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| Decision trees
|

* Functional form f(x;0): nested “if-then-else” statements

— Discrete features: fully expressive (any function)

* Structure:

— Internal nodes: check feature, branch on value

— Leaf nodes: output prediction
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# branch on feature at root

if X2: return +1  # if true, branch on right child feature
else: return -1 # & return leaf value

else: # left branch:
if X2: return -1 # branch on left child feature
else: return +1  # & return leaf value

Parameters?
Tree structure, features, and leaf outputs




| Decision trees
|

* Real-valued features

— Compare feature value to some threshold
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| Decision trees

* Categorical variables
— Could have one child per value
— Binary splits: single values, or by subsets
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The discrete variable will Could appear again multiple times...

not appear again below here...



| Decision trees
|

* “Complexity” of function depends on the depth

* A depth-1 decision tree is called a decision “stump”
— Simpler than a linear classifier!
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| Decision trees

I
* “Complexity” of function depends on the depth

* More splits provide a finer-grained partitioning
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Depth d = up to 29 regions & predictions



| Decision trees for regression
I

* Exactly the same

* Predict real valued numbers at leaf nodes

* Examples on a single scalar feature:
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| Decision Trees for 2D Regression
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| Tree-structured splitting

' “CART” = classification and regression trees

— A particular algorithm, but many similar variants
— See e.g. http://en.wikipedia.org/wiki/Classification_and_regression_tree

— Also ID3 and C4.5 algorithms

* Classification
— Union of rectangular decision regions
— Split criterion, e.g., information gain (or “cross-entropy”)
— Alternative: “Gini index” (similar properties)

* Regression
— Divide input space (“x”) into regions
— Each region has its own regression function
— Split criterion, e.g., predictive improvement



|Learning decision trees

* Break into two parts
— Should this be a leaf node?
— If so: what should we predict?
— If not: how should we further split the data?

Example algorithms:
ID3, C4.5
See e.g. wikipedia,
“Classification and
regression tree”
- Leaf nodes: best prediction given this data subset

— Classify: pick majority class; Regress: predict average value

* Non-leaf nodes: pick a feature and a spilit
— Greedy: “score” all possible features and splits

— Score function measures “purity” of data after split
* How much easier is our prediction task after we divide the data?

- When to make a leaf node?
— All training examples the same class (correct), or indistinguishable
— Fixed depth (fixed complexity decision boundary)
— Others ...



|Learning decision trees
|

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A dataset D = (X,Y).
Output: A decision tree.

if LeafCondition(D) then
» = FindBestPrediction(D)
else
Jnytn = FindBestSplit(D)

Dr = {(z®,y®) : J,y’) <tn} and

Dp ={(@D,yD) : 2l > t,)

J—
leftChild = BuildTree(Dy)
rightChild = BuildTree(Dg)

end if




[Russell & Norvig 2010]

\Scoring decision tree splits
I

* How can we select which feature to split on?
— And, for real-valued features, what threshold?

Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est | Wait
X; T F F T |Some| $%% F T | French| 0-10 T
X T F F T Full $ F F Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
Xy T F T s Full $ F F Thai |10-30 T
Xs T F T F Full $$% s T |French| =60 F
X6 F T F T |Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
XN F| F | F| T |Some| $% T | T | Thai | 0-10 T
Xy F T T F Full $ T F | Burger| =60 F
X0 T T T s Full $$% E T | Italian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
X192 T T T 1 Full $ F F | Burger | 30-60 T
000000 00000
00000 000000
Patrons? Type?
Nor%’\ull ancwmﬂger
000 00 (& 00 00



\Scormg decision tree splits

Suppose we are considering splitting feature 1
— How can we score any particular split?

— “Impurity” —how easy is the prediction problem in the leaves?

