Neural Networks

PROF XIAOHUI XIE SPRING 2019

CS 273P Machine Learning and Data Mining

Machine Learning

Multi-Layer Perceptrons

Backpropagation Learning

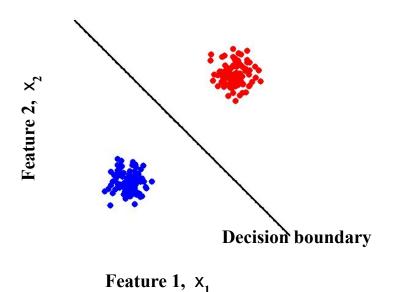
Convolutional Neural Networks

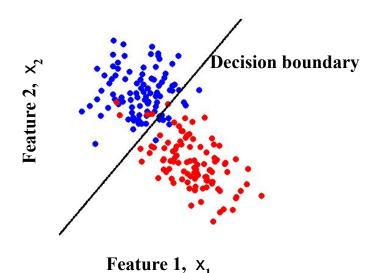
Linear classifiers (perceptrons)

- Linear Classifiers
 - a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
 - separates the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

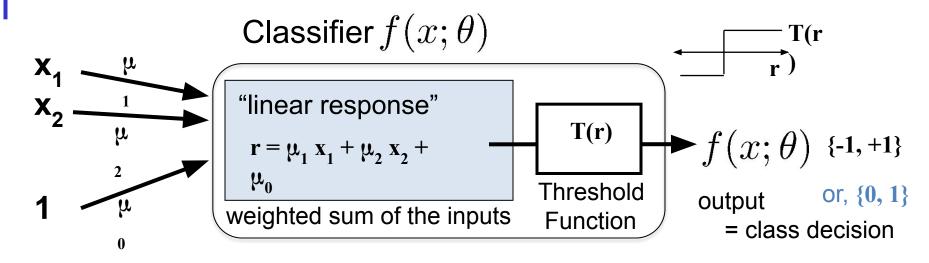
Linearly separable data

Linearly non-separable data





Perceptron Classifier (2 features)

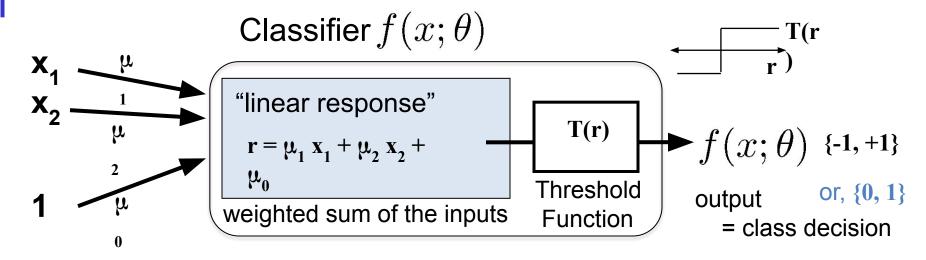


```
r = X.dot(theta.T) # compute linear response
Yhat = 2*(r > 0)-1 # "sign": predict +1 / -1
```

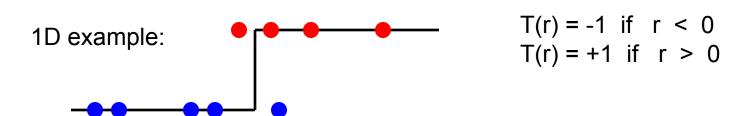
Decision Boundary at r(x) = 0

Solve:
$$X_2 = -w_1/w_2 X_1 - w_0/w_2$$
 (Line)

Perceptron Classifier (2 features)



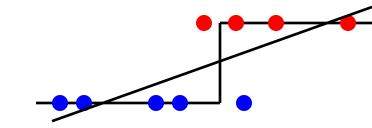
```
r = X.dot(theta.T) # compute linear response
Yhat = 2*(r > 0)-1 # "sign": predict +1 / -1
```



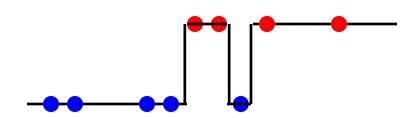
Decision boundary = "x such that T($w_1 x + w_0$) transitions"

Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - Linear classifiers
 - Features [1,x]
 - Decision rule: T(ax+b) = ax + b > < 0
 - Boundary ax+b =0 => point
 - Features [1,x,x²]
 - Decision rule T(ax²+bx+c)
 - Boundary $ax^2+bx+c=0=?$



— What features can produce this decision rule?

