.0/ 0.0{ 0.0/ 0.0 N T A e >.

0.0/|-1.0|-1.0|-1.0 -4— o i N

k=1 -1.0]-1.0|-1.0]-1.0 ¢
-1.0{-1.0]-1.0]-1.0 N i S d A

|
-1.0[-1.0/-1.0/ 0.0 N N e —>!

v
N

0.0[-1.7|-2.0[-2.0 T - P
k=2 -1.7)-2.0[-2.0{-2.0 e bl
-2.0|-2.0[-2.0|-1.7 Vbl el
20|-2.0/-1.7] 0.0 J N N —>-

Policy Evaluation: Grid World

k=3
k=1
k= 'o0

V[forthe
Random Policy

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0

-6.1

-8.4

-6.1

-7.7

-8.4

-8.4

-8.4

-71.7

-9.0

-8.4

-6.1

Greedy Policy
wrt Vg

S
t L’l_’
L S| -

3

!

|
[]

.(— - |9

Pl e 1, optimal

t | L | policy

L - —)-

-<— — |9 |Ingeneral:

Pl jq | 4 | bestpolicy & value for
"Bl |, | “onestep, then

L - —>- follow random policy”

always better policy than random!

Overview

Evaluate Policy, Find Best Policy,
T *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Improving a Policy!

m Given a policy 7
m Evaluate the policy 7

Vﬂ-(S) = E[Rt+]_ + ’)’Rt+2 + |5t = S]

Improving a Policy!

m Given a policy 7
m Evaluate the policy 7

Vﬂ-(S) =I5 [Rt_|_1 + ’)’Rt+2 + |5t = S]

m Improve the policy by acting greedily with respect to v,

7' = greedy(vy)

Improving a Policy!

m Given a policy 7
m Evaluate the policy 7

Vﬂ-(S) =I5 [Rt_|_1 + ’)’Rt_|_2 + |5t = S]
m Improve the policy by acting greedily with respect to v,

7' = greedy(vy)

m In Small Gridworld improved policy was optimal, 7/ = 7*

m In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to 7

Policy Iteration

starting
Var

Policy evaluation Estimate v,
Iterative policy evaluation

Policy improvement Generate n’ > 7
Greedy policy improvement

evaluation

v %

st—>greedy(V)

improvement

Jack’s Car Rental

m States: Two locations, maximum of 20 cars at each
m Actions: Move up to 5 cars between locations overnight

m Reward: $10 for each car rented (must be available)

m Transitions: Cars returned and requested randomly

m Poisson distribution, n returns/requests with prob i‘,—';e_
m 1st location: average requests = 3, average returns = 3
m 2nd location: average requests = 4, average returns = 2

A

Policy Iteration in Car Rental

Ty

S
IS
c
RS
=
]
[&]
ke
-
2
A
© 2
LT T T 77 7S
[77777 L
g 420 n'a""":,','. Z
O
H
(=}

0 #Cars at second location 2

Policy Improvement

m If improvements stop,

Gr(s; ' (5)) = max gn(s, a) = qx(s,7(s)) = vx(s)

Policy Improvement

m If improvements stop,
Gr(s; ' (5)) = max gn(s, a) = qx(s,7(s)) = vx(s)

m [hen the Bellman optimality equation has been satisfied

V7r(5) = Teaj(qW(S, a)

Policy Improvement

m If improvements stop,
Gr(s; ' (5)) = max gn(s, a) = qx(s,7(s)) = vx(s)
m [hen the Bellman optimality equation has been satisfied

V'/r(s) — Teaj q’/T(S7 a)

m Therefore v;(s) = v(s) foralls € S

m so 7 is an optimal policy

Modified Policy Iteration

m Does policy evaluation need to converge to v, ?