“Greedy” — could choose split with the best accuracy

— Assume we have to predict a value next

— MSE (regression)
— 0/1 loss (classification)

But: “soft” score can work better
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|Entropy and information

- “Entropy” is a measure of randomness
— How hard is it to communicate a result to you?
— Depends on the probability of the outcomes

«  Communicating fair coin tosses
— OQOutput: HHTHTTTHHHHT ...
— Sequence takes n bits — each outcome totally unpredictable

- Communicating my daily lottery results
— Output:000000...
— Most likely to take one bit — | lost every day. Lost: O
— Small chance I'll have to send more bits (won & when)  Won 1: 1(...)0
Won 2: 1(...)1(...)0
- Takes less work to communicate because it's less random
— Use a few bits for the most likely outcome, more for less likely ones



|Entropy and information

. Entropy H(x) = E[ log 1/p(x) ] = > p(x) log 1/p(x)

— Log base two, units of entropy are “bits”
— Two outcomes: H=-p log(p) - (1-p) log(1-p)

- Examples:
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H(x) =.251log4 + .25log4 + H(x)=.75log 4/3 + .25log 4 H(x) =1 log 1
251log 4 + .25log 4 = .8133 bits = 0 bits
= log 4 = 2 bits

Max entropy for 4 outcomes Min entropy



|Entropy and information
|

* Information gain
— How much is entropy reduced by measurement?

* Information: expected information gain

1
1 0.. "
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H = .99 bits g 1
1 5 6 ’ e * )
? | 2 ;
1 2 1 2 1la i
H = .77 bits H=0 ® 00 0000000
Prob = 13/18 Prob = 5/18

Information gain = 13/18 * (.99-.77) + 5/18 * (.99 — 0) = 0.43 bits

Equivalent: ) p(s,c) log [ p(s,c)/ p(s) p(c) ]
=10/18 log[ (10/18) / (13/18) (10/18)] + 3/18 log[ (3/18)/(13/18)(8/18) + ...



|Entropy and information
|

* Information gain
— How much is entropy reduced by measurement?

* Information: expected information gain
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H = .97 bits H=0
Prob =17/18 Prob = 1/18
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Information = 17/18 * (.99-.97) + 1/18 * (.99 — 0) = 0.074 bits

Less information reduction — a less desirable split of the data



\Glm index & impurity

* An alternative to information gain
— Measures variance in the allocation (instead of entropy)

* Hgini=} _p(c) (1-p(c)) vs. Hent=-3 p(c)log p(c)
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Gini Index = 13/18 * (.494-.355) + 5/18 * (.494 - 0)



\Entropy vs Gini impurity

* The two are nearly the same..
— Pick whichever one you like
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[Russell & Norvig 2010]

|Example
|

 Restaurant data:

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | Wait
X; T F F T |[Some| $%% F T | French| 0-10 T
X5 T F F T Full $ F F Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
X5 T F T F Full $$% B T | French| =60 F
X6 F T F T |[Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
XN F| F | F | T |[Some|l $% T | T | Thai Jo-10 | T
Xy F T T F Full $ T F | Burger| =60 F
X10 T T T T Full $$% E T | Italian | 10-30 F
X111 F F F F None $ 5 F Thai | 0-10 F
X2 T T T T Full $ F F | Burger | 30-60 T
* Split on:
Root entropy: 0.5 *log(2) + 0.5 * log(2) = 1 bit
000000
000000
Type? . . % * _ .
Leaf entropies: 2/12*1 +2/12*1+ ... =1 bit
French Italian Thai Burger
© © 00 00 No reduction!



[Russell & Norvig 2010]

|Example
|

 Restaurant data:

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res| Type | Est || Wait
X; T F F T |[Some| $%% F T | French| 0-10 T
X5 T F F T Full $ F F Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai | 10-30 T
X5 T F T F Full $$% B T | French| =60 F
X6 F T F T |Some| $% T T | ltalian | 0-10 T
X7 F T F F None $ T F | Burger| 0-10 F
X3 F F F T Some $$ T T Thai | 0-10 T
Xy F T T F Full $ T F | Burger| =60 F
X10 T T T T Full $$% E T | Italian | 10-30 F
X111 F F F F None $ 5 F Thai | 0-10 F
X9 T T T T Full $ F F | Burger | 30-60 T
* Split on:
Root entropy: 0.5 *log(2) + 0.5 * log(2) = 1 bit
000000
900000
Patrons? .
Leaf entropies: 2/12*0 +4/12*0 +6/12*0.9
NOM\U“
0000 00 Lower entropy after split!



