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Linear regression

• Contrast with classification
– Classify: predict discrete-valued target y
– Initially: “classic” binary { -1, +1} classes; generalize later
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Perceptron Classifier (2 features)
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Visualizing for one feature “x”: 

“linear response”

r = X.dot( theta.T ) # compute linear response
Yhat = (r > 0) # predict class 1 vs 0
Yhat = 2*(r > 0)-1   # or ”sign”: predict +1 / -1
# Note: typically convert classes to ”canonical” values 0,1,…
# then convert back (“learner.classes[c]”) after prediction

or, {0, 1}



Perceptrons
• Perceptron = a linear classifier

– The parameters µ are sometimes called weights (“w”)
• real-valued constants (can be positive or negative)

– Input features x1…xn are arbitrary numbers
– Define an additional constant input feature x0=1 

• A perceptron calculates 2 quantities:
– 1. A weighted sum of the input features
– 2. This sum is then thresholded by the T(.) function

• Perceptron: a simple artificial model of human neurons
– weights = “synapses”
– threshold = “neuron firing”



Notation
• Inputs:

– x0, x1, x2, …………, xn,

– x1, x2, …………, xn-1, xn   are the values of the n features

– x0 = 1  (a constant input)

– x =  [[x0, x1, x2, …………, xn ]] : feature vector (row vector)

• Weights (parameters):
– µ0, µ1, µ2, …………, µn,
– we have n+1 weights:  one for each feature + one for the constant
– µ =  [[µ0, µ1, µ2, …………, µn ]] : parameter vector (row vector)

• Linear response
– µ0x0 + µ1x1 +… µn xn    = x . µ ’     then threshold

F = X.dot( theta.T ); # compute linear response
Yhat = np.sign(F) # predict class +1 or -1
Yhat = 2*(F>0)-1   # manual ”sign” of F



Perceptron Decision Boundary

• The perceptron is defined by the decision algorithm:

• The perceptron represents a hyperplane decision surface in 
d-dimensional space
– A line in 2D, a plane in 3D, etc.

• The equation of the hyperplane is given by

     This defines the set of points that are on the boundary.
µ . xT  = 0



Example, Linear Decision Boundary

x1 

x2 

From P. Smyth

µ  = (µ0,   µ1,   µ2)
    = (1,   .5,  -.5 )
 



Example, Linear Decision Boundary

x1 

x2 
µ ∙ x’ = 0

=> .5  x1 - .5  x2  +  1 = 0

=> -.5 x2 = -.5 x1 - 1

=>   x2 = x1  + 2 

From P. Smyth

µ  = (µ0,   µ1,   µ2)
    = (1,   .5,  -.5 )
 



Example, Linear Decision Boundary

µ . x’ = 0

x1 

x2 µ . x’ < 0
 
=> x1 + 2 <  x2
(this is the 
equation for
decision 
region -1) 

From P. Smyth

µ . x’ > 0
 
=> x1 + 2 >  x2
(decision 
region +1) 

µ  = (µ0,   µ1,   µ2)
    = (1,   .5,  -.5 )
 



Separability
• A data set is separable by a learner if

– There is some instance of that learner that correctly predicts all the data 
points

• Linearly separable data
– Can separate the two classes using a straight line in feature space
– in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data
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Class overlap
• Classes may not be well-separated
• Same observation values possible 

under both classes
– High vs low risk; features {age, income}
– Benign/malignant cells look similar
– …

• Common in practice
• May not be able to perfectly distinguish between classes 

– Maybe with more features?
– Maybe with more complex classifier?

• Otherwise, may have to accept some errors



Another example
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Non-linear decision boundary
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Representational Power of Perceptrons
• What mappings can a perceptron represent perfectly?

