#### Linear Classification

#### PROF XIAOHUI XIE SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex Ihler

# **Machine Learning**

**Linear Classification with Perceptrons** 

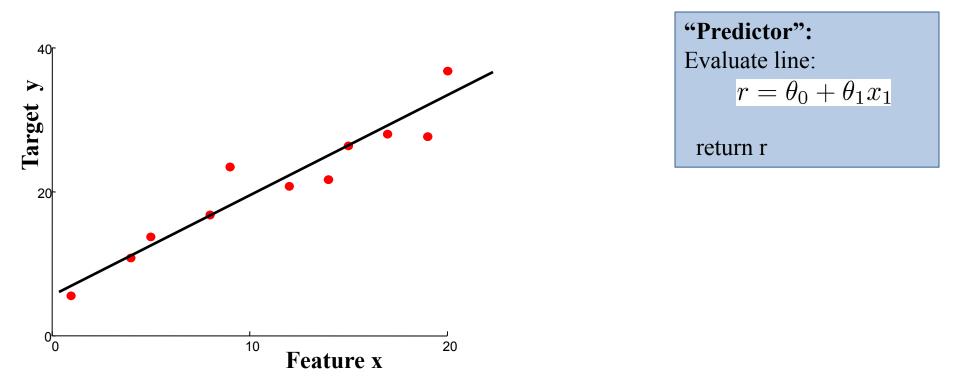
**Perceptron Learning** 

**Gradient-Based Classifier Learning** 

**Multi-Class Classification** 

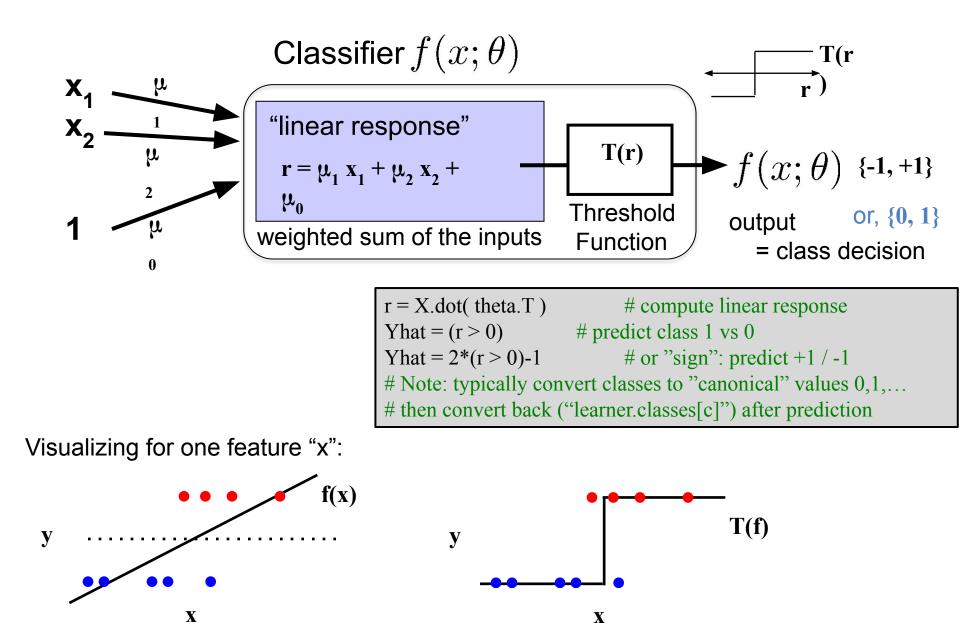
**Regularization for Linear Classification** 

# Linear regression



- Contrast with classification
  - Classify: predict discrete-valued target y
  - Initially: "classic" binary { -1, +1} classes; generalize later

# Perceptron Classifier (2 features)



### Perceptrons

- Perceptron = a linear classifier
  - The parameters  $\mu$  are sometimes called weights ("w")
    - real-valued constants (can be positive or negative)
  - Input features  $x_1 \dots x_n$  are arbitrary numbers
  - Define an additional constant input feature  $x_0 = 1$
- A perceptron calculates 2 quantities:
  - 1. A weighted sum of the input features
  - 2. This sum is then thresholded by the T(.) function
- Perceptron: a simple artificial model of human neurons
  - weights = "synapses"
  - threshold = "neuron firing"

# Notation

- Inputs:
  - $x_0, x_1, x_2, \dots, x_n,$
  - $x_1, x_2, \dots, x_{n-1}, x_n$  are the values of the n features
  - $x_0 = 1$  (a constant input)
  - $\underline{\mathbf{x}} = [[\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]]$  : feature vector (row vector)
- Weights (parameters):
  - $\mu_0, \mu_1, \mu_2, \dots, \mu_n,$
  - we have n+1 weights: one for each feature + one for the constant
  - $\underline{\mu}$  = [[ $\mu_0$ ,  $\mu_1$ ,  $\mu_2$ , ....,  $\mu_n$ ]] : parameter vector (row vector)
- Linear response