Example Attributes Target
Alt | Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est || Wait
X T F F T |Some| $%% F T | French| 0-10 T
Xo T F F T Full $ F F Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
X4 T F T T Full $ F F Thai |10-30 T
X5 T F | F Full $$% F T | French| =60 F
X6 F T F T |Some| $% T T | ltalian | 0-10 T
X7 F T F F | None $ T F | Burger| 0-10 F
Xz F F F T |Some| $% T 1" Thai | 0-10 T
Xy F T T F Full $ T F | Burger| =60 F
X0 T T T T Full $$% F T | Italian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
X2 T T T T Full $ F F | Burger | 30-60 T
Patrons?
000000
00000 None m Full
Patrons?

NO'M\UH

. Hungry?

N




| For regression
|

* Most common is to measure variance reduction
— Equivalent to “information gain” in a Gaussian model...
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Var reduction = 4/10 * (.25-.1) + 6/10 * (.25 —.2)



\Scoring decision tree splits

IAIgorithm 1 FindBestSplit(D)

Input: A data set D = (X,Y) of size m;
impurity function H(-).

Output: A split 5%, t* minimizing impurity H

Initialize H* = 0
for each feature j; do
Sort {ng) } in order of increasing value
for each i such that 2 < 20+ do
Compute pZ =15, _ 1[y* = ]
and plf = = Zk’>_z 1[y*) = ¢]
Set H' = .- H(p") + “=+H (p™)

if H < H* then
Set j* = j, t* = (x(® — 2HD) /2, H*
end if
end for
end for

Return j*, t*

—
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\Bundmg a decision tree

Algorlthm 1 BuildTree(D): Greedy training of a decision tree

Input: A dataset D = (X,Y).
Output: A decision tree.

if LeafCondition(D) then
fn = FindBestPrediction(D)
else
Jn,tn = FindBestSplit(D)

= {(«@,y®) : 2 <t,} and
DR:{( (D) (@) . “ >t}

,777 -
leftChild = BuildTree(Dy)
rightChild = BuildTree(Dg)

end if

Stopping conditions:
*# of data <K
* Depth > D
* All data indistinguishable (discrete features)
* Prediction sufficiently accurate

* Information gain threshold?
Often not a good ideal
No single split improves,
but, two splits do.
Better: build full tree, then prune



| Controlling complexity
|

* Maximum depth cutoff




| Controlling complexity
|

* Minimum # parent data
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| Computational complexity
|

* “FindBestSplit”: on M’ data
— Try each feature: N features
— Sort data: O(M’ log M’)
— Try each split: update p, find H(p): O(M * C)
— Total: O(N M’ log M’)
* “BuildTree”:
— Root has M data points: O(N M log M)

— Next level has M *total* data points:
O(NM logM)+O(NM_logM ) < O(N M log M)



\Decmon trees in python

- Many implementations

Class implementation:
— real-valued features (can use 1-of-k for discrete)
Uses entropy (easy to extend)

T = dt.treeClassify()
T.train (X, Y, maxDepth=2)
print T

if x[0] < 5.602476:
i1f x[1] < 3.009747:

Predict 1.0 # green
else:

Predict 0.0 # blue

else:

if x[0] < 6.186588:

Predict 1.0 # green
else:

Predict 2.0 # red

ml.plotClassify2D(T, X,Y)



|Summary
|

» Decision trees
— Flexible functional form
— At each level, pick a variable and split condition
— At leaves, predict a value

- Learning decision trees

— Score all splits & pick best
+ Classification: Information gain
* Regression: Expected variance reduction

— Stopping criteria

« Complexity depends on depth

— Decision stumps: very simple classifiers



