Ensemble of Learners

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex lhler

Ensemble methods

* Why learn one classifier when you can learn many?

* Ensemble: combine many predictors

— (Weighted) combinations of predictors
— May be same type of learner or different

& 1 MILLIOH Various options for getting help:

CAN | PHONE A FRIEND" .

"I'LL ASK THE AUDIENCE\'(_,.*

o

23
u_m. aime
DTN

/ For ordenng his favorite beverages on demand, LBJ had four buttons
installed mtheOvalOffcelabeled coffee “tea,” Coke andwha(’ y

A: Fresca
) =

Yoo-hoo

“Who wants to be a millionaire?”

|Simple ensembles
|

* “Committees”
— Unweighted average / majority vote

* Weighted averages
— Up-weight “better” predictors

— Ex: Classes: +1, -1, weights alpha:

Y, =f(x,x,...)

Y, =1, (x,%,...)

n

> y_=sign(2 a.y.)

“Stacked” ensembles
I

* Train a “predictor of predictors”
* Treat individual predictors as features

y, =f.(x,x,...)
yz = fZ(Xl’XZ" -) => ye = fe(yl; 921 -)

* Similar to multi-layer perceptron idea
* Special case: binary, f_linear => weighted vote

* Can train stacked learner feon validation data
* Avoids giving high weight to overfit models

| Mixtures of experts
|

* Can make weights depend on x
— Weight 0 (x) indicates “expertise”
— Combine using weighted average (or even just pick largest)

Example

Weighted average:
floyw,8) = ZOJZ(&’?;OJ) f2(x;0)

-~

Weights: (multi) logistic regression
exp(z - w?)

explx - we)
C /

(T w) =

If loss, learners, weights are all
055 03 ; s : >3 ; differentiable, can train jointly...

Mixture of three linear predictor experts

| Machine Learning
|

Ensembles: Bagging

| |
| |

|Ensemble methods

. Why learn one classifier when you can learn many?

— “Committee”: learn K classifiers, average their predictions

* “Bagging” = bootstrap aggregation
— Learn many classifiers, each with only part of the data
— Combine through model averaging

* Remember overfitting: “memorize” the data
— Used test data to see if we had gone too far
— Cross-validation
* Make many splits of the data for train & test
* Each of these defines a classifier
* Typically, we use these to check for overfitting
* Could we instead combine them to produce a better classifier?

|Bagging
|

* Bootstrap

— Create a random subset of data by sampling

— Draw m’ of the m samples, with replacement (some variants w/o)
* Some data left out; some data repeated several times

* Bagging
— Repeat K times
* Create a training set of m’ < m examples
* Train a classifier on the random training set
— To test, run each trained classifier
* Each classifier votes on the output, take majority
* For regression: each regressor predicts, take average

* Notes:
— Some complexity control: harder for each to memorize data

— Doesn’t work for linear models (average of linear functions is linear
function), but perceptrons OK (linear + threshold = nonlinear)

|Bias / variance
|

“The world”

Data we observe

®
y(x) = 0y + 012 + Vb
o
®
®
J(z) = 0y + 012

Predictive
Error

* We only see a little bit of data

* Can decompose error into two parts

— Bias — error due to model choice

* Can our model represent the true best
predictor?

* Gets better with more complexity
— Variance — randomness due to data size
* Better w/ more data, worse w/ complexity

(High bias)
(High variance)
Error on test data

Model Complexity

|Bagged decision trees

I
* Randomly resample data

* Learn a decision tree for each

— No max depth = very flexible class of functions
— Learner is low bias, but high variance

Sampling:

simulates “equally likely”
data sets we could have
observed instead, &
their classifiers

|Bagged decision trees
I

* Average over collection
— Classification: majority vote

L L
5.