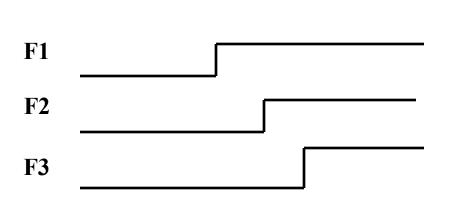


Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - For example, polynomial features

$$\Phi(x) = [1 \ x \ x^2 \ x^3 \dots]$$

- What other kinds of features could we choose?
 - Step functions?

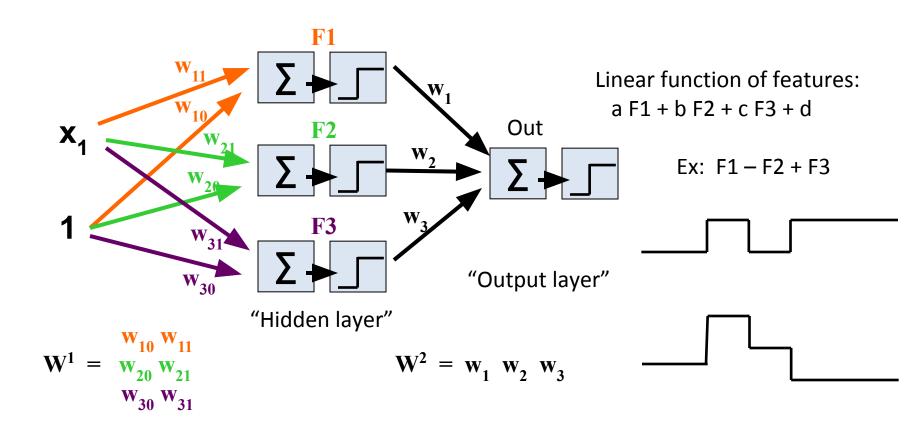


Linear function of features a F1 + b F2 + c F3 + d

Ex: F1 - F2 + F3

Multi-layer perceptron model

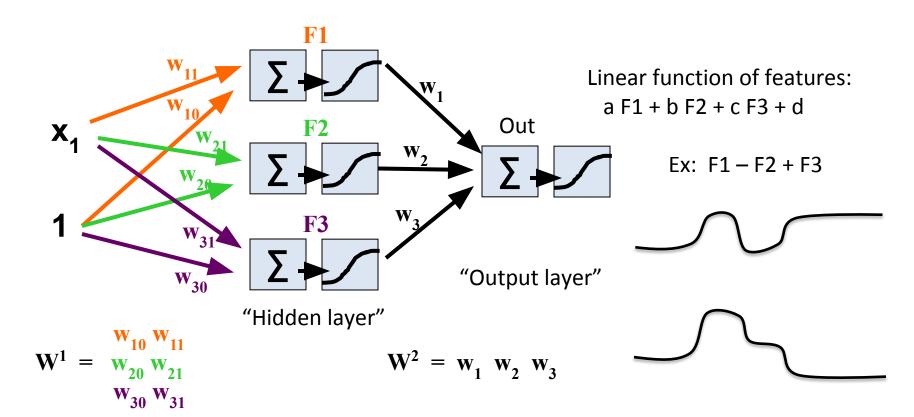
- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another



Multi-layer perceptron model

- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another

Regression version: Remove activation function from output



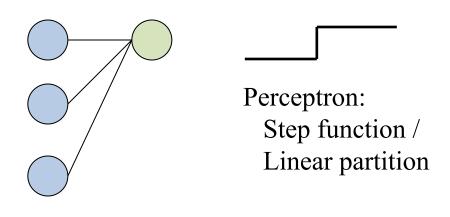
TODO

- Block layers & color somehow
- Discuss "fully connected"
- Simplified diagram

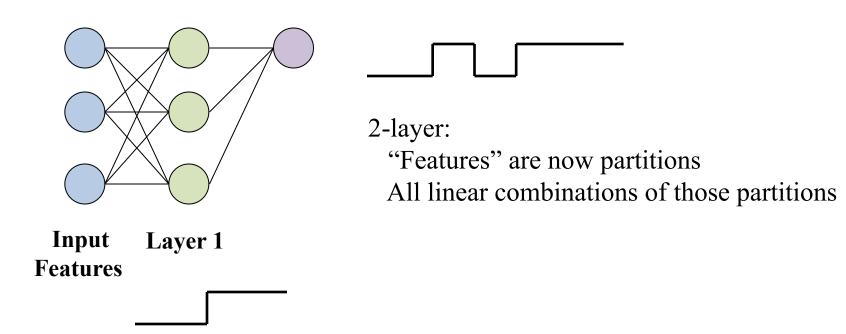
- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards

Input

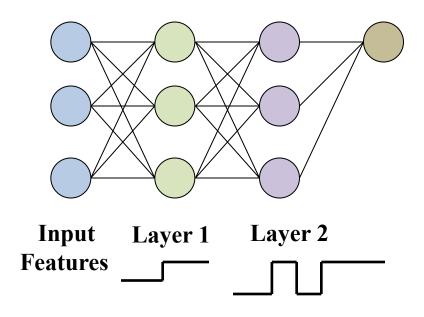
Features



- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards



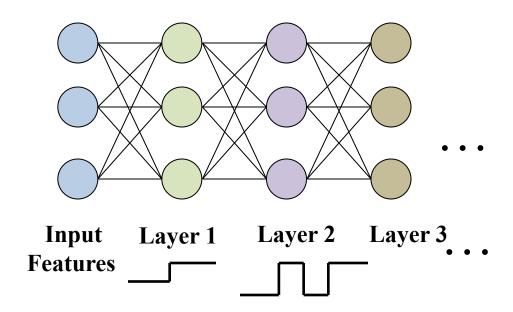
- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards



3-layer:

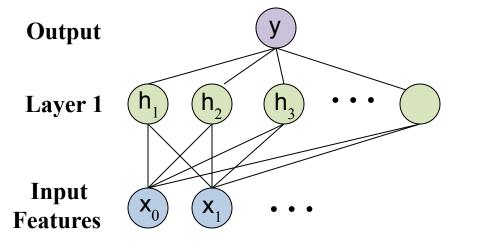
"Features" are now complex functions
Output any linear combination of those

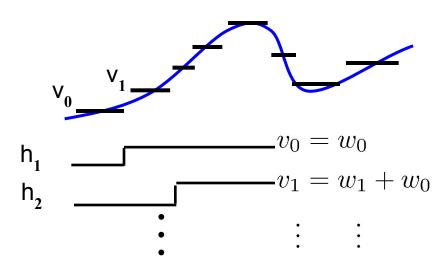
- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards



Current research:
"Deep" architectures
(many layers)

- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards
- Flexible function approximation
 - Approximate arbitrary functions with enough hidden nodes



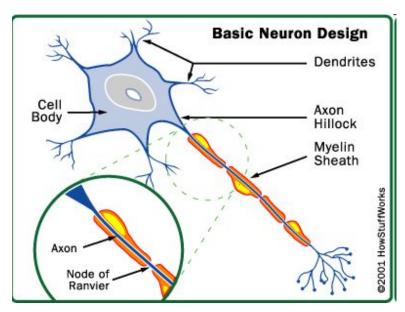


Neural networks

- Another term for MLPs
- Biological motivation

- Neurons
 - "Simple" cells
 - Dendrites sense charge
 - Cell weighs inputs
 - "Fires" axon





"How stuff works: the brain"

Activation functions

Logistic

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\frac{\partial \sigma}{\partial z}(z) = \sigma(z)(1 - \sigma(z))$$

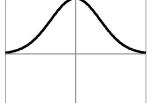
Hyperbolic Tangent

$$\sigma(z) = \frac{1 - \exp(-2z)}{1 + \exp(-2z)}$$

$$\frac{\partial \sigma}{\partial z}(z) = 1 - (\sigma(z))^2$$

Gaussian

$$\sigma(z) = \exp(-z^2/2)$$

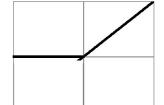


$$\frac{\partial \sigma}{\partial z}(z) = -z\sigma(z)$$

ReLU

$$\sigma(z) = \max(0, z)$$

(rectified linear)



$$\frac{\partial \sigma}{\partial z}(z) = \mathbb{1}[z > 0]$$

Linear

$$\sigma(z) = z$$

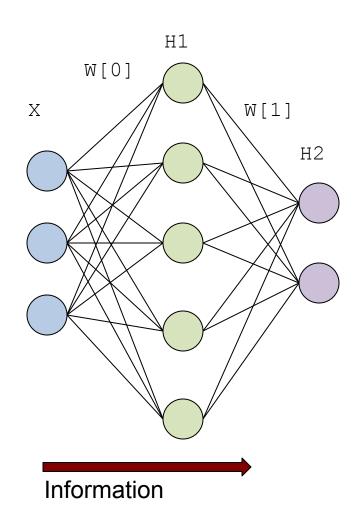
and many others...