– A perceptron is a linear classifier
– thus it can represent any mapping that is linearly separable
– some Boolean functions like AND (on left)
– but not Boolean functions like XOR (on right) 

x1 x2 y
0 0 -1

0 1 -1

1 0 -1

1 1 1

x1 x2 y
0 0 1

0 1 -1

1 0 -1

1 1 1

“AND” “XOR”



• Linear classifier can’t learn some functions

1D example:

Add quadratic features

Not linearly separable

Linearly separable in new features…
x2 = (x

1
)2

 x
1

 x
1

Adding features



• Linear classifier can’t learn some functions

1D example:

Not linearly separable
 x

1

Adding features

Quadratic features, visualized in original feature space:

More complex decision boundary:   ax2+bx+c = 0

y = T( a x2 + b x + c )



Representational Power of Perceptrons
• What mappings can a perceptron represent perfectly?

– A perceptron is a linear classifier
– thus it can represent any mapping that is linearly separable
– some Boolean functions like AND (on left)
– but not Boolean functions like XOR (on right) 

What kinds of functions would we need to learn the data on the right?

x1 x2 y
0 0 -1

0 1 -1

1 0 -1

1 1 1

x1 x2 y
0 0 1

0 1 -1

1 0 -1

1 1 1

“AND” “XOR”



x1 x2 y
0 0 -1

0 1 -1

1 0 -1

1 1 1

x1 x2 y
0 0 1

0 1 -1

1 0 -1

1 1 1

“AND” “XOR”

Representational Power of Perceptrons
• What mappings can a perceptron represent perfectly?

– A perceptron is a linear classifier
– thus it can represent any mapping that is linearly separable
– some Boolean functions like AND (on left)
– but not Boolean functions like XOR (on right) 

What kinds of functions would we need to learn the data on the right?
Ellipsoidal decision boundary:   a x1

2 + b x1 + c x2
2 + d x2 + e x1x2 + f = 0    



Feature representations
• Features are used in a linear way
• Learner is dependent on representation

• Ex: discrete features
– Mushroom surface: {fibrous, grooves, scaly, smooth}
– Probably not useful to use x = {1, 2, 3, 4}
– Better: 1-of-K,   x = { [1000], [0100], [0010], [0001] }
– Introduces more parameters, but a more flexible relationship



Effect of dimensionality
• Data are increasingly separable in high dimension – is this a good thing?

• “Good”
– Separation is easier in higher dimensions (for fixed # of data m)
– Increase the number of features, and even a linear classifier will eventually be able to 

separate all the training examples!

• “Bad”
– Remember training vs. test error?  Remember overfitting?
– Increasingly complex decision boundaries can eventually get all the training data right, 

but it doesn’t necessarily bode well for test data…

Predictive
Error

Complexity

Error on Training Data

Error on Test Data

Ideal Range
OverfittingUnderfitting



Summary
• Linear classifier ⬄ perceptron

• Linear decision boundary
– Computing and visualizing

• Separability
– Limits of the representational power of a perceptron

• Adding features
– Complex features => Complex decision boundaries
– Effect on separability
– Potential for overfitting
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Learning the Classifier Parameters
• Learning from Training Data:

– training data = labeled feature vectors
– Find parameter values that predict well (low error)

• error is estimated on the training data
• “true” error will be on future test data

• Define a loss function  J(θ) :
– Classifier error rate (for a given set of weights θ and labeled data)

• Minimize this loss function    (or, maximize accuracy)
– An optimization or search problem over the vector (θ0, θ1, θ2,…)



Training a linear classifier
• How should we measure error?

