
Neural Networks

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex Ihler

Machine Learning

Multi-Layer Perceptrons

Backpropagation Learning

Convolutional Neural Networks

• Linear Classifiers
– a linear classifier is a mapping which partitions feature space using a linear

function (a straight line, or a hyperplane)
– separates the two classes using a straight line in feature space
– in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

Feature 1, x1

Fe
at

ur
e

2,
 x

2

Decision boundary

Feature 1, x1

Fe
at

ur
e

2,
 x

2 Decision boundary

Linear classifiers (perceptrons)

Perceptron Classifier (2 features)

µ
1

µ
2

µ
0

 {-1, +1}

weighted sum of the inputs
Threshold
 Function

output
 = class decision

T(r
)r

Classifier
x1
x2

1

T(r)
r = µ1 x1 + µ2 x2 +
µ0

“linear response”

r = X.dot(theta.T) # compute linear response
Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision Boundary at r(x) = 0

Solve: X2 = -w1/w2 X1 – w0/w2 (Line)

Perceptron Classifier (2 features)

µ
1

µ
2

µ
0

 {-1, +1}

weighted sum of the inputs
Threshold
 Function

output
 = class decision

T(r
)r

Classifier
x1
x2

1

T(r)
r = µ1 x1 + µ2 x2 +
µ0

“linear response”

r = X.dot(theta.T) # compute linear response
Yhat = 2*(r > 0)-1 # ”sign”: predict +1 / -1

or, {0, 1}

Decision boundary = “x such that T(w1 x + w0) transitions”

1D example: T(r) = -1 if r < 0
T(r) = +1 if r > 0

• Recall the role of features
– We can create extra features that allow more complex decision

boundaries
– Linear classifiers
– Features [1,x]

• Decision rule: T(ax+b) = ax + b >/< 0
• Boundary ax+b =0 => point

– Features [1,x,x2]
• Decision rule T(ax2+bx+c)
• Boundary ax2+bx+c = 0 = ?

– What features can produce this decision rule?

Features and perceptrons

• Recall the role of features
– We can create extra features that allow more complex decision

boundaries
– For example, polynomial features

Φ(x) = [1 x x2 x3 …]

• What other kinds of features could we choose?
– Step functions?

F1

F2

F3

Linear function of features
 a F1 + b F2 + c F3 + d

Ex: F1 – F2 + F3

Features and perceptrons

• Step functions are just perceptrons!
– “Features” are outputs of a perceptron
– Combination of features output of another

F1

Linear function of features:
 a F1 + b F2 + c F3 + d

 Ex: F1 – F2 + F3

w11

w10x1

1

∑
F2

∑
F3

∑

w21

w20

w31

w30

Out

∑
w3

w1

w2

“Hidden layer”

“Output layer”

 w10 w11
W1 = w20 w21
 w30 w31

W2 = w1 w2 w3

Multi-layer perceptron model

• Step functions are just perceptrons!
– “Features” are outputs of a perceptron
– Combination of features output of another

F1

Linear function of features:
 a F1 + b F2 + c F3 + d

 Ex: F1 – F2 + F3

w11

w10x1

1

∑
F2

∑
F3

∑

w21

w20

w31

w30

Out

∑
w3

w1

w2

“Hidden layer”

“Output layer”

 w10 w11
W1 = w20 w21
 w30 w31

Regression version:
Remove activation
function from output

W2 = w1 w2 w3

Multi-layer perceptron model

TODO
• Block layers & color somehow

• Discuss “fully connected”

• Simplified diagram

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

 Input
Features

Perceptron:
 Step function /
 Linear partition

Features of MLPs

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

 Input
Features

2-layer:
 “Features” are now partitions
 All linear combinations of those partitions

Layer 1

Features of MLPs

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

 Input
Features

3-layer:
 “Features” are now complex functions
 Output any linear combination of those

Layer 1 Layer 2

Features of MLPs

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

 Input
Features

Current research:
 “Deep” architectures
 (many layers)

Layer 1 Layer 2

…

…Layer 3

Features of MLPs

• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

• Flexible function approximation
– Approximate arbitrary functions with enough hidden nodes

…

 Input
Features

Layer 1

Output

…

h1

h2

h1 h2 h3

y

x0 x1
…

v0
v1

Features of MLPs

• Another term for MLPs
• Biological motivation

• Neurons
– “Simple” cells
– Dendrites sense charge
– Cell weighs inputs
– “Fires” axon

∑
w3

w1

w2

“How stuff works: the brain”

Neural networks

Logistic

Hyperbolic
 Tangent

Gaussian

ReLU
(rectified linear)

and many
others…

Activation functions

Linear

Feed-forward networks
• Information flows left-to-right

– Input observed features
– Compute hidden nodes (parallel)
– Compute next layer…

R = X.dot(W[0])+B[0] # linear response
H1= Sig(R) # activation f’n

S = H1.dot(W[1])+B[1] # linear response
H2 = Sig(S) # activation f’n

X

W[0]
H1

W[1]

H2

Information

Feed-forward networks
• Information flows left-to-right

– Input observed features
– Compute hidden nodes (parallel)
– Compute next layer…

• Alternative: recurrent NNs…

X1 = _add1(X); # add constant feature
T = X1.dot(W[0].T); # linear response
H = Sig(T); # activation f’n

H1 = _add1(H); # add constant feature
S = H1.dot(W[1].T); # linear response
H2 = Sig(S); # activation f’n

% ...

X

W[0]
H1

W[1]

H2

Information

Feed-forward networks
A note on multiple outputs:

•Regression:
– Predict multi-dimensional y
– “Shared” representation

= fewer parameters

•Classification
– Predict binary vector
– Multi-class classification

y = 2 = [0 0 1 0 …]
– Multiple, joint binary predictions

(image tagging, etc.)