Feed-forward networks

- Information flows left-to-right
 - Input observed features
 - Compute hidden nodes (parallel)
 - Compute next layer...

```
R = X.dot(W[0])+B[0] # linear response
H1= Sig(R) # activation f'n

S = H1.dot(W[1])+B[1] # linear response
H2 = Sig(S) # activation f'n
```



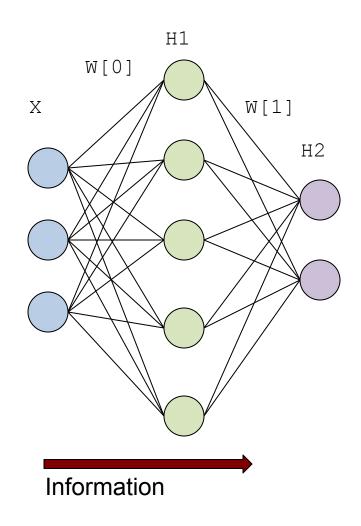
Feed-forward networks

- Information flows left-to-right
 - Input observed features
 - Compute hidden nodes (parallel)
 - Compute next layer…

```
X1 = _add1(X);  # add constant feature
T = X1.dot(W[0].T); # linear response
H = Sig(T);  # activation f'n

H1 = _add1(H);  # add constant feature
S = H1.dot(W[1].T); # linear response
H2 = Sig(S);  # activation f'n
```

Alternative: recurrent NNs...



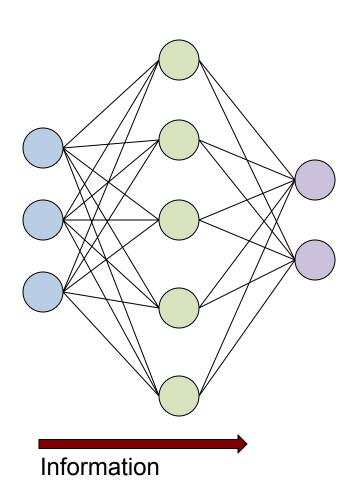
Feed-forward networks

A note on multiple outputs:

- •Regression:
 - Predict multi-dimensional y
 - "Shared" representation
 - = fewer parameters

Classification

- Predict binary vector
- Multi-class classification
 y = 2 = [0 0 1 0 ...]
- Multiple, joint binary predictions (image tagging, etc.)
- Often trained as regression (MSE),
 with saturating activation



Machine Learning

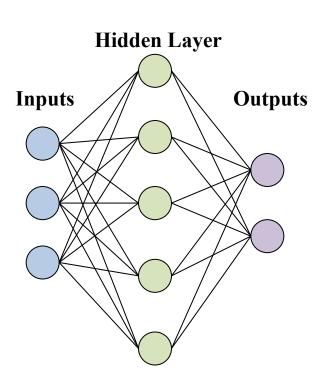
Multi-Layer Perceptrons

Backpropagation Learning

Convolutional Neural Networks

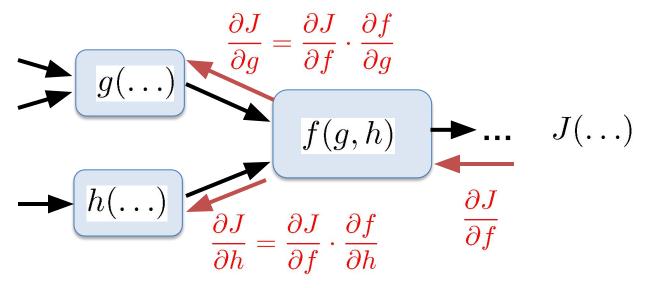
Training MLPs

- Observe features "x" with target "y"
- Push "x" through NN = output is "ŷ"
- Error: $(y-\hat{y})^2$ (Can use different loss functions if desired...)
- How should we update the weights to improve?
- Single layer
 - Logistic sigmoid function
 - Smooth, differentiable
- Optimize using:
 - Batch gradient descent
 - Stochastic gradient descent