Modified Policy Iteration

m Does policy evaluation need to converge to v, ?

m Or should we introduce a stopping condition
m e.g. e-convergence of value function

Modified Policy Iteration

m Does policy evaluation need to converge to v, ?
m Or should we introduce a stopping condition
m e.g. e-convergence of value function

m Or simply stop after k iterations of iterative policy evaluation?

m For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

Modified Policy Iteration

m Does policy evaluation need to converge to v, ?
m Or should we introduce a stopping condition
m e.g. e-convergence of value function

m Or simply stop after k iterations of iterative policy evaluation?

m For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

m Why not update policy every iteration? i.e. stop after k =1
m This is equivalent to value iteration (next section)

Generalized Policy Iteration

evaluation

m

T 4

ni—>greedy(V)
improvement
[]
[]
Policy evaluation Estimate v, .
Any policy evaluation algorithm .
Policy im;?rov_ement Generate 7r-’ > * > ¥
Any policy improvement algorithm T vV

Overview

Evaluate Policy, Find Best Policy,
T *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Monte Carlo RL

m MC methods learn directly from episodes of experience

m MC is model-free: no knowledge of MDP transitions / rewards

Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Monte Carlo RL

MC methods learn directly from episodes of experience
MC is model-free: no knowledge of MDP transitions / rewards
MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs
m All episodes must terminate

Monte Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy 7

S51,A1, Ry, ..., Sk~
m Recall that the return is the total discounted reward:
Gt = Rey1 +YRey2 + ... + ’YT_IRT
m Recall that the value function is the expected return:

Vr(s) = E [G: | St = 5]

m Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Every-Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment total return S(s) < S(s) + G;
Value is estimated by mean return V(s) = S(s)/N(s)
m Again, V(s) — vz(s) as N(s) — oo

B
5
m Increment counter N(s) <— N(s) + 1
5
8

Equivalent, “incremental tracking” form:

V(s) + V(s) + ﬁ(at —V(s))

Looks like SGD to minimize MSE from the mean

129

Blackjack Example

m States (200 of them):

m Current sum (12-21)
m Dealer’s showing card (ace-10)
m Do | have a "useable” ace? (yes-no)

m Action stand Stop receiving cards (and terminate)
m Action hit : Take another card (no replacement)

m Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

m Reward for hit

m -1 if sum of cards > 21 (and terminate)
m 0 otherwise

m Transitions: automatically hit if sum of cards < 12

Blackjack Value Function

After 10,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

Temporal Difference Learning

m D methods learn directly from episodes of experience

m TD is model-free: no knowledge of MDP transitions / rewards

Temporal Difference Learning

m D methods learn directly from episodes of experience
m TD is model-free: no knowledge of MDP transitions / rewards

m 1D learns from incomplete episodes, by bootstrapping

m [D updates a guess towards a guess

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <= V(St) + (G = V(5))

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <= V(St) + (G = V(5))

m Simplest temporal-difference learning algorithm: TD(0)

m Update value V/(S;) toward estimated return Ry1 + vV/(S:41)

MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <= V(St) + (G = V(5))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ry1 + vV/(S:41)

V(St) < V(5:) + a(Rer1 + 7V(Se41) — V(St))

MCand TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(St) <= V(St) + (G = V(5))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ry1 + vV/(S:41)

V(St) < V(5:) + a(Rer1 + 7V(Se41) — V(St))

m R 1 +vV(S:11) is called the TD target
m 0 = Rip1 +vV(S:11) — V(S:) is called the TD error

Driving Home Example

State Elapsed Time Predicted Predicted
(minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 3 35 40
exit highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43

Driving Home: MCvs TD

Changes recommended by
Monte Carlo methods (a=1)

45 -
___actual outcome
\
, 40
Predicted
total
travel ;5.
time
30 -

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Driving Home: MCvs TD

Changes recommended by Changes recommended
Monte Carlo methods (a=1) by TD methods (a=1)

45 -

___actual outcome actual
| outcome
) 40) 4
Predicted Predicted
total total
travel 35 travel
time time
30
I I 1 I I I LN I I I | |
leaving reach exiting 2ndary home arrive Iea_/mg reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Situation Situation

Finite Episodes: AB Example

Two states A, B; no discounting; 8 episodes of experience

MC & TD can give different answers on fixed data:

V(B)=6/8

V(A)=0"7? (Direct MC estimate)

B,0 V(A)=6/8? (TD estimate)

What is V(A), V(B)?