* Full data set

* Reduces memorization effect
— Not every predictor sees each data point
— Lowers effective “complexity” of the overall average
— Usually, better generalization performance
— Intuition: reduces variance while keeping bias low

Avg of 5 trees Avg of 25 trees Avg of 100 trees

|Bagging in Matlab
|

% Train on data set X, Y

[N,D] = size(X);

Classifiers = cell(1,Nbag); % Allocate space

for i=1:Nbag
ind = ceil(N*rand(Nuse, 1)); % Bootstrap sample data
Xi=X(ind, :); YI=Y(ind, :); % Select those indices
Classifiers{i} = Train_Classifier(Xi, Y1); % Train

end;

test on data Xtest

[Ntest,D] = size(Xtest);

predict = zeros(Ntest,Nbag); % Allocate space
for i=1:Nbag, % Apply each classifier

predict(:,1)=Apply Classifier(Xtest, Classifiers{i});
end;
predict = (mean(predict,2) > 1.5); % Vote on output (if classes 1 vs 2)

|Bagging in Python
|

Load data set X, Y for training the ensemble...

m,n = X.shape

classifiers = [None] * nBag # Allocate space for learners

for 1 in range(nBag):
ind = np.floor(m * np.random.rand(nUse)).astype(int) # Bootstrap sample a data set:
Xi, Yi = X[ind,:], Y[ind] # select the data at those indices
classifiers[1] = ml.MyClassifier(Xi, Yi) # Train a model on data Xi, Yi

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest, nBag)) # Allocate space for predictions from each model
for 1 in range(nBag):
predict[:,1] = classifiers[i].predict(Xtest) # Apply each classifier

Make overall prediction by majority vote
predict = np.mean(predict, axis=1) >0 #if +1 vs -1

|[Random forests

. Bagging applied to decision trees

°* Problem

— With lots of data, we usually learn the same classifier
— Averaging over these doesn’t help!

* Introduce extra variation in learner
— At each step of training, only allow a (random) subset of features
— Enforces diversity (“best” feature not available)
— Keeps bias low (every feature available eventually)
— Average over these learners (majority vote)

in FindBestSplit(X,Y):
for each of a subset of features
for each possible split
Score the split (e.g. information gain)
Pick the feature & split with the best score
Recurse on left & right splits

body part classification

| Microsoft Kinect Pose Estimation
|

real (test)

synthetic (train & test)

Shotton et al., PAMI 2012

6 trees ground
truth

|Summary
|

* Ensembles: collections of predictors
— Combine predictions to improve performance

* Bagging
— “Bootstrap aggregation”
— Reduces complexity of a model class prone to overfit

— In practice
* Resample the data many times
* For each, generate a predictor on that resampling

— Plays on bias / variance trade off
— Price: more computation per prediction

| Machine Learning
|

| |

Ensembles: Gradient Boosting

|[Ensembles
|

* Weighted combinations of predictors

* “Committee” decisions

Trivial example
Equal weights (majority vote / unweighted average)
Might want to weight unevenly — up-weight better predictors

* Boosting

Focus new learners on examples that others get wrong
Train learners sequentially

Errors of early predictions indicate the “hard” examples
Focus later predictions on getting these examples right
Combine the whole set in the end

Convert many “weak” learners into a complex predictor

\Gradlent boosting

* Learn a regression predictor
Compute the error residual
» Learn to predict the residual

Learn a simple predictor... Then try to correct its errors
f1($<i)> o y(@') L) — y(i) B ﬁ@(g)

100 . . . : : ; . : i -
6o
*r H & @ 8 e B
N 10—t 00 b ofs . " |
‘ * b s % ®
3 o » P i\
. 4 (z)
B - L v , .
d = L = F 20 S ® & }(2 (3) \)
o ®e soogyd & LA T =
: ’ » of ®a @ - i
" . s S & L] %
e L] a ® " &
P r - -
= -20f "
50 F :
* g 40t
L 4
.
-100 60
s pe |
. ®
-150 s L | . i i ’ ,)) l
0 0.2 0.4 05 0.8 1 1.2 1.4 16 1.8 2 100, 4 > e 2 : - - - -