– Often trained as regression (MSE),
with saturating activation

Information

Machine Learning

Backpropagation Learning

Multi-Layer Perceptrons

Convolutional Neural Networks

• Observe features “x” with target “y”
• Push “x” through NN = output is “ŷ”
• Error: (y- ŷ)2

• How should we update the weights to improve?

• Single layer
– Logistic sigmoid function
– Smooth, differentiable

• Optimize using:
– Batch gradient descent
– Stochastic gradient descent

Inputs

Hidden Layer

Outputs

(Can use different loss functions if desired…)

Training MLPs

Gradient calculations
• Think of NNs as “schematics” made of smaller functions

– Building blocks: summations & nonlinearities

– For derivatives, just apply the chain rule, etc!

Input
s

Hidden
Layer

Outpu
ts

…

Ex: f(g,h) = g2 h

save & reuse info (g,h) from forward computation!

• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

Backpropagation

• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

ŷk

hj

xi

Backpropagation

(Identical to logistic mse regression with inputs “hj”)

• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

B2 = (Y-Yhat) * dSig(S) #(1xN3)

G2 = B2.T.dot(H) #(N3x1)*(1xN2)=(N3xN2)

B1 = B2.dot(W[1])*dSig(T)#(1xN3)*(N3xN2)=(1xN2)

G1 = B1.T.dot(X) #(N2xN1)

X : (1xN1)
W1 : (N2xN1)
H = Sig(X.dot(W[0]))
H : (1xN2)
W2 : (N3xN21)
Yh = Sig(H.dot(W[1]))
Yh : (1xN3)

Backpropagation

Example: Regression, MCycle data
• Train NN model, 2 layer

– 1 input features => 1 input units

– 10 hidden units

– 1 target => 1 output units

– Logistic sigmoid activation for hidden layer, linear for output layer

Data:
+

learned prediction f’n:

Responses of hidden nodes
(= features of linear regression):
select out useful regions of “x”

Example: Classification, Iris data
• Train NN model, 2 layer

– 2 input features => 2 input units

– 10 hidden units

– 3 classes => 3 output units (y = [0 0 1], etc.)

– Logistic sigmoid activation functions

– Optimize MSE of predictions using stochastic gradient

Demo Time!

http://playground.tensorflow.org/

http://playground.tensorflow.org/
http://playground.tensorflow.org/

MLPs in practice
• Example: Deep belief nets

– Handwriting recognition
– Online demo
– 784 pixels ⬄ 500 mid ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

h1

h2

h3

ŷ

x

h1 h2 h3 ŷx

[Hinton et al. 2007]

MLPs in practice
• Example: Deep belief nets

– Handwriting recognition
– Online demo
– 784 pixels ⬄ 500 mid ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

h1

h2

h3

ŷ

x

h1 h2 h3 ŷx

[Hinton et al. 2007]

MLPs in practice
• Example: Deep belief nets

– Handwriting recognition
– Online demo
– 784 pixels ⬄ 500 mid ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

(c) Alexander Ihler

Fix output,
 simulate inputs

[Hinton et al. 2007]

Machine Learning

Convolutional Neural Networks

Multi-Layer Perceptrons

Backpropagation Learning

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters”

Input: 28x28 image Weights: 5x5

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5

filter response
 at each patch

Run over all patches of input
) activation map

24x24 image

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5

Another filter

Run over all patches of input
) activation map

Convolutional networks
• Organize & share the NN’s weights (vs “dense”)

• Group weights into “filters” & convolve across input image

• Many hidden nodes, but few parameters!

Input: 28x28 image Weights: 5x5 Hidden layer 1

Convolutional networks
• Again, can view components as building blocks

• Design overall, deep structure from parts
– Convolutional layers

– “Max-pooling” (sub-sampling) layers

– Densely connected layers

LeNet-5 [LeCun 1980]

Ex: AlexNet
• Deep NN model for ImageNet classification

– 650k units; 60m parameters

– 1m data; 1 week training (GPUs)

Convolutional Layers (5) Dense Layers (3)

Output
(1000 classes)Input

224x224x3

[Krizhevsky et al. 2012]

Hidden layers as “features”
• Visualizing a convolutional network’s filters

Slide image from Yann LeCun:
https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg

[Zeiler & Fergus 2013]

Dropout
• Another recent technique

– Randomly “block” some neurons at each step

– Trains model to have redundancy (predictions must be robust to blocking)

Input
s

Hidden
Layers

Outpu
t

Input
s

Hidden
Layers

Outpu
t

Each training prediction:
sample neurons to
remove

[Srivastava et al 2014]

... during training ...
R = X.dot(W[0])+B[0]; # linear response
H1= Sig(R); # activation f’n
H1 *= np.random.rand(*H1.shape)<p; #drop out!

Neural networks & DBNs
• Want to try them out?
• Matlab “Deep Learning Toolbox”

https://github.com/rasmusbergpalm/DeepLearnToolbox

• PyLearn2
https://github.com/lisa-lab/pylearn2

• TensorFlow

(c) Alexander Ihler

Summary
• Neural networks, multi-layer perceptrons

• Cascade of simple perceptrons
– Each just a linear classifier
– Hidden units used to create new features

• Together, general function approximators
– Enough hidden units (features) = any function
– Can create nonlinear classifiers
– Also used for function approximation, regression, …

• Training via backprop
– Gradient descent; logistic; apply chain rule. Building block view.

• Advanced: deep nets, conv nets, dropout, …

