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• Linear Classifiers
– a linear classifier is a mapping which partitions feature space using a linear 

function (a straight line, or a hyperplane)
– separates the two classes using a straight line in feature space
– in 2 dimensions the decision boundary is a straight line
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Linear classifiers (perceptrons)



Perceptron Classifier (2 features)

µ
1

µ
2

µ
0

 {-1, +1}

weighted sum of the inputs
Threshold
 Function

output
    = class decision

T(r
)r

Classifier
x1
x2

1

T(r)
r = µ1 x1 + µ2 x2 + 
µ0

“linear response”

r = X.dot( theta.T ) # compute linear response
Yhat = 2*(r > 0)-1   # ”sign”: predict +1 / -1

or, {0, 1}

Decision Boundary at  r(x) = 0 

Solve:  X2 = -w1/w2 X1 – w0/w2    (Line)



Perceptron Classifier (2 features)
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“linear response”

r = X.dot( theta.T ) # compute linear response
Yhat = 2*(r > 0)-1   # ”sign”: predict +1 / -1

or, {0, 1}

Decision boundary = “x such that T( w1 x + w0 ) transitions” 

1D example: T(r) = -1  if   r  <  0
T(r) = +1  if   r  >  0 



• Recall the role of features
– We can create extra features that allow more complex decision 

boundaries
– Linear classifiers
– Features [1,x]

• Decision rule:  T(ax+b)  =  ax + b >/< 0
• Boundary ax+b =0  => point

– Features [1,x,x2]
• Decision rule T(ax2+bx+c)   
• Boundary ax2+bx+c = 0  = ?

– What features can produce this decision rule?

Features and perceptrons



• Recall the role of features
– We can create extra features that allow more complex decision 

boundaries
– For example, polynomial features

Φ(x) = [1  x  x2  x3 …]

• What other kinds of features could we choose?
– Step functions?

F1
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Linear function of features
   a F1 + b F2 + c F3 + d

Ex:  F1 – F2 + F3 

Features and perceptrons



• Step functions are just perceptrons!
– “Features” are outputs of a perceptron
– Combination of features output of another

F1

Linear function of features:
   a F1 + b F2 + c F3 + d

               Ex:  F1 – F2 + F3 
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Multi-layer perceptron model



• Step functions are just perceptrons!
– “Features” are outputs of a perceptron
– Combination of features output of another

F1

Linear function of features:
   a F1 + b F2 + c F3 + d

               Ex:  F1 – F2 + F3 
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“Hidden layer”

“Output layer”

             w10 w11
W1  =   w20 w21
             w30 w31

Regression version:
Remove activation 
function from output

             
W2  =  w1   w2   w3
             

Multi-layer perceptron model



TODO
• Block layers & color somehow

• Discuss “fully connected”

• Simplified diagram



• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

   Input 
Features

Perceptron:
   Step function / 
   Linear partition

Features of MLPs



• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

   Input 
Features

2-layer:
   “Features” are now partitions
   All linear combinations of those partitions

Layer 1

Features of MLPs



• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

   Input 
Features

3-layer:
   “Features” are now complex functions
   Output any linear combination of those  

Layer 1 Layer 2

Features of MLPs



• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

   Input 
Features

Current research:  
    “Deep” architectures
    (many layers)

Layer 1 Layer 2

…

…Layer 3

Features of MLPs



• Simple building blocks
– Each element is just a perceptron function

• Can build upwards

• Flexible function approximation
– Approximate arbitrary functions with enough hidden nodes

…

   Input 
Features

Layer 1

Output

…

h1

h2

h1 h2 h3

y

x0 x1
…

v0
v1

Features of MLPs



• Another term for MLPs
• Biological motivation

• Neurons
– “Simple” cells
– Dendrites sense charge
– Cell weighs inputs
– “Fires” axon

∑
w3

w1

w2

“How stuff works: the brain”

Neural networks



Logistic

Hyperbolic
   Tangent

Gaussian

ReLU
(rectified linear)

and many 
others…

Activation functions

Linear



Feed-forward networks
• Information flows left-to-right

– Input observed features
– Compute hidden nodes (parallel)
– Compute next layer…

R = X.dot(W[0])+B[0] # linear response
H1= Sig( R )         # activation f’n

S = H1.dot(W[1])+B[1] # linear response
H2 = Sig( S )         # activation f’n

X

W[0]
H1

W[1]

H2

Information



Feed-forward networks
• Information flows left-to-right

– Input observed features
– Compute hidden nodes (parallel)
– Compute next layer…

• Alternative: recurrent NNs…

X1 = _add1(X);    # add constant feature
T  = X1.dot(W[0].T); # linear response
H  = Sig( T );       # activation f’n

H1 = _add1(H);    # add constant feature
S  = H1.dot(W[1].T); # linear response
H2 = Sig( S );       # activation f’n

% ...

X

W[0]
H1

W[1]

H2

Information



Feed-forward networks
A note on multiple outputs:

•Regression:
– Predict multi-dimensional y
– “Shared” representation

= fewer parameters

•Classification
– Predict binary vector
– Multi-class classification

y = 2  =  [0 0 1 0 … ]
– Multiple, joint binary predictions

(image tagging, etc.)

– Often trained as regression (MSE),
with saturating activation

Information



Machine Learning

Backpropagation Learning

Multi-Layer Perceptrons

Convolutional Neural Networks



• Observe features “x” with target “y”
• Push “x” through NN = output is “ŷ”
• Error:  (y- ŷ)2

• How should we update the weights to improve?

