PROF XIAOHUI XIE SPRING 2019

CS 273P Machine Learning and Data Mining

- Functional form f(x;θ): nested "if-then-else" statements
 - Discrete features: fully expressive (any function)
- Structure:
 - Internal nodes: check feature, branch on value
 - Leaf nodes: output prediction

```
"XOR"

X<sub>1</sub> X<sub>2</sub> y

0 0 1

0 1 -1

1 0 -1

1 1 1
```

```
if X1: # branch on feature at root
if X2: return +1 # if true, branch on right child feature
else: return -1 # & return leaf value
else: # left branch:
if X2: return -1 # branch on left child feature
else: return +1 # & return leaf value
```

Parameters?

Tree structure, features, and leaf outputs

- Real-valued features
 - Compare feature value to some threshold

- Categorical variables
 - Could have one child per value
 - Binary splits: single values, or by subsets

The discrete variable will not appear again below here...

Could appear again multiple times...

- "Complexity" of function depends on the depth
- A depth-1 decision tree is called a decision "stump"
 - Simpler than a linear classifier!

- "Complexity" of function depends on the depth
- More splits provide a finer-grained partitioning

Depth d = up to 2^d regions & predictions

Decision trees for regression

- Exactly the same
- Predict real valued numbers at leaf nodes

Examples on a single scalar feature:

Decision Trees for 2D Regression

- ☐ Each node in tree splits examples according to a single feature
- ☐ Leaves predict mean of training data whose path through tree ends there

Tree-structured splitting

- "CART" = classification and regression trees
 - A particular algorithm, but many similar variants
 - See e.g. http://en.wikipedia.org/wiki/Classification_and_regression_tree
 - Also ID3 and C4.5 algorithms

Classification

- Union of rectangular decision regions
- Split criterion, e.g., information gain (or "cross-entropy")
- Alternative: "Gini index" (similar properties)

Regression

- Divide input space ("x") into regions
- Each region has its own regression function
- Split criterion, e.g., predictive improvement

Learning decision trees

- Break into two parts
 - Should this be a leaf node?
 - If so: what should we predict?
 - If not: how should we further split the data?

Example algorithms: ID3, C4.5
See e.g. wikipedia, "Classification and regression tree"

- Leaf nodes: best prediction given this data subset
 - Classify: pick majority class; Regress: predict average value
- Non-leaf nodes: pick a feature and a split
 - Greedy: "score" all possible features and splits
 - Score function measures "purity" of data after split
 - How much easier is our prediction task after we divide the data?
- When to make a leaf node?
 - All training examples the same class (correct), or indistinguishable
 - Fixed depth (fixed complexity decision boundary)
 - Others ...

Learning decision trees

end if

```
Algorithm 1 BuildTree(D): Greedy training of a decision tree
  Input: A data set D = (X, Y).
  Output: A decision tree.
  if LeafCondition(D) then
     f_n = \text{FindBestPrediction}(D)
  else
    j_n, t_n = \text{FindBestSplit}(D)
    D_L = \{(x^{(i)}, y^{(i)}) : x_{i_n}^{(i)} < t_n\}
                                          and
    D_R = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} \ge t_n\}
     leftChild = BuildTree(D_L)
    rightChild = BuildTree(D_R)
```

Scoring decision tree splits

- How can we select which feature to split on?
 - And, for real-valued features, what threshold?

Example	Attributes												
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait		
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0-10	Т		
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F		
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т		
X_4	Т	F	T	T	Full	\$	F	F	Thai	10-30	Т		
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F		
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т		
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F		
X_8	F	F	F	T	Some	\$\$	Т	Т	Thai	0-10	Т		
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F		
X_{10}	Т	Т	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F		
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F		
X_{12}	Т	Т	Т	T	Full	\$	F	F	Burger	30-60	Т		

Scoring decision tree splits

- Suppose we are considering splitting feature 1
 - How can we score any particular split?
 - "Impurity" how easy is the prediction problem in the leaves?
- "Greedy" could choose split with the best accuracy
 - Assume we have to predict a value next
 - MSE (regression)
 - 0/1 loss (classification)
- But: "soft" score can work better

- "Entropy" is a measure of randomness
 - How hard is it to communicate a result to you?
 - Depends on the probability of the outcomes
- Communicating fair coin tosses
 - Output: HHTHTTTHHHHT...
 - Sequence takes n bits each outcome totally unpredictable
- Communicating my daily lottery results
 - Output: 0 0 0 0 0 0 ...
 - Most likely to take one bit I lost every day.
 - Small chance I'll have to send more bits (won & when)
 Won 1: 1(...)0

Won 2: 1(...)1(...)0

- Takes less work to communicate because it's less random
 - Use a few bits for the most likely outcome, more for less likely ones

- Entropy $H(x) = E[\log 1/p(x)] = \sum p(x) \log 1/p(x)$
 - Log base two, units of entropy are "bits"
 - Two outcomes: $H = -p \log(p) (1-p) \log(1-p)$

Examples:

$$H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 = .25 \log 4 = .25 \log 4$$

$$H(x) = .75 \log 4/3 + .25 \log 4$$

= .8133 bits

$$H(x) = 1 \log 1$$
$$= 0 \text{ bits}$$

Max entropy for 4 outcomes

Min entropy

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

Information gain = 13/18 * (.99-.77) + 5/18 * (.99 - 0) = 0.43 bits

Equivalent: $\sum p(s,c) \log [p(s,c) / p(s) p(c)]$ = 10/18 log[(10/18) / (13/18) (10/18)] + 3/18 log[(3/18)/(13/18)(8/18) + ...

