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Topics

e Clustering
e K-Means clustering
e Agglomerative Clustering

e (Gaussian Mixtures and Expectation-Maximization (EM)



Supervised learning

label
P4
‘ label,
label
3 =) model/
é predictor
Iclbel4
Iqbel5
A ‘J

Supervised learning: given labeled examples



Unsupervised learning
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Unsupervised learning: given data, i.e. examples, but no labels



Unsupervised learning

Supervised learning
e Predict target value ("y”) given features (“X”)
Unsupervised learning

e Understand patterns of data (just “x”)

e Useful for many reasons
o Data mining (“explain”)

o Missing data values (“impute”)

o Representation (feature generation or selection)
One example: clustering

e Describe data by discrete “groups” with some characteristics



Clustering
Clustering describes data by “groups”
The meaning of “groups” may vary by data!

Examples

Location Shape Density



Data from Garber et al.

PNAS (98), 2001.

Gene expression data



Face clustering
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K-Means clustering



K-Means Clustering

A simple clustering algorithm
lterate between

e Updating the assignment of data to clusters
e Updating the cluster’'s summarization

Notation:

1. Data example i has features x,

2. Assume K clusters, (K=3)

3. Each cluster ¢ “described” by a center y_

4. Each cluster will “claim” a set of nearby
points




K-means: an example



K-means: Initialize centers randomly



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center



K-means: readjust centers



K-means: assign points to nearest center

No changes: Done



K-Means Clustering

Iterate until convergence:
(A) For each datum, find the closest cluster: (z. denotes cluster membership)
7, = argmin ||z; — e||? Vi
C

(B) Set each cluster to the mean of all assigned, for each cluster c:
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K-Means clustering

Optimizing the cost function: C(Z ) o Z HiU — 2
BNy ? 24
7

Coordinate descent:
Over the cluster assignments (fixed u)

e Only one term in sum depends on z

e Minimized by selecting closest u_ ?uaranteid to ;:onver|ge after
inite number of steps!

Over the cluster centers (fixed z)

e Cluster c only depends on x. with z. =c
e Minimized by selecting the mean



Initialization

Multiple local optima, depending on initialization
Try different (randomized) initializations

Can use cost C to decide which we prefer
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Initialization methods

Random

e Usually, choose random data index
e Ensures centers are near some data
e Issue: may choose nearby points
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Initialization methods

Distance based

e Start with one random data point

e Find the point farthest from the
clusters chosen so far

e Issue: may choose outliers




Initialization methods

Random + distance (“kmeans++”)

e Choose next points “far but

randomly”
o p(x) ~ squared distance from x to current
centers

e Likely to put a cluster far away, in a
region with lots of data
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Choosing Number of Clusters

With cost function

Clz,p) =Y llws — pe,

what is the opumai vaiue ol K ¢
Cost always decreases with k!

A model complexity issue...
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Choosing the number of clusters

One solution is to penalize for complexity

2000

Add penalty: Total = Error + Complexity
1000}

Now more clusters can increase cost, if
they don'’t help “enough” 0!

Ex: simplified BIC penalty

71 9 logm
Tz, p) = 1og | == > llas — i |12] + b=

More precise version: see e.g. “X means” (
Pelleg & Moore, 2000)
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Summary

K-Means clustering
e Clusters described as locations (“centers”) in feature space

Procedure
e Initialize cluster centers
e |terate:

o assign each data point to its closest cluster center
o move cluster centers to minimize mean squared error

Properties
e Coordinate descent on MSE criterion
e Prone to local optima; initialization important

Choosing the # of clusters , K
e Model selection problem; penalize for complexity (BIC, etc.)



Agglomerative Clustering



Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

Data:

A simple clustering algorithm
Define a distance (or dissimilarity) between
clusters (we’ll return to this)
Initialize: every example is a cluster
lterate:
o Compute distances between all clusters
(store for efficiency)
o Merge two closest clusters
Save both clustering and sequence of cluster
operations
Dendrogram



lteration 1

Builds up a sequence of clusters (“hierarchical”)

Data:
Dendrogram:
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lteration 2

Builds up a sequence of clusters (“hierarchical”)

Data:
Dendrogram:
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lteration 3

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
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lteration m-3

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:
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lteration m-2

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:

LILTE

In mltools: “agglomerative”




lteration m-1

Builds up a sequence of clusters (“hierarchical”)

Data: Dendrogram:

LATEL




From dentrogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:

Data:

Dendrogram:




Cluster distances
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Single Link (min distance) Example
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Complete Link (max distance) Exampie