– Natural measure = “fraction we get wrong”   (error rate)

• But, hard to train via gradient descent
– Not continuous
– As decision boundary moves, errors change abruptly

1D example: T(f) = -1  if   f < 0
T(f) = +1  if   f > 0 

Yhat = np.sign( X.dot( theta.T ) ) # predict class  (+1/-1)
err = np.mean( Y != Yhat ) # count errors: empirical error rate

where



Linear regression?
• Simple option: set θ using linear regression

• In practice, this often doesn’t work so well…
– Consider adding a distant but “easy” point

– MSE distorts the solution



Perceptron algorithm
● Perceptron algorithm: an SGD-like algorithm

● Compare to linear regression + MSE cost
○ Identical update to SGD for MSE except error uses thresholded 

ŷ(j) instead of linear response θ∙x:

(1) For correct predictions,    y(j) - ŷ(j) = 0
(2) For incorrect predictions, y(j) - ŷ(j) = ± 2

“adaptive” linear regression: correct predictions stop contributing

(predict output for point j)

(“gradient-like” step)



Perceptron algorithm
• Perceptron algorithm: an SGD-like algorithm

y(j) 
predicted 
incorrectly: 
update 
weights

(predict output for point j)

(“gradient-like” step)



Perceptron algorithm
• Perceptron algorithm: an SGD-like algorithm

y(j) 
predicted 
correctly: 
no update

(predict output for point j)

(“gradient-like” step)



Perceptron algorithm
• Perceptron algorithm: an SGD-like algorithm

(Converges if data are linearly separable)

y(j) 
predicted 
correctly: 
no update

(predict output for point j)

(“gradient-like” step)



Perceptron MARK 1 Computer

Frank Rosenblatt, late 1950s
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Surrogate loss functions
• Another solution: use a “smooth” loss

– e.g., approximate the threshold function

– Usually some smooth function of distance
• Example: logistic “sigmoid”, looks like an “S”

– Now, measure e.g. MSE

– Far from the decision boundary:  |f(.)| large, small error
– Nearby the boundary:  |f(.)| near 1/2, larger error

T(f)

r(x)

r(x)

σ(r)

1D example:

Classification error = 2/9 MSE = (02 + 12 + .22 + .252 + .052 + …)/9

Class y = {0, 1} …
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Beyond misclassification rate

• Which decision boundary is “better”?
– Both have zero training error  (perfect training accuracy)
– But, one of them seems intuitively better…

• Side benefit of many “smoothed” error functions
– Encourages data to be far from the decision boundary
– See more examples of this principle later...



Training the Classifier
• Once we have a smooth measure of quality, we can find the 

“best” settings for the parameters of 

r(x1,x2) = a*x1 + b*x2 + c

• Example: 2D feature space      ⬄       parameter space

J = 1.9



Training the Classifier

J = 0.4

• Once we have a smooth measure of quality, we can find the 
“best” settings for the parameters of 

r(x1,x2) = a*x1 + b*x2 + c

• Example: 2D feature space      ⬄       parameter space

J = 1.9



Training the Classifier

Best Point
(minimum MSE)

J = 0.1

• Once we have a smooth measure of quality, we can find the 
“best” settings for the parameters of 

r(x1,x2) = a*x1 + b*x2 + c

• Example: 2D feature space      ⬄       parameter space



Finding the Best MSE
• As in linear regression, this is now just optimization

• Methods:
– Gradient descent

• Improve loss by small
changes in parameters
(“small” = learning rate)

– Or, substitute your favorite
optimization algorithm…

• Coordinate descent
• Stochastic search

Gradient Descent



Gradient Equations
• MSE  (note, depends on function σ(.) )

• What’s the derivative with respect to one of the parameters?

• Similar for parameters b, c [replace x1 with x2 or 1 
(constant)]

Error between class
   and prediction

Sensitivity of prediction to
   changes in parameter “a”



Gradient Equations
• MSE  (note, depends on function σ(.) )

• What’s the derivative with respect to one of the parameters?
– Recall the chain rule of calculus:

Error between class
   and prediction

Sensitivity of prediction to
   changes in parameter “a”

w.r.t. b,c : similar;
replace x1 
with x2 or 1



Saturating Functions
• Many possible “saturating” functions

• “Logistic” sigmoid (scaled for range [0,1]) is
σ(z) = 1 / (1 + exp(-z))

• Derivative (slope of the function at a point z) is
∂σ(z) = σ(z) (1-σ(z))