• Single layer
– Logistic sigmoid function
– Smooth, differentiable

• Optimize using:
– Batch gradient descent
– Stochastic gradient descent

Inputs

Hidden Layer

Outputs

(Can use different loss functions if desired…)

Training MLPs



Gradient calculations
• Think of NNs as “schematics” made of smaller functions

– Building blocks: summations & nonlinearities

– For derivatives, just apply the chain rule, etc!

Input
s

Hidden 
Layer

Outpu
ts

…

Ex:  f(g,h) = g2 h

save & reuse info (g,h) from forward computation!



• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

(Identical to logistic mse regression with inputs “hj”)

ŷk

hj

Backpropagation



• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

ŷk

hj

xi

Backpropagation

(Identical to logistic mse regression with inputs “hj”)



• Just gradient descent…
• Apply the chain rule to the MLP

Forward pass

Output layer

Hidden layer

Loss function

B2 = (Y-Yhat) * dSig(S)  #(1xN3)

G2 = B2.T.dot( H )       #(N3x1)*(1xN2)=(N3xN2)

B1 = B2.dot(W[1])*dSig(T)#(1xN3)*(N3xN2)=(1xN2)

G1 = B1.T.dot( X )       #(N2xN1)

# X  : (1xN1) 
# W1 : (N2xN1)
H  = Sig(X.dot(W[0])) 
# H  : (1xN2)
# W2 : (N3xN21)
Yh = Sig(H.dot(W[1])) 
# Yh : (1xN3)

Backpropagation



Example: Regression, MCycle data
• Train NN model, 2 layer

– 1 input features => 1 input units

– 10 hidden units

– 1 target => 1 output units

– Logistic sigmoid activation for hidden layer, linear for output layer

Data: 
+

learned prediction f’n:

Responses of hidden nodes
(= features of linear regression):
select out useful regions of “x”



Example: Classification, Iris data
• Train NN model, 2 layer

– 2 input features => 2 input units

– 10 hidden units

– 3 classes => 3 output units   (y = [0 0 1], etc.)

– Logistic sigmoid activation functions

– Optimize MSE of predictions using stochastic gradient



Demo Time!

http://playground.tensorflow.org/

http://playground.tensorflow.org/
http://playground.tensorflow.org/


MLPs in practice
• Example: Deep belief nets

– Handwriting recognition
– Online demo
– 784 pixels ⬄ 500 mid ⬄ 500 high ⬄ 2000 top ⬄ 10 labels 

h1
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h3

ŷ

x

h1 h2 h3 ŷx

[Hinton et al. 2007]
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MLPs in practice
• Example: Deep belief nets  

– Handwriting recognition
– Online demo
– 784 pixels ⬄ 500 mid ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

(c) Alexander Ihler

Fix output,
   simulate inputs

[Hinton et al. 2007]
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Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters”

Input: 28x28 image Weights: 5x5



Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5

filter response
   at each patch

Run over all patches of input
  ) activation map

24x24 image



Convolutional networks
• Organize & share the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image

Input: 28x28 image Weights: 5x5

Another filter

Run over all patches of input
  ) activation map



Convolutional networks
• Organize & share  the NN’s weights   (vs “dense”)

• Group weights into “filters” & convolve across input image

• Many hidden nodes, but few parameters!

Input: 28x28 image Weights: 5x5 Hidden layer 1



Convolutional networks
• Again, can view components as building blocks

• Design overall, deep structure from parts
– Convolutional layers

– “Max-pooling” (sub-sampling) layers

– Densely connected layers

LeNet-5  [LeCun 1980]



Ex: AlexNet
• Deep NN model for ImageNet classification

– 650k units; 60m parameters

– 1m data; 1 week training (GPUs)

Convolutional Layers (5) Dense Layers (3)

Output
(1000 classes)Input

224x224x3

[Krizhevsky et al. 2012]



Hidden layers as “features”
• Visualizing a convolutional network’s filters

Slide image from Yann LeCun:
https://drive.google.com/open?id=0BxKBnD5y2M8NclFWSXNxa0JlZTg

[Zeiler & Fergus 2013]



Dropout
• Another recent technique

– Randomly “block” some neurons at each step

– Trains model to have redundancy (predictions must be robust to blocking)

Input
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Outpu
t

Input
s
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Layers 

Outpu
t

Each training prediction:
sample neurons to 
remove

[Srivastava et al 2014]

# ... during training ...
R = X.dot(W[0])+B[0];      # linear response
H1= Sig( R );              # activation f’n
H1 *= np.random.rand(*H1.shape)<p; #drop out!



Neural networks & DBNs
• Want to try them out?
• Matlab “Deep Learning Toolbox”

https://github.com/rasmusbergpalm/DeepLearnToolbox

• PyLearn2
https://github.com/lisa-lab/pylearn2

• TensorFlow

(c) Alexander Ihler



Summary
• Neural networks, multi-layer perceptrons

• Cascade of simple perceptrons
– Each just a linear classifier
– Hidden units used to create new features

• Together, general function approximators
– Enough hidden units (features) = any function
– Can create nonlinear classifiers
– Also used for function approximation, regression, …

• Training via backprop
– Gradient descent; logistic; apply chain rule.  Building block view.

• Advanced: deep nets, conv nets, dropout, …