\Gradlent boosting

(Y
* Learn a regression predictor fi(@™)
(1) — o) _ £ (D)
Compute the error residual €=y fi(w
» Learn to predict the residual fa(z'?) ~ @

Combining gives a better predictor... Can try to correct its errors also, & repeat

= filz) + fo(z) my fg') =y — £ — fo(a®)

_4 U =
-100 -

®
L ®
® ®
! b * 20+
0_ . . " - . » B r
. . & @ [®
»| % » ®
* L ® 8 a® JP - ®
ok »'fw@{.m éﬁgé% N ® 2 °
* @@ .
50 . [&
- " i @ @ 3
2 ¢ e @ @
. @
@
@
& &

L] f.. . 60 F

_150 1 1 1 1 1 1 1 1 1
0 4 -80

\Gradlent boosting

» Learn sequence of predictors
Sum of predictions is increasingly accurate
 Predictive function is increasingly complex

Data & prediction function

g L =
oF Se scgddp % LI . ok %0 0cng® &
. LI i

Error residual

\Gradlent boosting

- Make a set of predictions YIi]

* The “error” in our predictions is J(y,Y)
— For MSE: J(.) =} (y[il = ¥I[i])

* We can “adjust” y to try to reduce the error
— YI[il = y[i] + alpha f[i]
— fli] Va ri(y, ¥) = (y[i]-yli]) for MSE

* Each learner is estimating the gradient of the loss function
* Gradient descent: take sequence of steps to reduce J
— Sum of predictors, weighted by step size alpha

|Gradient boosting in Matlab
|

% Data set X, Y
mu = mean(Y) ; % Often start with constant “mean” predictor

dY = Y - mu; subtract this prediction away
For k=1:Nboost,
Learner{k} = Train Regressor (X,dY);
alpha(k) = 1; % alpha: a “learning rate” or “step size”

% smaller alphas need to use more classifiers, but tend to
% predict better given enough of them

% compute the residual given our new prediction

dY = dY - alpha(k) * predict(Learner{k}, X)
end;

% Test data Xtest

[Ntest,D] = size (Xtest);

predict = zeros(Ntest,1l) + mu; % Allocate space & add mean
For k=1:Nboost, % Predict with each learner

predict = predict + alpha (k) *predict (Learner{k}, Xtest);
end;

|Gradient boosting in Python
|

Load dataset X, Y ...
learner = [None] * nBoost # storage for ensemble of models
alpha =[1.0] * nBoost # and weights of each learner

mu = Y.mean() # often start with constant mean’ predictor
dY=Y - mu # subtract this prediction away
for k in range(nBoost):
learner[k] = ml.MyRegressor(X, dY) # regress to predict residual dY using X
alphalk] = 1.0 # alpha: ”learning rate” or “’step size”
smaller alphas need to use more classifiers, but may predict better given enough of them
compute the residual given our new prediction:
dY = dY — alpha[k] * learner[k].predict(X)

test on data Xtest
mTest = Xtest.shape[0]
predict = np.zeros((mTest,)) + mu # Allocate space for predictions & add 1st (mean)
for k in range(nBoost):
predict += alpha[k] * learner[k].predict(Xtest) # Apply predictor of next residual & accum

|Summary
|

* Ensemble methods
— Combine multiple classifiers to make “better” one
— Committees, average predictions
— Can use weighted combinations
— Can use same or different classifiers

» Gradient Boosting
— Use a simple regression model to start

— Subsequent models predict the error residual of the previous
predictions

— Qverall prediction given by a weighted sum of the collection

| Machine Learning
|

| |
| |

Ensembles: Ada Boost

|[Ensembles

. Weighted combinations of classifiers

« “Committee” decisions
— Trivial example
— Equal weights (majority vote)
— Might want to weight unevenly — up-weight good experts

» Boosting
— Focus new experts on examples that others get wrong
— Train experts sequentially
— Errors of early experts indicate the “hard” examples
— Focus later classifiers on getting these examples right
— Combine the whole set in the end
— Convert many “weak” learners into a complex classifier

|Boosting example
|

Classes +1,-1

Update weights, D,

Original data set, D, Update weights, D,
-+ -+
- + - +
+ +
B + +
+ +
Trained classifier Trained classifier

\I\/Imlmlzmg weighted error

+ So far we’ve mostly minimized unweighted error
» Minimizing weighted error is no harder:

Unweighted average loss: For any loss (logistic MSE, hinge, ...)

