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• Which decision boundary is “better”?
– Both have zero training error  (perfect training accuracy)
– But, one of them seems intuitively better…

• How can we quantify “better”,
    and learn the “best” parameter settings?

Feature 1,  x1

Fe
at

ur
e 

2,
  x

2

Decision boundary

Feature 1,  x1

Fe
at

ur
e 

2,
  x

2

Decision boundary



• Maybe we want to maximize our “margin”
• To optimize, relate to model parameters
• Remove “scale invariance”

– Define class +1 in some region, class –1 in another
– Make those regions as far apart as possible 

Region -1 

Region +1 We could define such a function:

f(x) = w*x + b

f(x)  >  +1 in region +1
f(x)  <  –1 in region –1

Passes through zero in center…

“Support vectors” – data points on margin

f(x)=0 f(x) = +1

f(x) = -1

Notation change!…



• Vector w=[w1 w2 …] is perpendicular to the boundaries  (why?)

• w x + b = 0    &   w x’ + b = 0     =>   w ∙ (x’-x) = 0   : orthogonal 
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• Vector w=[w1 w2 …] is perpendicular to the boundaries
• Choose  x– st   f(x–) = -1; let x+ be the closest point with f(x+) = +1

– x+ = x– + r * w                                                     (why?)
• Closest two points on the margin also satisfy
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• Vector w=[   …] is perpendicular to the boundaries
• Choose  x– st   f(x–) = -1; let x+ be the closest point with f(x+) = +1

– x+ = x– + r * w                                              
• Closest two points on the margin also satisfy
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• Constrained optimization
– Get all data points correct
– Maximize the margin

such that  “all data on the 
correct side of the margin”
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This is an example of a quadratic program:
    quadratic cost function, linear constraints

(m constraints)

s.t.

Primal problem:



• Constrained optimization
– Get all data points correct
– Maximize the margin

such that  “all data on the 
correct side of the margin”
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This is an example of a quadratic program:
    quadratic cost function, linear constraints

Primal problem:
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• Use Lagrange multipliers
– Enforce inequality constraints
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Stationary conditions wrt w:

and since any support vector has y = wx + b,

Alphas > 0 only on the margin:
   “support vectors”



• Use Lagrange multipliers
– Enforce inequality constraints
– Use solution w* to write solely in terms of alphas:
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s.t.

Another quadratic program:
    optimize m vars with 1+m (simple) constraints
    cost function has m2 dot products

(since derivative wrt b = 0)



• What if the data are not linearly separable?
– Want a large “margin”:            Want low error:

– “Soft margin” : introduce slack variables for violated constraints

s.t
.

Assigns “cost” R proportional to distance from margin
Another quadratic program!

(violate margin by ²)
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R = R0 R = 10-2 R0
R = 10-4 R0

s.t.



• Soft margin optimization:
– For any weights w,
we can choose ε  to satisfy constraints

– Write ε* as a function of w (call this J) and optimize directly 

• J = distance from the “correct” place

J=0
+1

(hinge loss)

(L2 regularization on the weights)



• Soft margin dual:
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Region +1 

f(x)=0

f(x) = +1
f(x) = -1

s.t.

Support vectors now data on or past margin…

Kij measures “similarity”
   of xi and xj  (their dot product) 

Prediction:

More complicated; can solve
  e.g. using any α  ∈(0,R)



Region -1 

Region +1 

f(x)=0

f(x) = +1
f(x) = -1

Support vectors now data on or past margin…

Prediction:

More complicated; can solve
  e.g. using any α  ∈ (0,R)

The support vectors are data points i with non-zero weight αi:
� Points with minimum margin (on optimized boundary)
� Points which violate margin constraint, but are still correctly classified
� Points which are misclassified
For all other training data, features have no impact on learned weight vector
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• Linear classifier can’t learn some functions

…2 = ( 2



• Recall: feature function Phi(x)
– Predict using some transformation of original features

• Dual form of SVM optimization is:

• For example, quadratic (polynomial) features:

– Ignore root-2 scaling for now…
– Expands “x” to length O(n2)

s.t.



• Need 



•

•

•
–
–
–



• Some commonly used kernel functions & their shape:

• Polynomial



• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

σ



• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

• Saturating, sigmoid-like:



• Some commonly used kernel functions & their shape:

• Polynomial

• Radial Basis Functions

• Saturating, sigmoid-like:

• Many for special data types:
– String similarity for text, genetics

• In practice, may not even be Mercer kernels…





Only need to evaluate kernel at support vectors, not all training data.  
But there may still be a lot of support vectors.
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Linear kernel: Gaussian (RBF) kernel:
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