MCvs TD

Monte Carlo

* Wait till end of episode to learn
* Only for terminating worlds

* High-variance, low bias
* Not sensitive to initial value
* Good convergence properties

* Doesn’t exploit Markov property

* Minimizes squared error

Temporal
Difference

Learn online after every step
* Non-terminating worlds ok

Low variance, high bias
* Sensitive to initial value
* Much more efficient

Exploits Markov Property

Maximizes log-likelihood

Unified View: Monte Carlo

V(St) + V(St) + a(Gr — V(St))

S

@ ® ()
QO O @ O & @
() Q a QRQ O S®
SR i %l /N : SN i N / A

Unified View: TD Learning

V(5:) < V(St) + a(Reg1 +vV(St41) — V(St))

St

1
Q sEW " ®
oo 2 O O &

@ ar\g & Q0
;L % | ’\q|> /N ?/‘ 1 \
V' /\| /7 N |/\ |

/7 \
\//

Unified View: Dynamic Prog.

V(St) ¢ Ex [Re1 + Y V/(Se41)]

Unified View of RL (Prediction)

Dynamic Exhaustri1ve
programming searc

full \
backups
ampt Monte Carlo
b;crl?uppg ' Temporal-
difference
learning

- . - .
shallow bootstrapping, A deep *

i

backups backups

Overview

Evaluate Policy, Find Best Policy,
T *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Model-free Control

’_| Agent }
state reward action

St R, A,

¢Rt+1 {
ISt+1| Environment |¢

Learn a policy & to maximize rewards in the environment

On and Off Policy Learning

m On-policy learning
m ‘Learn on the job"
m Learn about policy m from experience sampled from 7

m Off-policy learning

m “Look over someone's shoulder”
m Learn about policy ™ from experience sampled from u

Generalized Policy Iteration

starting
V r

Policy evaluation Estimate v,
e.g. lterative policy evaluation

Policy improvement Generate 7’ >
e.g. Greedy policy improvement

evaluation

o %

ni—>greedy(V)

improvement

Gen Policy Improvement?

starting
V=

Policy evaluation Monte-Carlo policy evaluation, V = v..?

Policy improvement Greedy policy improvement?

Not quite!

m Greedy policy improvement over V(s) requires model of MDP

7'(s) = argmax R2 + P2, V(s')
acA

m Greedy policy improvement over Q(s, a) is model-free

7'(s) = argmax Q(s, a)
acA

Learn Q function directly...

Qw, Te

Policy evaluation Monte-Carlo policy evaluation, Q = g-
Policy improvement Greedy policy improvement?

Greedy Action Selection?

m There are two doors in front of you.

m You open the left door and get reward 0
V(left) =0

m You open the right door and get reward +1
V(right) = +1

UL
|
|

T

Greedy Action Selection?

m There are two doors in front of you.

m You open the left door and get reward 0
V(left) =0

m You open the right door and get reward +1
V(right) = +1 — —

m You open the right door and get reward +3 | | L1 |
V(right) = +2 e —° —

m You open the right door and get reward +2 =
V(right) = 42 — —

|
lI
|
|
|

T HTTHTHTTT

Greedy Action Selection?

m There are two doors in front of you.

m You open the left door and get reward 0
V(left) =0

m You open the right door and get reward +1
V(right) = +1

m You open the right door and get reward +3

||
!I
1I
!I

_—
——
—_—
—_—
—_—
—
—_—
—_—
——
——
—
——
—_—

T

V(right) = +2
m You open the right door and get reward +2 =
V(right) = 42 =
| -

m Are you sure you've chosen the best door?