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

Information = 17/18 * (.99-.97) + 1/18 * (.99 - 0) = 0.074 bits

Less information reduction – a less desirable split of the data

Gini index & impurity

- An alternative to information gain
 - Measures variance in the allocation (instead of entropy)
- Hgini = $\sum_{c} p(c) (1-p(c))$ vs. Hent = $\sum_{c} p(c) \log p(c)$

Gini Index = 13/18 * (.494-.355) + 5/18 * (.494 - 0)

Entropy vs Gini impurity

- The two are nearly the same...
 - Pick whichever one you like

Example

Restaurant data:

Example		Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait		
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0-10	Т		
X_2	Т	F	F	T	Full	\$	F	F	Thai	30-60	F		
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т		
X_4	Т	F	T	T	Full	\$	F	F	Thai	10-30	Т		
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F		
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т		
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F		
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т		
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F		
X_{10}	Т	Т	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F		
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F		
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т		

• Split on:

Root entropy: $0.5 * \log(2) + 0.5 * \log(2) = 1$ bit

Leaf entropies: 2/12 * 1 + 2/12 * 1 + ... = 1 bit

No reduction!

Example

Restaurant data:

Example		Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait		
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0-10	Т		
X_2	Т	F	F	T	Full	\$	F	F	Thai	30-60	F		
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т		
X_4	Т	F	T	T	Full	\$	F	F	Thai	10-30	Т		
X_5	Т	F	T	F	Full	\$\$\$	F	Т	French	>60	F		
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т		
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F		
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т		
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F		
X_{10}	Т	Т	Т	T	Full	\$\$\$	F	Т	Italian	10-30	F		
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F		
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т		

• Split on:

Root entropy: $0.5 * \log(2) + 0.5 * \log(2) = 1$ bit

Leaf entropies: 2/12 * 0 + 4/12 * 0 + 6/12 * 0.9

Lower entropy after split!

Example		Attributes												
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait			
X_1	Т	F	F	T	Some	\$\$\$	F	Т	French	0-10	Т			
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F			
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т			
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т			
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F			
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т			
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F			
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т			
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F			
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F			
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F			
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т			

For regression

- Most common is to measure variance reduction
 - Equivalent to "information gain" in a Gaussian model...

$$Var = .25$$

$$Var = .1$$

$$Prob = 4/10$$

Var reduction = 4/10 * (.25-.1) + 6/10 * (.25 - .2)

Scoring decision tree splits

Algorithm 1 FindBestSplit(D)

Return j^* , t^*

```
Input: A data set D = (X, Y) of size m; impurity function H(\cdot).
```

Output: A split j^* , t^* minimizing impurity H

```
Initialize H^* = 0
for each feature j do
   Sort \{x_i^{(i)}\} in order of increasing value
   for each i such that x^{(i)} < x^{(i+1)} do
      Compute p_c^L = \frac{1}{i} \sum_{k \le i} \mathbb{1}[y^{(k)} = c]
         and p_c^R = \frac{1}{k-i} \sum_{k>i} \mathbb{1}[y^{(k)} = c]
     Set H' = \frac{i}{m}H(p^L) + \frac{m-i}{m}H(p^R)
      if H' < H^* then
         Set j^* = j, t^* = (x^{(i)} - x^{(i+1)})/2, H^* = H'
      end if
   end for
end for
```

Building a decision tree

```
Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A data set D = (X, Y).

Output: A decision tree.

if LeafCondition(D) then

f_n = \text{FindBestPrediction}(D)

else

j_n, t_n = \text{FindBestSplit}(D)

D_L = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} < t_n\} and

D_R = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} \ge t_n\}
```


Stopping conditions:

* # of data < K

end if

- * Depth > D
- * All data indistinguishable (discrete features)
- * Prediction sufficiently accurate

 $leftChild = BuildTree(D_L)$

 $rightChild = BuildTree(D_R)$

* Information gain threshold?
Often not a good idea!
No single split improves,
but, two splits do.
Better: build full tree, then prune

Controlling complexity

Maximum depth cutoff

Controlling complexity

Minimum # parent data

Computational complexity

- "FindBestSplit": on M' data
 - Try each feature: N features
 - Sort data: O(M' log M')
 - Try each split: update p, find H(p): O(M * C)
 - Total: O(N M' log M')
- "BuildTree":
 - Root has M data points: O(N M log M)
 - Next level has M *total* data points:
 O(N M_L log M_L) + O(N M_R log M_R) < O(N M log M)

— ...

Decision trees in python

- Many implementations
- Class implementation:
 - real-valued features (can use 1-of-k for discrete)
 - Uses entropy (easy to extend)

```
T = dt.treeClassify()
T.train(X,Y,maxDepth=2)
print T
  if x[0] < 5.602476:
    if x[1] < 3.009747:
      Predict 1.0
                          # green
    else:
      Predict 0.0
                          # blue
  else:
    if x[0] < 6.186588:
      Predict 1.0
                          # green
    else:
      Predict 2.0
                          # red
```

```
4.5

4.0

3.5

3.0

2.5

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
```

ml.plotClassify2D(T, X,Y)

Summary

- Decision trees
 - Flexible functional form
 - At each level, pick a variable and split condition
 - At leaves, predict a value
- Learning decision trees
 - Score all splits & pick best
 - Classification: Information gain
 - Regression: Expected variance reduction
 - Stopping criteria
- Complexity depends on depth
 - Decision stumps: very simple classifiers