Gradient calculations

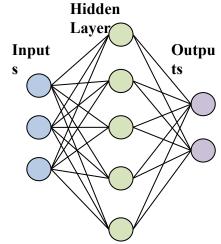
- Think of NNs as "schematics" made of smaller functions
 - Building blocks: summations & nonlinearities
 - For derivatives, just apply the chain rule, etc!



Ex:
$$f(g,h) = g^2 h$$

$$\frac{\partial J}{\partial g} = \frac{\partial J}{\partial f} \cdot 2 g(\cdot) h(\cdot) \qquad \frac{\partial J}{\partial h} = \frac{\partial J}{\partial f} \cdot g^2(\cdot)$$

save & reuse info (g,h) from forward computation!



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) (\partial \hat{y}_{k'})$$
$$= -2(y_k - \hat{y}_k) \sigma'(s_k) h_j$$

Forward pass

Loss function

$$J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$$

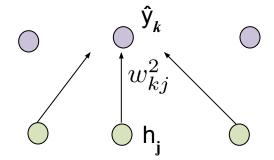
Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$
 Hidden layer $h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

(Identical to logistic mse regression with inputs "h_i")



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) (\partial \hat{y}_{k'})$$

$$= -2(y_k - \hat{y}_k) \sigma'(s_k) h_j$$

$$\beta_k^2$$

Forward pass

Loss function

$$J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$$

Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

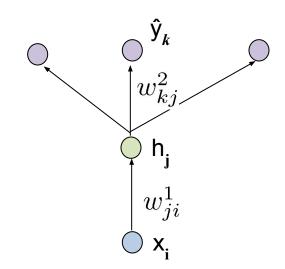
(Identical to logistic mse regression with inputs "h_j")

$$\frac{\partial J}{\partial w_{ji}^1} = \sum_k -2(y_k - \hat{y}_k) (\partial \hat{y}_k)$$

$$= \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \partial h_j$$

$$= \sum_k -2(y_k - \hat{y}_k) \sigma'(s_k) w_{kj}^2 \sigma'(t_j) x_i$$

$$\beta_k^2$$



Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = \begin{bmatrix} -2(y_k - \hat{y}_k) \ \sigma'(s_k) \end{bmatrix} h_j$$

$$\frac{\partial J}{\partial w_{ji}^1} = \sum_k \begin{bmatrix} -2(y_k - \hat{y}_k) \ \sigma'(s_k) \end{bmatrix} w_{kj}^2 \ \sigma'(t_j) \ x_i$$
Hid h

Forward pass

Loss function

$$J_i(W) = \sum_k (y_k^{(i)} - \hat{y}_k^{(i)})^2$$

Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

```
# X : (1xN1)
# W1 : (N2xN1)
H = Sig(X.dot(W[0]))
# H : (1xN2)
# W2 : (N3xN21)
Yh = Sig(H.dot(W[1]))
# Yh : (1xN3)
```

```
B2 = (Y-Yhat) * dSig(S) # (1xN3)

G2 = B2.T.dot(H) # (N3x1) * (1xN2) = (N3xN2)

B1 = B2.dot(W[1]) * dSig(T)# (1xN3) * (N3xN2) = (1xN2)

G1 = B1.T.dot(X) # (N2xN1)
```

Example: Regression, MCycle data

- Train NN model, 2 layer
 - 1 input features => 1 input units
 - 10 hidden units
 - 1 target => 1 output units
 - Logistic sigmoid activation for hidden layer, linear for output layer

