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Reinforcement Learning
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What makes it different?
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No direct supervision, only rewards
Feedback is delayed, not instantaneous
Time really matters, i.e. data is sequential
Agent’s actions affect what data it will receive

• Fly stunt maneuvers in a helicopter
• Defeat the world champion at Backgammon or Go
• Manage an investment portfolio
• Control a power station
• Make a humanoid robot walk
• Play many different Atari games better than humans
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Agent-Environment Interface
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• decides on an action
• receives next observation
• receives next reward

Agent

• executes the action
• computes next observation
• computes next reward

Environment



Reward, R
t
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How well the 
agent is doing

+, positive (Good)
-, negative (Bad)

Nothing about WHY it is 
doing well, could have 
little to do with A

t-1

Agent is trying to maximize its cumulative reward



Example of Rewards
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• Fly stunt maneuvers in a helicopter
• +ve reward for following desired trajectory
• −ve reward for crashing

• Defeat the world champion at Backgammon
• +/−ve reward for winning/losing a game

• Manage an investment portfolio
• +ve reward for each $ in bank

• Control a power station
• +ve reward for producing power
• −ve reward for exceeding safety thresholds

• Make a humanoid robot walk
• +ve reward for forward motion
• −ve reward for falling over

• Play many different Atari games better than humans
• +/−ve reward for increasing/decreasing score



Sequential Decision Making

8

Actions have long term consequences

Rewards may be delayed

May be better to sacrifice short term reward for long term benefit
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• A financial investment (may take months to mature)
• Refueling a helicopter (might prevent a crash later)
• Blocking opponent moves (might eventually help win)
• Spend a lot of money and go to college (earn more later)
• Don’t commit crimes (rewarded by not going to jail)
• Get started on final project early (avoid stress later)

A key aspect of intelligence:  How far ahead are you able to plan?



Reinforcement Learning
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Given an environment
(produces observations and rewards)

Reinforcement 
Learning

Automated agent that selects actions
to maximize total rewards in the environment



Let’s look at the Agent
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What does the choice of action depend on?

• Can you ignore O
t
 completely?

• Is just O
t
 enough? Or (O

t
,A

t
)?

• Is it last few observations?
• Is it all observations so far?



Agent State, S
t
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History: everything that happened so far
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In general, S
t
 = f(H

t
)

You, as AI designer,
specify this function



 Agent Policy, π
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Current state
S

t

Next action
A

t π

 

Good policy: Leads to larger cumulative reward
Bad policy: Leads to worse cumulative reward
(we will explore this later)



Example: Atari
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Rules are unknown
• What makes the score increase?
Dynamics are unknown
• How do actions change pixels?



Video Time!
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
http://www.youtube.com/watch?v=V1eYniJ0Rnk


Example: Robotic Soccer
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https://www.youtube.com/watch?v=CIF2SBVY-J0

http://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0
https://www.youtube.com/watch?v=CIF2SBVY-J0


AlphaGo
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https://www.youtube.com/watch?v=I2WFvGl4y8c

https://www.youtube.com/watch?v=I2WFvGl4y8c
https://www.youtube.com/watch?v=I2WFvGl4y8c
http://www.youtube.com/watch?v=I2WFvGl4y8c


Overview of Lecture
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Markov 
Processes

Markov Reward
Processes

Markov Decision
Processes

+ Rewards

+ Actions

States
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Markov Property
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Markov Property
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Markov Property
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State Transition Matrix
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State Transition Matrix
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Markov Processes
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Markov Processes
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Student Markov Chain
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Student MC: Episodes
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Student MC: Episodes
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Student MC: Transition 
Matrix
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Markov Reward Process
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Markov Reward Process
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The Student MRP
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Return
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Return
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Return

36



Why discount?
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Why discount?
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Why discount?
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Why discount?
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Why discount?
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Value Function
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Value Function
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Student MRP: Returns
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Student MRP: Returns
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Student MRP: Value Function
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Student MRP: Value Function
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Student MRP: Value Function

48



Bellman Equations for MRP
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Backup Diagrams for MRP
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Student MRP: Bellman Eq
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Matrix Form of Bellman Eq
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Solving the Bellman Equation
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Solving the Bellman Equation
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Dynamic Programming
 v2(C1) = -2 + γ ( .5 v1(FB) + .5 v1(C2) ) 

 v2
 
(FB) = -1 + γ ( .9 v1(FB) + .1 v1(C1) )

 …

 v3
 
(FB) = -1 + γ ( .9 v2(FB) + .1 v2(C1) )

 …
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C1 C2 C3 Pa Pub FB Slp

t=1

t=2

t=3

t=4

γ=0.5
-2   -2     -2        10   1    -1      0   

-2.75  -2.8     1.2      10  0 -1.55     0   

-3.09   -1.52    1  10  0.41   -1.83     0   

-2.84     -1.6  1.08  10  0.59   -1.98     0   



Machine Learning

Markov Decision Processes

Markov Reward Processes

Markov Processes

Intro to Reinforcement Learning

56



Markov Decision Process
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Markov Decision Process
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The Student MDP
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Policies
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Policies
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Policies
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MPs → MRPs → MDPs
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MPs → MRPs → MDPs
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Value Function
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Value Function
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Student MDP: Value Function
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Bellman Expected Equation
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Bellman Expected Equation
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Bellman Expected Equation, 
V
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Bellman Expected Equation, 
Q
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Bellman Expected Equation, 
V
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Bellman Expected Equation, 
Q
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Student MDP: Bellman Exp 
Eq.

