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Topics
● Clustering

● K-Means clustering

● Agglomerative Clustering

● Gaussian Mixtures and Expectation-Maximization (EM) 



Supervised learning

Supervised learning: given labeled examples

model/
predictor

label

label1

label3

label4

label5



Unsupervised learning

Unsupervised learning: given data, i.e. examples, but no labels



Unsupervised learning
Supervised learning

● Predict target value (“y”) given features (“x”)

Unsupervised learning

● Understand patterns of data (just “x”)
● Useful for many reasons

○ Data mining (“explain”)
○ Missing data values (“impute”)
○ Representation (feature generation or selection)

One example: clustering

● Describe data by discrete “groups” with some characteristics



Clustering
Clustering describes data by “groups”

The meaning of “groups” may vary by data!

Examples



Data from Garber et al.
PNAS (98), 2001.

Gene expression data



Face clustering



K-Means clustering



K-Means Clustering
A simple clustering algorithm

Iterate between

● Updating the assignment of data to clusters
● Updating the cluster’s summarization

Notation:
1. Data example i has features xi
2. Assume K clusters, (K=3)
3. Each cluster c “described” by a center μc
4. Each cluster will “claim” a set of nearby 

points



K-means: an example



K-means: Initialize centers randomly



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center

No changes:  Done



K-Means Clustering
Iterate until convergence:

(A) For each datum, find the closest cluster: (zi denotes cluster membership)

(B) Set each cluster to the mean of all assigned, for each cluster c:



K-Means clustering
Optimizing the cost function:

Coordinate descent:

Over the cluster assignments (fixed μ)

● Only one term in sum depends on zi 
● Minimized by selecting closest μc

Over the cluster centers (fixed z)

● Cluster c only depends on xi with zi =c
● Minimized by selecting the mean

Guaranteed to converge after 
finite number of steps!



Initialization
Multiple local optima, depending on initialization 

Try different (randomized) initializations

Can use cost C to decide which we prefer



Initialization methods
Random

● Usually, choose random data index
● Ensures centers are near some data
● Issue: may choose nearby points



Initialization methods
Distance based

● Start with one random data point
● Find the point farthest from the 

clusters chosen so far
● Issue: may choose outliers



Initialization methods
Random + distance (“kmeans++”)

● Choose next points “far but 
randomly”

○ p(x) ~ squared distance from x to current 
centers

● Likely to put a cluster far away, in a 
region with lots of data



Choosing Number of Clusters
With cost function

what is the optimal value of k?

Cost always decreases with k!

A model complexity issue…



Choosing the number of clusters
One solution is to penalize for complexity

Add penalty: Total = Error + Complexity

Now more clusters can increase cost, if 
they don’t help “enough”

Ex: simplified BIC penalty

More precise version: see e.g. “X means” ( 
Pelleg & Moore, 2000)



Summary
K-Means clustering
● Clusters described as locations (“centers”) in feature space

Procedure
● Initialize cluster centers
● Iterate: 

○ assign each data point to its closest cluster center
○  move cluster centers to minimize mean squared error

Properties
● Coordinate descent on MSE criterion
● Prone to local optima; initialization important

Choosing the # of clusters , K
● Model selection problem; penalize for complexity (BIC, etc.)



Agglomerative Clustering



Hierarchical Agglomerative Clustering

● A simple clustering algorithm
● Define a distance (or dissimilarity) between 

clusters (we’ll return to this)
● Initialize: every example is a cluster
● Iterate:

○ Compute distances between all clusters 
(store for efficiency)

○ Merge two closest clusters
● Save both clustering and sequence of cluster 

operations
● Dendrogram



Iteration 1
Builds up a sequence of clusters (“hierarchical”)



Iteration 2
Builds up a sequence of clusters (“hierarchical”)



Iteration 3
Builds up a sequence of clusters (“hierarchical”)



Iteration m-3
Builds up a sequence of clusters (“hierarchical”)



Iteration m-2
Builds up a sequence of clusters (“hierarchical”)



Iteration m-1
Builds up a sequence of clusters (“hierarchical”)



From dentrogram to clusters
Given the sequence, can select a number of clusters or a dissimilarity threshold:



Cluster distances



Sec. 17.2



Sec. 17.2



Cluster distances - difference choices will affect clusters 
created 



Example: gene expression clustering
Measure gene expression

Various experimental conditions
● Disease vs. normal
● Time
● Subjects

Explore similarities
● What genes change together?
● What conditions are similar?

Cluster on both genes and conditions



Summary
Agglomerative clustering
● Choose a cluster distance / dissimilarity scoring method
● Successively merge closest pair of clusters
● “Dendrogram” shows sequence of merges & distances

Agglomerative clusters depend critically on dissimilarity
● Choice determines characteristics of “found” clusters

“Clustergram ” for understanding data matrix
● Build clusters on rows (data) and columns (features)
● Reorder data & features to expose behavior across groups



Gaussian Mixtures and EM



Mixtures of Gaussians
K-means algorithm
● Assigned each example to exactly one cluster
● What if clusters are overlapping?

○ Hard to tell which cluster is right
○ Maybe we should try to remain uncertain

● Used Euclidean distance
● What if cluster has a non circular shape?

Gaussian mixture models
● Clusters modeled as Gaussians

○ Not just by their mean

● EM algorithm: assign data to cluster with some probability
● Gives probability model of x! (“generative”)



Mixtures of Gaussians
Start with parameters describing each cluster

Mean μc , variance Σc , “size” πc

Probability distribution:



Mixtures of Gaussians
Start with parameters describing each cluster
Mean μc , variance Σc , “size” πc
Probability distribution:

Equivalent “latent variable” form:
● Select a mixture component with probability πc
● Sample from that component’s Gaussian

“Latent assignment” z:
we observe x, but z is hidden

p(x) = marginal over x



Multivariate Gaussian Models



EM Algorithm: E-step
Start with clusters: Mean μc , Covariance Σc , size πc

E-step (“Expectation”)
● For each datum (example) xi ,
● Compute ric, the probability that it belongs to cluster c

○ Compute its probability under model c
○ Normalize to sum to one (over clusters c)



EM Algorithm: E-step
Start with clusters: Mean μc , Covariance Σc , size πc

E-step (“Expectation”)
● For each datum (example) xi ,
● Compute ric, the probability that it belongs to cluster c

○ Compute its probability under model c
○ Normalize to sum to one (over clusters c)

If xi is very likely under the c-th Gaussian, 
it gets high weight
Denominator just makes r’ s sum to one



EM Algorithm: M-Step
Start with assignment probabilities ric
Update parameters: mean μc , Covariance Σc , size πc
M-step (Maximization)
● For each cluster (Gaussian) z = c,
● Update its parameters using the (weighted) data points

Weighted covariance of assigned dataWeighted mean of 
assigned data

Total responsibility allocated to cluster c

Fraction of total assigned to cluster c



















Demo Time

https://lukapopijac.github.io/gaussian-mixture-model/

https://lukapopijac.github.io/gaussian-mixture-model/