Cluster distances - difference choices will affect clusters

created

Single linkage (min)

Complete linkage (max)
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Example: gene expression clustering

E2175299R763
E2176299R784

1 E2175300R787

Measure gene expression 31 7Ss00m7ee
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E2025156R564

Various experimental conditions €025 190Rez
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H E1995258R449

e Disease vs. normal E199558RA48
E1995255R450

. E2025192R887
E2028190R553

e Time —prdfascn
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Explore similarities C7075190505
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e \What genes change together? E2025 34500
E2025190R555
e \What conditions are similar? ?::w
E18995232R368
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Summary

Agglomerative clustering
e Choose a cluster distance / dissimilarity scoring method
e Successively merge closest pair of clusters
e “Dendrogram” shows sequence of merges & distances

Agglomerative clusters depend critically on dissimilarity
e Choice determines characteristics of “found” clusters

“Clustergram ” for understanding data matrix
e Build clusters on rows (data) and columns (features)
e Reorder data & features to expose behavior across groups



Gaussian Mixtures and EM



Mixtures of Gaussians

K-means algorithm
e Assigned each example to exactly one cluster

e \What if clusters are overlapping?
o Hard to tell which cluster is right
o Maybe we should try to remain uncertain

e Used Euclidean distance
e \What if cluster has a non circular shape?
Gaussian mixture models

e C(Clusters modeled as Gaussians
o Not just by their mean

e EM algorithm: assign data to cluster with some probability
e Gives probability model of x! (“generative”)




Mixtures of Gaussians

Start with parameters describing each cluster

Mean M. variance ZC . “size” T

Probability distribution:
p(x) = 7 N(@ 5 pic,00)
C

XX XXX XX XXX X X



Mixtures of Gaussians

Start with parameters describing each cluster
Mean p_, variance 2 _, "size” mm_

Probability distribution: p(x) = ZWC N(x 5 pe, o)
C

Equivalent “latent variable” form:
e Select a mixture component with probability _
e Sample from that component’s Gaussian

“Latent assignment” z:
we observe X, but z is hidden

p(x) = marginal over x

plz = 8) =7,
p(xlz =¢) = N(x ; pe, 0c)




Multivariate Gaussian Models

Nz ; px) = (2;)65/2 [~ % exp {—%(z —p)' Sz — g)}

Maximum Likelihood estimates
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We'll model each cluster using
one of these Gaussian “bells”...




EM Algorithm: E-step

Start with clusters: Mean y_, Covariance 2 _, size 1_

E-step (“Expectation”)
e For each datum (example) x.
e Compute r , the probability that it belongs to cluster ¢
o Compute its probability under model c
o Normalize to sum to one (over clusters c)

71_c~/\/‘(xi s My Ec)
Zc' 7Tc’-/\/‘(xi s Hes Zc’)

Tie =

Inl N(x; py, 2,)



EM Algorithm: E-step

Start with clusters: Mean y_, Covariance 2 _, size 1_

E-step (“Expectation”)
e For each datum (example) x.
e Compute r , the probability that it belongs to cluster ¢
o Compute its probability under model c
o Normalize to sum to one (over clusters c)

71_c~/\/‘(xi s My Ec)
Zc' 7Tc’-/\/‘(xi s Hes Zc’)

Tie =

T, N(X; Yy, 25)
If x. is very likely under the c-th Gaussian,
it gets hlgh ngght | r,=.33; r,= .66
Denominator just makes r' s sum to one



EM Algorithm: M-Step

Start with assignment probabilities r._
Update parameters: mean y_, Covariance 2 _, size T
M-step (Maximization)

e For each cluster (Gaussian) z = c,

e Update its parameters using the (weighted) data points

iy = Z P Total responsibility allocated to cluster ¢
i
T, = Me Fraction of total assigned to cluster c
m
1 .
_ _apkih) 1 : ,
G Me “ Tiel 2o = m_c ' Tic(x(z) - Uc)T(x(z) — fhe)

7

Weighted mean of
assigned data

Weighted covariance of assigned data



ANEMIA PATIENTS AND CONTROLS
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From P. Smyth
ICML 2001
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EM ITERATION 3
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From P. Smyth
ICML 2001
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EM ITERATION 10
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EM ITERATION 15
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From P. Smyth
ICML 2001
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LOG-LIKELIHOOD AS A FUNCTION OF EM ITERATIONS
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Demo Time

https://lukapopijac.github.io/gaussian-mixture-model/



https://lukapopijac.github.io/gaussian-mixture-model/