1 .
E . (2) 1)y —)y — ()2
 m 4 Ji(0,2\") J(0,2") (U(Ow()) y())

9y — () g
Weighted average loss: J(0,2') = max [0, 1 -y 62"

sz Ji (0, xz)

To learn decision trees, find splits to optimize weighted impurity scores:
p(+1) = total weight of data with class +1
p(-1) = total weight of data with class -1 => H(p) = impurity

|Boosting example
|

Weight each classifier and combine them:

33

+ S7*

+ 42

bined classifier

Com

1-node decision trees
“decision stumps”
very simple classifiers

\AdaBoost = “adaptive boosting”

* Pseudocode for AdaBoost Classes {+1,

Load dataset X, Y ... ;Y assumed +1 /-1

for 1 in range(nBoost):
learner[1] = ml.MyClassifier(X, Y, weights=wts) # train a weighted classifier
Yhat = learner[i].predict(X)

e = wts.dot(Y !=Yhat) # compute weighted error rate
alpha[i] = 0.5 * np.log((1-e)/e)

wts *=np.exp(-alpha[i] * Y * Yhat) # update weights
wts /= wts.sum() # and normalize them

Final classifier:
predict = np.zeros((mTest,))
for 1 in range(nBoost):
predict += alpha[i] * learner[i].predict(Xtest) # compute contribution of each model
predict = np.sign(predict) # and convert to +1 / -1 decision

* Notes
— e >.5 means classifier is not better than random guessing
— Y *Yhat> 0 if Y==Yhat, and weights decrease
— Otherwise, they increase

-1}

\Ada Boost theory

* Minimizing classification error was difficult
— For logistic regression, we minimized MSE or NLL instead
— ldea: low MSE => low classification error

* Example of a surrogate loss function
* AdaBoost also corresponds to a surrogate loss function

Cada — Zexp[_yu)f(xz)]

(]
* Prediction is yhat = sign(f(x))
— If same as vy, loss < 1; if different, loss > 1; at boundary, loss=1

* This loss function is smooth & convex (easier to optimize)

\AdaBoost example: Viola-Jones

 Viola-Jones face detection algorithm

« Combine lots of very weak classifiers
— Decision stumps = threshold on a single feature

« Define lots and lots of features

+ Use AdaBoost to find good features
— And weights for combining as well

|Haar wavelet features
|

* Four basic types.
— They are easy to calculate.
— The white areas are subtracted from the black ones.

— A special representation of the sample called the integral image
makes feature extraction faster.

RSN Sy
R0 G O 08 QS N 0
F cutut rut tut Cutut ot ottt

| Training a face detector

B Wavelets give ~100k features
Each feature is one possible classifier

To train: iterate from 1:T
— Train a classifier on each feature using weights
— Choose the best one, find errors and re-weight

This can take a long time... (lots of classifiers)
— One way to speed up is to not train very well...
— Rely on adaboost to fix “even weaker” classifier

Lots of other tricks in “real” Viola-Jones

— Cascade of decisions instead of weighted combo
— Apply at multiple image scales

— Work to make computationally efficient

|Summary

B Ensemble methods
— Combine multiple classifiers to make “better” one
— Committees, majority vote
— Weighted combinations
— Can use same or different classifiers

* Boosting
— Train sequentially; later predictors focus on mistakes by earlier

* Boosting for classification (e.g., AdaBoost)
— Use results of earlier classifiers to know what to work on
— Weight “hard” examples so we focus on them more
— Example: Viola-Jones for face detection