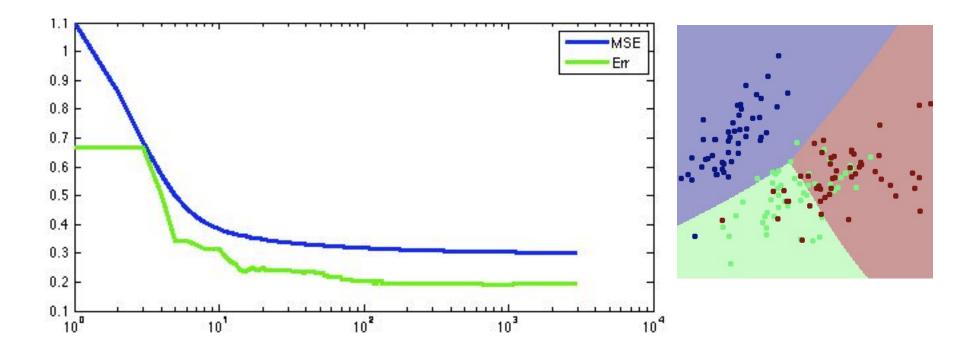
Data:
+
learned prediction f'n:

onses of hidden nodes

Responses of hidden nodes (= features of linear regression): select out useful regions of "x"

Example: Classification, Iris data

- Train NN model, 2 layer
 - 2 input features => 2 input units
 - 10 hidden units
 - 3 classes => 3 output units (y = [0 0 1], etc.)
 - Logistic sigmoid activation functions
 - Optimize MSE of predictions using stochastic gradient

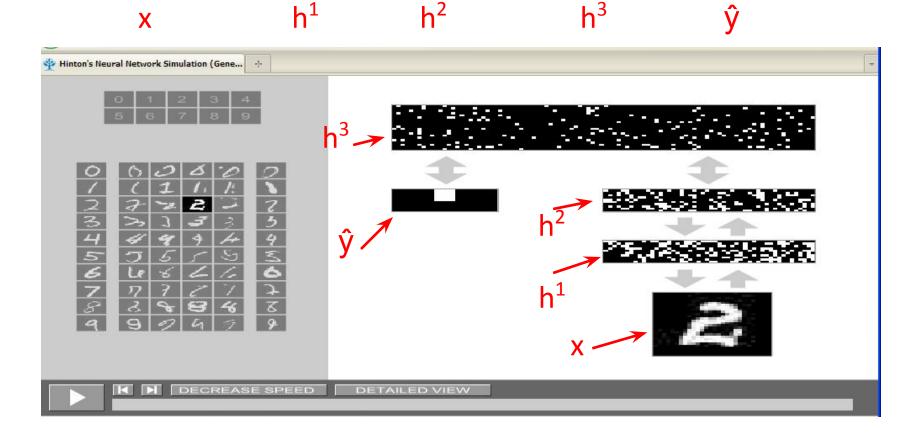


Demo Time!

http://playground.tensorflow.org/

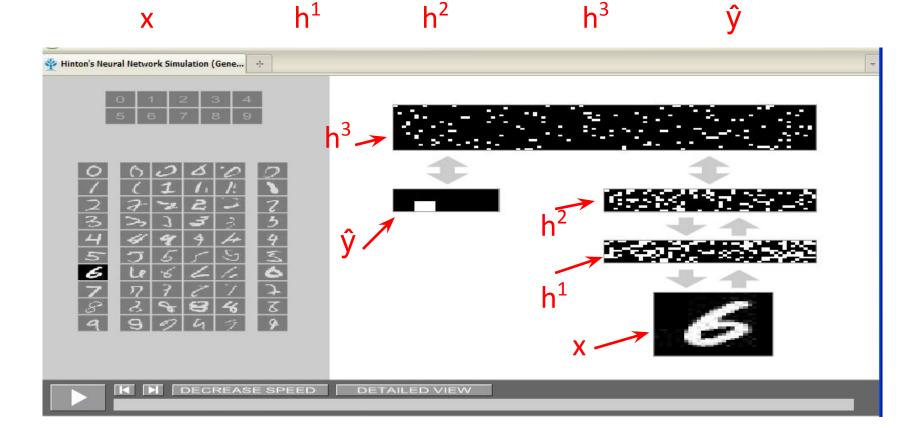
MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels



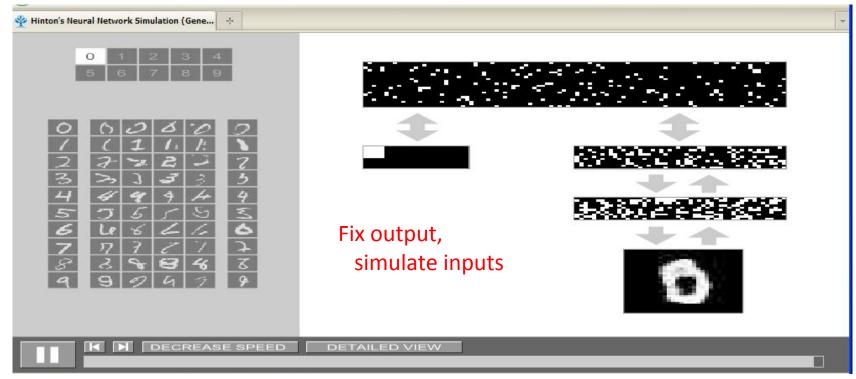
MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels



MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels



Machine Learning

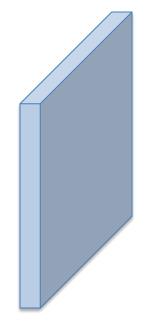
Multi-Layer Perceptrons

Backpropagation Learning

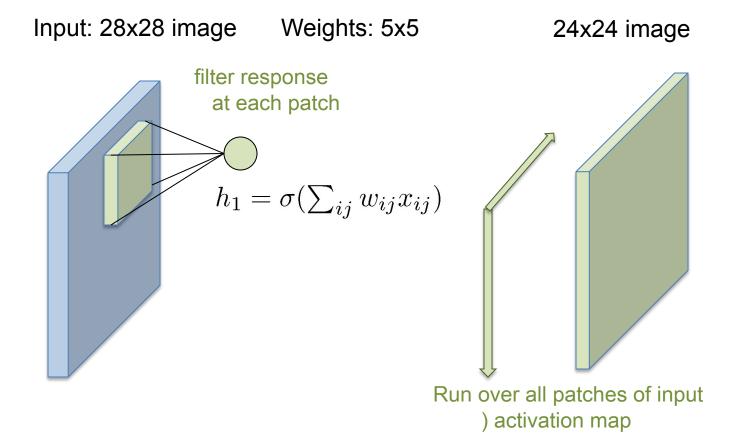
Convolutional Neural Networks

- Organize & share the NN's weights (vs "dense")
- Group weights into "filters"

Input: 28x28 image Weights: 5x5

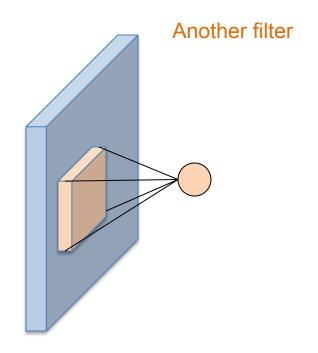


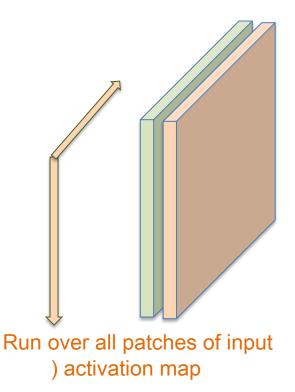
- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image



- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image

Input: 28x28 image Weights: 5x5



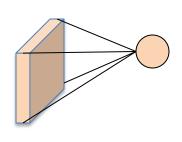


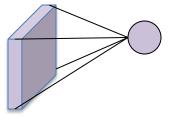
- Organize & share the NN's weights (vs "dense")
- Group weights into "filters" & convolve across input image
- Many hidden nodes, but few parameters!

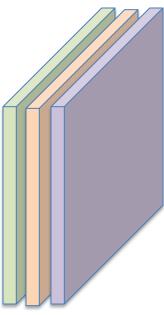
Input: 28x28 image

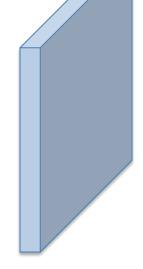
Weights: 5x5

Hidden layer 1

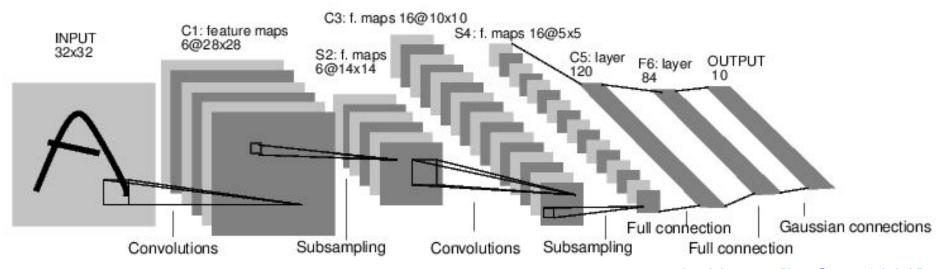








- Again, can view components as building blocks
- Design overall, deep structure from parts
 - Convolutional layers
 - "Max-pooling" (sub-sampling) layers
 - Densely connected layers