• Matlab Implementation:

function s = sig(z)
% value of [0,1] sigmoid 
    s = 1 ./ (1+exp(-z));

function ds = dsig(x)
% derivative of (scaled) sigmoid 
    ds = sig(z) .* (1-sig(z));

For range [-1 , +1]:

  ρ(z)   = 2 σ(z) -1 

   ∂ρ(z) = 2 σ(z) (1-σ(z))

Predict: threshold z or ρ at zero

(to predict: 
   threshold z at 0   or 
   threshold σ (z) at ½  ) 

(z = linear response, xTµ ) 



Saturating Functions
• Many possible “saturating” functions

• “Logistic” sigmoid (scaled for range [0,1]) is
σ(z) = 1 / (1 + exp(-z))

• Derivative (slope of the function at a point z) is
∂σ(z) = σ(z) (1-σ(z))

• Python Implementation:

def sig(z): # logistic sigmoid
    return  1.0 / (1.0 + np.exp(-z) ) #   in [0,1]

def dsig(z): # its derivative at z
    return  sig(z) * (1-sig(z)) 

(to predict: 
   threshold z at 0   or 
   threshold σ (z) at ½  ) 

(z = linear response, xTµ ) 

For range [-1 , +1]:

  ρ(z)   = 2 σ(z) -1 

   ∂ρ(z) = 2 σ(z) (1-σ(z))

Predict: threshold z or ρ at zero



• Useful to also know class probabilities
• Some notation

– p(y=0) , p(y=1) – class prior probabilities
• How likely is each class in general?

– p(x | y=c) – class conditional probabilities
• How likely are observations “x” in that class?

– p(y=c | x) – class posterior probability
• How likely is class c given an observation x?

• We can compute posterior using Bayes’ rule
– p(y=c | x) = p(x|y=c) p(y=c) / p(x)

• Compute p(x) using sum rule / law of total prob.
– p(x) = p(x|y=0) p(y=0) + p(x|y=1)p(y=1)

Class posterior probabilities



• Consider comparing two classes
– p(x | y=0) * p(y=0)     vs     p(x | y=1) * p(y=1)
– Write probability of each class as
– p(y=0 | x) = p(y=0, x) / p(x) 
–                 = p(y=0, x) / ( p(y=0,x) + p(y=1,x) )
–     =  1 / (1  + exp( -a  ) )     (**)

– a = log [ p(x|y=0) p(y=0) / p(x|y=1) p(y=1) ]
– (**) called the logistic function, or logistic sigmoid.

Class posterior probabilities



• For Gaussian models with equal covariances

The probability of each class is given by:
    p(y=0 | x) = Logistic(  wT x + b ) 

Gaussian models and Logistics



Logistic regression
• Interpret σ( θ∙x ) as a probability that y = 1
• Use a negative log-likelihood loss function

– If  y = 1,   cost is  - log Pr[y=1]   =   - log σ( θ∙x )  
– If  y = 0,   cost is  - log Pr[y=0]   =   - log (1 - σ( θ∙x ) ) 

• Can write this succinctly:

Nonzero only if y=1 Nonzero only if y=0



Logistic regression
• Interpret σ( θ∙x ) as a probability that y = 1
• Use a negative log-likelihood loss function

– If  y = 1,   cost is  - log Pr[y=1]   =   - log σ( θ∙x )  
• If  y = 0,   cost is  - log Pr[y=0]   =   - log (1 - σ( θ∙x ) )  

• Can write this succinctly:

• Convex!  Otherwise similar: optimize J(θ) via …

1D example:

Classification error = MSE = 2/9 NLL = - (log(.99) + log(.97) + …)/9



Gradient Equations
• Logistic neg-log likelihood loss:

• What’s the derivative with respect to one of the parameters?