74



Bellman Exp Eq: Matrix Form
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Optimal Value Function
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Optimal Value Function
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Optimal Value Function
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Student MDP: Optimal V
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Student MDP: Optimal Q
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Optimal Policy
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Optimal Policy
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Finding Optimal Policy
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Student MDP: Optimal Policy
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Bellman Optimality Eq, V
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Bellman Optimality Eq, Q
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Bellman Optimality Eq, V
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Bellman Optimality Eq, Q
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Student MDP: Bellman 
Optimality
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Solving Bellman Equations in 
MDP
Not easy

● Not a linear equation
● No “closed-form” solutions
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Overview
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MDPs States, Transitions, Actions, Rewards

Given Policy π, Estimate State Value Functions, Action Value Functions

Estimate Optimal Value Functions, Optimal Policy

Does the agent know the MDP?

Yes! It’s “planning”
Agent knows everything

No! It’s “Model-free RL”
Agent observes everything as it goes

Prediction

Control



Overview
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MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

Policy Evaluation Policy/Value Iteration

MC and TD Learning Q-Learning



Overview
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MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

Policy Evaluation Policy/Value Iteration

MC and TD Learning Q-Learning

Planning



Dynamic Programming
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Requirements for Dynamic 
Programming

95



Requirements for Dynamic 
Programming
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Planning by Dynamic Programming
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Applications of DPs
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Overview
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MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

Policy Evaluation Policy/Value Iteration

MC and TD Learning Sarsa + Q-Learning



Iterative Policy Evaluation
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Iterative Policy Evaluation
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Iterative Policy Evaluation
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Iterative Policy Evaluation
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Random Policy: Grid World
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Policy Evaluation: Grid World
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Time 0 : do nothing, stop; no cost.

Time 1 : move (reward -1); then k=0
   Unless in goal: reward 0

Time 2 : move (reward -1); then k=1
   Most: move (-1) + [v1 = -1]  = -2
   Some: move (-1) + ¾ [v1 = -1] + ¼ [v1=0] = 1.75



Policy Evaluation: Grid World

106



Policy Evaluation: Grid World
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Policy Evaluation: Grid World
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In general:
   best policy & value for 
   “one step, then 
   follow random policy”
(always better policy than random!)



Overview
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MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

Policy Evaluation Policy/Value Iteration

MC and TD Learning Sarsa + Q-Learning



Improving a Policy!
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Improving a Policy!
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Improving a Policy!
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Policy Iteration
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Jack’s Car Rental
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Policy Iteration in Car Rental
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Policy Improvement
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Policy Improvement
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Policy Improvement
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Modified Policy Iteration
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Modified Policy Iteration

120



Modified Policy Iteration
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Modified Policy Iteration
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Generalized Policy Iteration

123



Overview
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MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

MC and TD Learning

Policy Evaluation

Sarsa + Q-Learning

Policy/Value Iteration



Monte Carlo RL
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Monte Carlo RL
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Monte Carlo RL
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Monte Carlo Policy Evaluation
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Every-Visit MC Policy Evaluation
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Equivalent, “incremental tracking” form:

Looks like SGD to minimize MSE from the mean 
value…



Blackjack Example
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hit
stand

hit

stand

hit



Blackjack Value Function
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hitstand



Blackjack Value Function
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Temporal Difference Learning
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Temporal Difference Learning
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MC and TD
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MC and TD
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MC and TD
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MC and TD
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Driving Home Example
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Driving Home: MC vs TD
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Driving Home: MC vs TD
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Finite Episodes: AB Example
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V(B) = 6 / 8

V(A) = 0 ?        (Direct MC estimate)

V(A) = 6 / 8?   (TD estimate)

MC & TD can give different answers on fixed data:



MC vs TD
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Monte Carlo
Temporal 
Difference

• Wait till end of episode to learn
• Only for terminating worlds

• Learn online after every step
• Non-terminating worlds ok

• High-variance, low bias
• Not sensitive to initial value
• Good convergence properties

• Low variance, high bias
• Sensitive to initial value
• Much more efficient

• Doesn’t exploit Markov property • Exploits Markov Property

• Minimizes squared error • Maximizes log-likelihood



Unified View: Monte Carlo

144



Unified View: TD Learning
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Unified View: Dynamic Prog.
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Unified View of RL (Prediction)
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Overview

148

MDP Known

MDP Unknown

Evaluate Policy, 
π

Find Best Policy, 
π*

Policy Evaluation Policy/Value Iteration

MC and TD Learning Sarsa + Q-Learning



Model-free Control
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Learn a policy 𝜋 to maximize rewards in the environment



On and Off Policy Learning
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Generalized Policy Iteration
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Gen Policy Improvement?
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Not quite!
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Learn Q function directly…
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Greedy Action Selection?
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Greedy Action Selection?
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Greedy Action Selection?
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∊-Greedy Exploration
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∊-Greedy Exploration
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Which Policy Evaluation?
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Sarsa: TD for Policy Evaluation
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On-Policy Control w/ Sarsa
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Off-Policy Learning
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Off-Policy Learning
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Q-Learning
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Q-Learning

166



Q-Learning
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Off-Policy w/ Q-Learning
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Off-Policy w/ Q-Learning
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Off-Policy w/ Q-Learning
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Q-Learning Control Algorithm
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(SARSAMAX)



Relation between DP and TD
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Update Eqns for DP and TD
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