Support Vector Machines

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex lhler

| Machine Learning
|

Support Vector Machines

4)
NS J
4)

- J

Linear classifiers

| * Which decision boundary is “better’?

— Both have zero training error (perfect training accuracy)

— But, one of them seems intuitively better...

How can we quantify “better”,

Feature 2, X,

@
& ..
Wiy
.... ° ®
el ® L0
@
@
:..! os®
Lyt X
b 8
@
¢ Decision boundary

Feature 1, X,

and learn the “best” parameter settings?

Feature 2, X,

Feature 1, X,

Decision boundary

/Notat h
. Notation change!
|One possible answer...
0o + 0121 + O2x2 + . ..
- Maybe we want to maximize our “margin” J
- To optimize, relate to model parameters Q) + wix1 + woxo + .)

« Remove “scale invariance”
— Define class +1 in some region, class —1 in another
— Make those regions as far apart as possible

Region +1 We could define such a function:

f(x)=0 f(X)\ =+]

f(x)=w*x+b

f(x) > +1 in region +1
f(x) < —1 in region —1

Passes through zero in center...

“Support vectors” — data points on margin

| Computing the margin width
|

* Vector w=[w, w, ...] is perpendicular to the boundaries (why?)

c wx+b=0 & wx+b=0 => w-(x-x)=0 :orthogonal

f(X):O f(X)\ =+]

Region +1

rgin M
Region -1

| Computing the margin width
|

* Vector w=[w, w, ...] is perpendicular to the boundaries
* Choose x~ st f(x7) =-1; let x* be the closest point with f(x*) = +1

— X'=xX"+r*w (why?)
» Closest two points on the margin also satisfy
w-r +b=-—1 w-xT 4+ b=+1

f(X):O f(X)\Z +1
“\\\ X_|_

Region +1

rgin M
Region -1

| Computing the margin width
|

* Vector w=[w, w, ...] is perpendicular to the boundaries

« Choose x st f(x7) =-1; let x* be the closest point with f(x*) = +1
- X=X trrw

» Closest two points on the margin also satisfy
w-r +b=-—1 w-xT 4+ b=+1

w-(x +rw)+b=+1

om0 0=+ = rlwl® +w-z +b=+1

Region +1 — THsz 1 = _|_1

N 2
’]“ =
f(x) = -1 |lw|]?
° M=l|z"—z | = |rwl
2wl = —

e _ ol —

Region -1 ¢ H”UJH 2 wTw

| Maximum margin classifier

. Constrained optimization

— Get all data points correct
— Maximize the margin

This 1s an example of a quadratic program:
quadratic cost function, linear constraints

f(X):O f(X)\ =+1]

Region +1

rgin M
Region -1

2
sk
w* = arg max
w A wTw

such that “all data on the
correct side of the margin”

Primal problem:

w —argm?jnZw]
J
S.1.
y D =41= w-z@ +b>+1
y(i):—1:> w-zW +b< -1

(m constraints)

| Maximum margin classifier

. Constrained optimization

— Get all data points correct
— Maximize the margin

This 1s an example of a quadratic program:
quadratic cost function, linear constraints

Region +1

f(X):O f(X)\ =+1]

rgin M
Region -1

2
sk
w* = arg max
w A wTw

such that “all data on the
correct side of the margin”

Primal problem:

(m constraints)

|A 1D Example
|

* Suppose we have three data points

x=-3,y=-1
x=-1,y=-1
x=2,y=1

/ .
1 7!
/7 1
h -1'/;, 2 x

/

/"I

/

/lI

* Many separating perceptrons, T[ax+b]
— Anything with ax+b = 0 between -1 and 2

* We can write the margin constraints

a(-3)+b<-1 =>bh<3a-1
a(-1)+b<-1 =>b< a-1
a(2)+b>+1 =>b>-2a+1

|A 1D Example
|

* Suppose we have three data points

x=-3,y=-1
x=-1,y=-1
x=2,y=1

* Many separating perceptrons, T[ax+b]
— Anything with ax+b = 0 between -1 and 2

* We can write the margin constraints
a(-3)+b<-1 =>bh<3a-1
a(-1)+b<-1 =>b< a-1
a(2)+b>+1 =>b>-2a+1

* Ex:a=1,b=0

|A 1D Example
|

* Suppose we have three data points

x=-3,y=-1
x=-1,y=-1
x=2,y=1

Many separating perceptrons, T[ax+b]
— Anything with ax+b = 0 between -1 and 2

We can write the margin constraints
a(-3)+b<-1 =>bh<3a-1
a(-1)+b<-1 =>b< a-1
a(2)+b>+1 =>b>-2a+1
Ex:a=1,b=0

Minimize | |a|| =>a= .66, b =-.33

— Two data on the margin; constraints “tight”

| Machine Learning
|

Lagrangian and Dual

| |

\Lagrangian optimization

* Want to optimize constrained system: 0 = (w,b)
* . 2 1 (
w :argrg}l{l ‘ w; S.1. 1—y()(wox()+b)§0
J \ ' J
"%(0) g;(9)=0

* Introduce Lagrange multipliers o (one per constraint)

0" = argminmax f(0) + Z&’i g:(0)

6 o>0
— Can | L,

— For inner max:

lint set (initialization easy)

91(9}30 g ()57;:0

gi(0) >0 : a; >+
— Any optimum of the original probiem is a saddle point of the new

— KKT complementary slackness:

a; >0 = gi(Q):O

\Notes on Lagrangian optimization
I

* Equivalence if alpha fully optimized
* Simple to initialize to valid point

— Gi may be unsatisfied => if so, penalty grows,
encouraging theta to satisfy

* Visualization; valid region?