Surrogate loss functions

• Replace 0/1 loss
    with something easier:

• Logistic MSE

• Logistic Neg Log Likelihood

0 / 1 Loss



Summary
• Linear classifier ⬄ perceptron

• Measuring quality of a decision boundary
– Error rate  (0/1 loss)
– Logistic sigmoid + MSE criterion
– Logistic Regression

• Learning the weights of a linear classifier from data
– Reduces to an optimization problem
– Perceptron algorithm
– For MSE or Logistic NLL, we can do gradient descent
– Gradient equations & update rules
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Multi-class linear models
• What about multiple classes?  One option:

– Define one linear response per class

– Choose class with the largest response

– Boundary between two classes, c vs. c’?

• Linear boundary:  (θ
c
 - θ

c’) x
T = 0



Multiclass linear models
• More generally, can define a generic linear classifier by

• Example:  y ∊ {-1, +1}

(Standard perceptron rule)



Multiclass linear models
• More generally, can define a generic linear classifier by

• Example:  y  ∊ {0,1,2,…}

(predict class with largest linear response)

(parameters for each class c)



Multiclass perceptron algorithm
• Perceptron algorithm:

• Make prediction f(x)
• Increase linear response of true target y; decrease for prediction f

While (~done)
    For each data point j:

 f(j) = arg max ( θc * x
(j) )     : predict output for data point j

 θf  = θf    -  α x(j)   : decrease response of class f(j) to 
x(j)

 θy  = θy  +  α x(j)   : increase response of true class 
y(j) 



Multilogit regression
• Define the probability of each class:

• Then, the NLL loss function is:

– P: “confidence” of each class
• Soft decision value

– Decision: predict most probable
• Linear decision boundary

– Convex loss function

(Y binary = logistic regression)



Machine Learning

Regularization for Linear Classification

Linear Classification with Perceptrons

Perceptron Learning

Gradient-Based Classifier Learning

Multi-Class Classifiction



Regularization
• Reminder:  Regularization for linear regression

(c) Alexander Ihler

Alpha =0
(Unregularized)

Alpha =1



Regularized logistic regression
• Intepret ¾( µ xT ) as a probability that y = 1
• Use a negative log-likelihood loss function

– If  y = 1,   cost is  - log Pr[y=1]   =   - log ¾( µ xT )  
– If  y = 0,   cost is  - log Pr[y=0]   =   - log (1 - ¾( µ xT ) ) 

• Minimize weighted sum of negative log-likelihood
and a regularizer that encourages small weights:

Nonzero only if y=1 Nonzero only if y=0



Different regularization functions
• In general, for the Lp regularizer:

p=2 p=1 p=0.3



Different regularization functions
• In general, for the Lp regularizer:

Quadratic

L0 = limit as p goes to 0 :  “number of nonzero weights”, a natural notion of complexity
L1 = limit as p ! 1 : “maximum parameter value”

Lasso
p=0.5 p=1 p=2 p=4

Isosurfaces:   ||𝜃||p = constant



Regularization: L
2
 vs L

1
• Estimate balances data term & regularization term 

Minimizes data term

Minimizes regularization

Minimizes combination



Regularization: L
2
 vs L

1
• Estimate balances data term & regularization term 
• Lasso tends to generate sparser solutions than a quadratic regularizer. 

Data term only:
  all 𝜃i non-zero

Regularized estimate:
   some 𝜃i may be zero



Gradient-Based Optimization

Laplacian prior
L

1
 

regularization
Lasso 

regression

Gaussian prior
L

2
 

regularization
Ridge 

regression

(Informal intuition:  Gradient of L
1
 objective not defined at zero)

Objective Function:

Negative Gradient:

• L2 makes (all) coefficients smaller
• L1 makes (some) coefficients exactly zero:  feature selection



Regularization Paths
Prostate Cancer Dataset with M=67, N=8

Ridge: Bound 
on L

2
 norm

Lasso: Bound 
on L

1
 norm

� Horizontal axis increases bound on weights (less regularization, smaller α)
� For each bound, plot values of estimated feature weights
� Vertical lines are models chosen by cross-validation
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