€-Greedy Exploration

m Simplest idea for ensuring continual exploration

m All m actions are tried with non-zero probability

€-Greedy Exploration

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability

m With probability 1 — € choose the greedy action

m With probability € choose an action at random

Which Policy Evaluation?

m Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)

m Lower variance
m Online
m Incomplete sequences

m Natural idea: use TD

m Apply TD to Q(S, A)
m Use e-greedy policy improvement
m Update every time-step

Sarsa: TD for Policy Evaluation

S,A

Q(S, A) < Q(S, A) +a (R+7Q(S, A) — Q(S, A))

On-Policy Control w/ Sarsa

Starting Q ol
%y Jlsk

Every time-step:

Policy evaluation Sarsa, Q =~ g

Policy improvement e-greedy policy improvement

Off-Policy Learning

m Evaluate target policy m(a|s) to compute v, (s) or g-(s, a)

m While following behaviour policy u(als)

{SlvAla Ry s ST} ~

Off-Policy Learning

m Evaluate target policy m(als) to compute v,(s) or g-(s, a)

m While following behaviour policy u(als)

{Slv A17 R27 ki ST} e~ P
m Why is this important?

Learn from observing humans or other agents

o
m Re-use experience generated from old policies 71, 7o, ..., T¢_1
m Learn about optimal policy while following exploratory policy
=

Learn about multiple policies while following one policy

Q-Learning

m We now consider off-policy learning of action-values Q(s, a)

Q-Learning

m We now consider off-policy learning of action-values Q(s, a)

m Next action is chosen using behaviour policy At11 ~ u(+|St)

m But we consider alternative successor action A’ ~ 7(-|S)

Q-Learning

m We now consider off-policy learning of action-values Q(s, a)

m Next action is chosen using behaviour policy A1 ~ u(-|St)
m But we consider alternative successor action A" ~ 7(-|S;)

m And update Q(S;, A;) towards value of alternative action

Q(S:, At) «— Q(St, At) + (Rt+1 + vQ(S5¢+1, A,) — Q(St, At))

Off-Policy w/ Q-Learning

m We now allow both behaviour and target policies to improve

Off-Policy w/ Q-Learning

m We now allow both behaviour and target policies to improve

m The target policy 7 is greedy w.r.t. Q(s, a)

m(Se+1) = argmax Q(Se+1,)

m The behaviour policy u is e.g. e-greedy w.r.t. Q(s,a)

Off-Policy w/ Q-Learning

m We now allow both behaviour and target policies to improve

m The target policy 7 is greedy w.r.t. Q(s, a)

7(St11) = argmax Q(Siy1,4d)

m The behaviour policy u is e.g. e-greedy w.r.t. Q(s,a)
m The Q-learning target then simplifies:

Rit1 +7Q(St+1,A)
=Ry 1 + 7 S¢41; argrPax Q(St+1, a’))

:Rt+1 + magx ’)/Q(St_|_1, a/)

Q-Learning Control Algorithm

®s.

R

S’ (SARSAMAX)
o A

Q(S,A) + Q(S,A) + (R + 7y max Q(S',d) — Q(S,A))

Relation between DP and TD

Full Backup (DP)

Sample Backup (TD)

Bellman Expectation

Equation for v, (s) lterative Policy Evaluation TD Learning
Bellman Expectation w0 1 %
Equation for g.(s, a) Q-Policy Iteration Sarsa
Bellman Optimality ()

Equation for g« (s, a) Q-Value Iteration Q-Learning

Update Egns for DP and TD

Full Backup (DP) Sample Backup (TD)

Iterative Policy Evaluation TD Learning

V(s) — E[R+~V(S) | 5] V(S) & R+4V(S)

Q-Policy lIteration Sarsa

Q(s,a) +— E[R+~Q(S",A) | s, 4] Q(S,A) &€ R+~vQ(S,A)
Q-Value lteration Q-Learning

Q(s,a) + E [R-l—'y max Q(S,d) | s, a] Q(S,A) & R+~ max Q(S', ")

where x & y = x + x4+ a(y — x)