\Optlmlzatlon

- Use Lagrange multipliers
— Enforce inequality constraints

w* = arg min max — Zw +Za 1 —y@D(w-2® +b))

w >0

Alphas > 0 only on the margin:

=+
f(x)=0) =+1 “support vectors”

Region +1

Stationary conditions wrt w:
f(x) = -1 a® — Z aiy(i)x(i)
i

and since any support vector has y = wx + b,

1 . .
_ (3) __ 4y . (%)
. N sv Z (y W)
€SV

Region -1

| Dual form
|

- Use Lagrange multipliers
— Enforce inequality constraints
— Use solution w* to write solely in terms of alphas:
1 L . .
— [ai - 3" iy yDyD (2@ . 20)) }
J

a>(0 “—
7

s.t. Z oY () — (since derivative wrt b = 0)
7

f(X):O f(X) =+]

Region +1 Another quadratic program:

optimize m vars with 1+m (simple) constraints
cost function has m? dot products

w =S ay

1 : .
o i) (1
rgin M b= N sv Z (y(w- !))

Region -1 €SV

| Maximum margin classifier

. What if the data are not linearly separable?

— Want a large “margin”: Want low error:
min Z w? min Z J(y'"W w2 +b)
j i

— “Soft margin” : introduce slack variables for violated constraints

* : 2 (2)
w argrg}?ij +RZ€
7 %

S.t

Q(i) (wlz® 4 b) > +1 _ (@) (violate margin by 2)
() > ()

Assigns “cost” R proportional to distance from margin
Another quadratic program!

Soft margin SVM w —agun >0 13 e
| j i

. . S.t.
* Large margin vs. Slack variables

y D (wTz® 4) > 41—
* R large = hard margin e >0
* Rsmaller

— A few wrong predictions; boundary farther from rest

| Maximum margin classifier

I * . 2 ('L)
- Soft margin optimization: w" = argmin Z wi + R Z ¢
— For any weights w, J v
we can choose ¢ to satisfy constraints y D (wTz® +b) > 41— e?

— Write €* as a function of w (call this J) and optimize directly

- J = distance from the “correct” place

J; =max[0, 1 —yD(w-2® +b)]
(hinge loss)

5 _ 1 2 (4) (4)
W _argmdnﬁzj:wj—l— Z:Jz(y , w-z\" +b) I

(L2 regularization on the weights) w-r+b— Tl

\Dual form

+ Soft margin dual:

max Gy — — E Q05 y(z) (9)) K.. measures “similarity”
0<a<R 1 .

of X. and X (their dot product)

S.t. Zaiy(i) —

Support vectors now data on or past margin...

Region +1

Prediction:

Jg=w" Ox—i—b:Zaiy(i%—b
a — Z aiy(i)x(i)

b — More complicated; can solve

Region -1 e.g. using any o € (0,R)

|Support Vectors
|

The support vectors are data points i with non-zero weight o :

0 Points with minimum margin (on optimized boundary)

0 Points which violate margin constraint, but are still correctly classified

[Points which are misclassified

For all other training data, features have no impact on learned weight vector

f(x)=0 Support vectors now data on or past margin...
Region +1

Prediction:

Jg=w" Ox—i—b:Zaiy(i%—b
a — Z aiy(i)x(i)

More complicated; can solve

b=... ¢.g. using any o € (0,R)

Region -1

\I\/Iultl class SVMs

* Use standard multi-class linear prediction, 0/1 loss:
g = f(z;0) = argmax 6 - ®(z,y)
Yy

O(z,y) =1y =0]2(z) , Lly=1]2(z) , ... |
* Hinge-like loss / slack variable optimization:

w” —argmme —|—RZ (2)

w,b,e
HF@W@JNU—HJ¢@@4021—6@ vy # y
* Can introduce class-specific loss function: Aly, §)
wTQ(x(i),y(i)) o ’LUT(I)(ZL'(i),y) > A<y(z)7y) o 6(72) Vy # y(z)

— Reduces to earlier form for 0/1 loss:

Aly,y) =1y #y
— Again, can optimize as QP (e.g., SMO) og nlnge IIKe[Iofs (]e g., SGD)

|Machine Learning
|

4 N
NS j
4 N
- j

The Kernel Trick

\Lmear SVMs

* So far, looked at linear SVMs:

o n

— Expressible as linear weights “w
— Linear decision boundary

* Dual optimization for a linear SVM:

ek S it — _Za 0y Dy @@ 2@y g S ay® =0

0<a<R

. Depend on palrW|se dot products:
— Kij measures “similarity”, e.g., 0 if orthogonal (2) (7)
Ky =2\ -2

\Addmg features

* Linear classifier can’t learn some functions

1D example:

L N o 060 0 o ®
 —
Not linearly separable

Add quadratic features @

Linearly separable in new features...