LeNet-5 [LeCun 1980]

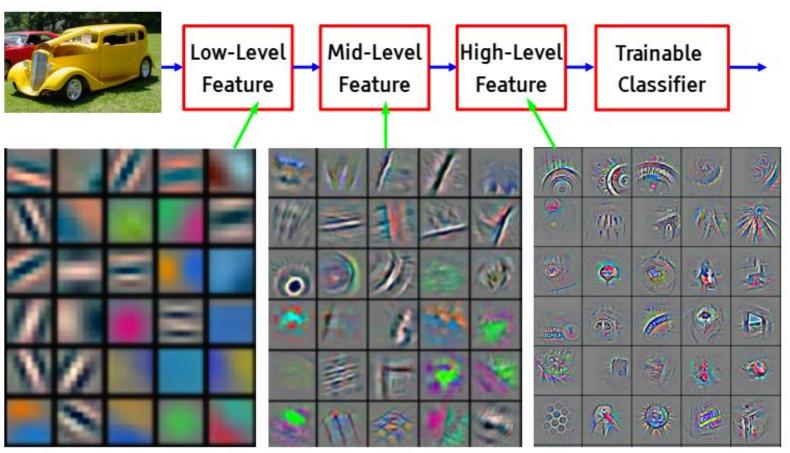
Ex: AlexNet

- Deep NN model for ImageNet classification
 - 650k units; 60m parameters
 - 1m data; 1 week training (GPUs)

Convolutional Layers (5) Dense Layers (3) dense 192 192 128 128 dense dense 128 Max 192 192 2048 pooling Max Max 128 pooling Output pooling Input (1000 classes) 224x224x3

Hidden layers as "features"

Visualizing a convolutional network's filters [Zeiler & Fergus 2013]

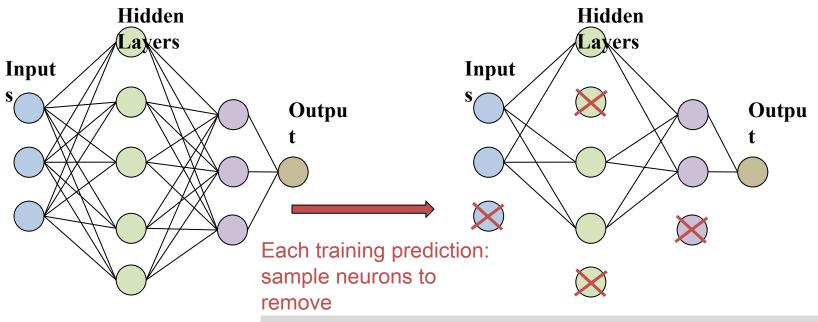


Slide image from Yann LeCun:

https://drive.google.com/open?id=0BxKBnD5y2M8NcIFWSXNxa0JIZTg

Dropout

- Another recent technique
 - Randomly "block" some neurons at each step
 - Trains model to have redundancy (predictions must be robust to blocking)



```
# ... during training ...
R = X.dot(W[0])+B[0];  # linear response
H1= Sig(R);  # activation f'n
H1 *= np.random.rand(*H1.shape) < p; #drop out!</pre>
```

Neural networks & DBNs

- Want to try them out?
- Matlab "Deep Learning Toolbox"
 https://github.com/rasmusbergpalm/DeepLearnToolbox
 - rasmusbergpalm / DeepLearnToolbox

Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

- PyLearn2
 https://github.com/lisa-lab/pylearn2
- TensorFlow

Summary

- Neural networks, multi-layer perceptrons
- Cascade of simple perceptrons
 - Each just a linear classifier
 - Hidden units used to create new features
- Together, general function approximators
 - Enough hidden units (features) = any function
 - Can create nonlinear classifiers
 - Also used for function approximation, regression, ...
- Training via backprop
 - Gradient descent; logistic; apply chain rule. Building block view.
- Advanced: deep nets, conv nets, dropout, ...