\Addmg features

* Recall: feature function Phi(x)
— Predict using some transformation of original features

g(x) = sign|w - ®(z) + b |

* Dual form of SVM optimization is:
max az——zaa y Dy &N @@ st Zay(”—o

0<a<R
? J

« For example, quadratic (polynomial) features:

CID(x) — (]_ \/iil?l \/§aj‘2 xl 582 . \/_ajle \/_gglxg)

— Ignore root-2 scaling for now...
— Expands “x” to length O(n?)

\Impllut features

* Need o(z)p(z0))T

O(z) =

®(a) =

B(b) =

3 (a)

(1 v2x1 V222 -+ 27 23 -+ V2r120 V21123 -)

(1 v2a1 V2ag -+ af a3 --- V2a1a2 V2a1a3 -)
(1 v/2b1 V2bg -+ b3 b3 -++ v/2b1by v/2b1b3 - -+

=1+ ZZajb - Ezazb2 - ZZQajakbjbk —

J k>j
2
= (L+) a;by)
J Can evaluate dot product in

= K(a,b) only O(n) computations!

|Mercer Kernels

* If K(x,x’) satisfies Mercer’s condition:

For all datasets X:

//Kab g(b)dadb >0 gl " K-g >0

* Then, K (a,b) = ®(a) - ®(b) forsome ¢ ()

* Notably, Phi may be hard to calculate
— May even be infinite dimensional!
— Only matters that K(x,x’) is easy to compute:
— Computation always stays O(m?)

\Common kernel functions

- Some commonly used kernel functions & their shape:

- Polynomial K(a,b) = (1 —|—ZCLJ

\Common kernel functions

« Some commonly used kernel functions & their shape:

» Polynomial K (a,b) = (1 +Za3

« Radial Basis Functions

K(a,b) = exp(—(a — b)?/20?)

\Common kernel functions

« Some commonly used kernel functions & their shape:

- Polynomial K(a,b) = (1 —|—ZCLJ

« Radial Basis Functions

K(a,b) = exp(—(a — b)?/20?)
« Saturating, sigmoid-like:

K(a,b) = tanh(ca’ b + h)

\Common kernel functions

« Some commonly used kernel functions & their shape:

Polynomial K (a,b) = (1 + Zaj

Radial Basis Functions

K(a,b) = exp(—(a — b)?/20?)
Saturating, sigmoid-like:

K(a,b) = tanh(ca’ b + h)

Many for special data types:
— String similarity for text, genetics

In practice, may not even be Mercer kernels...

|Support Vectors for Kernel SVMs
|

— &

Q X x T
L 6 x XX 36 X
,..x—/‘_\\ _
X X 7 % X

I \x" i
Support vectors (green) for data separable by radial basis function
kernels, and non-linear margin boundaries

X

How Many Support Vectors?
| .

12 0 2

Only need to evaluate kernel at support vectors, not all training data.
But there may still be a lot of support vectors.

|Kernel SVMs
|

* Linear SVMs

— Can represent classifier using (w,b) = n+1 parameters
— Or, represent using support vectors, x'!

* Kernelized?
— K(x,x’) may correspond to high (infinite?) dimensional Phi(x)
— Typically more efficient to remember the SVs
— “Instance based” — save data, rather than parameters

* Contrast:
— Linear SVM: identify features with linear relationship to target
— Kernel SVM: identify similarity measure between data
(Sometimes one may be easier; sometimes the other!)

‘Kernel Least-squares Linear Regression

I . : :
* Recall L2-regularized linear regression:

=y X(X'X +al)™!

Rearranging,

= (X' X+al)=yX — af=(y—0X"HX

Define: 1 ‘l‘
r==(y—0Xx") > O0=rX
¥ /
(XT:Q—QXTﬂ:y—TXXT Gram matrix: mxm,

K = (2D,)y

Rearrange & solve forr:

r=(XX"4+al)ly=(K +al) ly
Linear prediction:
§=1(0,%)=rX @7 =) rj@a?,2)=> rK@,z)

J J
Now just replace K(x,x’) with your desired kernel function!

|Example: Kernel Linear Regression
I

* K: MxM r=(K+a)ly §=>» rK@Y, 1)
J

Linear kernel: Gaussian (RBF) kernel:

K(z,2)=a" -2 K(z,2") = exp(—vy(z — 2")?)

__04 1 L L 1 1 L 1 L L 1 1 L ! ! L |
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

|Summary
|

* Support vector machines

* “Large margin” for separable data

— Primal QP: maximize margin subject to linear constraints
— Lagrangian optimization simplifies constraints
— Dual QP: m variables; involves m? dot product

* “Soft margin” for non-separable data
— Primal form: regularized hinge loss
— Dual form: m-dimensional QP

* Kernels

— Dual form involves only pairwise similarity
— Mercer kernels: dot products in implicit high-dimensional space