 $- \mu_0 x_0 + \mu_1 x_1 + \dots + \mu_n x_n = \underline{x} \cdot \underline{\mu} ' \text{ then threshold}$ 

| F = X.dot( theta.T ); | # compute linear response |
|-----------------------|---------------------------|
| Yhat = np.sign(F)     | # predict class +1 or -1  |
| Yhat = $2*(F>0)-1$    | # manual "sign" of F      |

### **Perceptron Decision Boundary**

• The perceptron is defined by the decision algorithm:

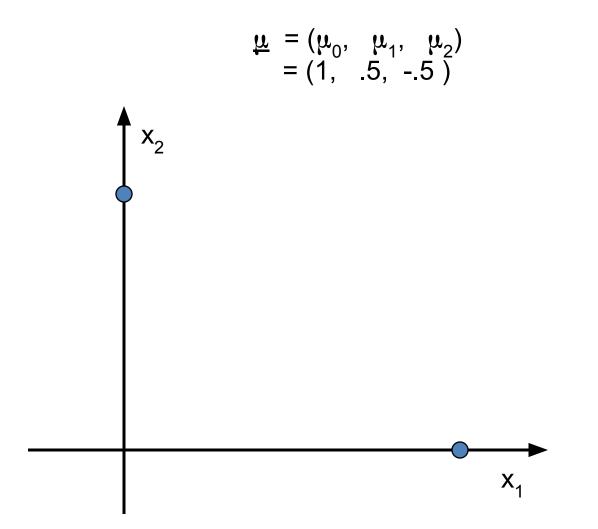
$$f(x;\theta) = \begin{cases} +1 & \text{if } \theta \cdot x^T > 0\\ -1 & \text{otherwise} \end{cases}$$

- The perceptron represents a hyperplane decision surface in d-dimensional space
  - A line in 2D, a plane in 3D, etc.
- The equation of the hyperplane is given by

$$\underline{\boldsymbol{\mu}}\cdot\underline{\mathbf{x}}^{\mathsf{T}}=\mathbf{0}$$

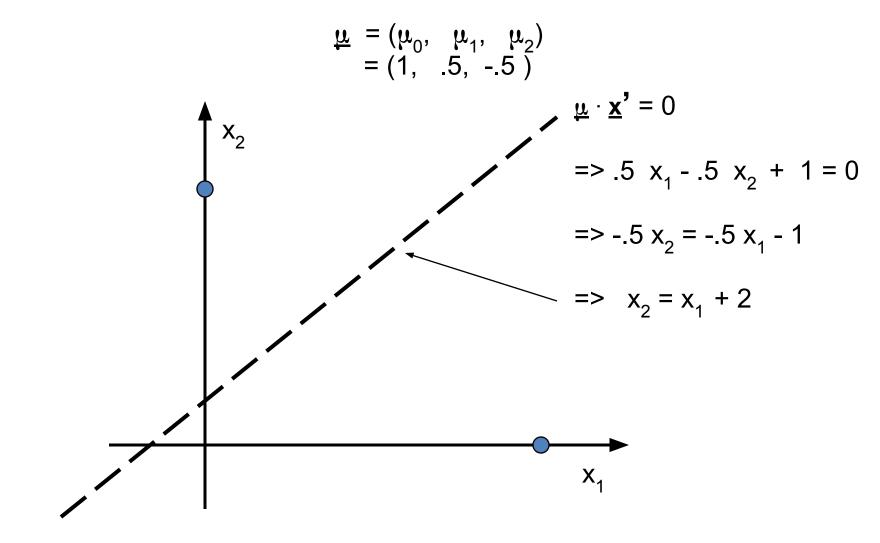
This defines the set of points that are on the boundary.

### Example, Linear Decision Boundary



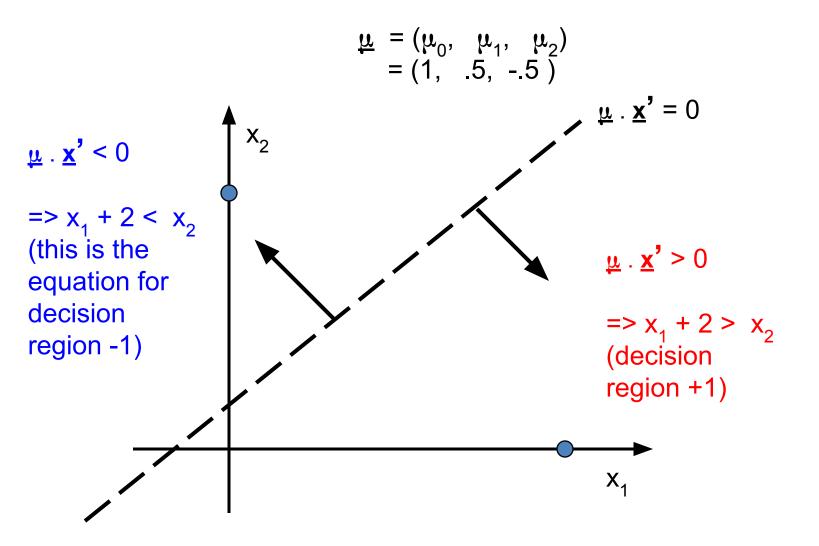
From P. Smyth

# Example, Linear Decision Boundary



From P. Smyth

# Example, Linear Decision Boundary



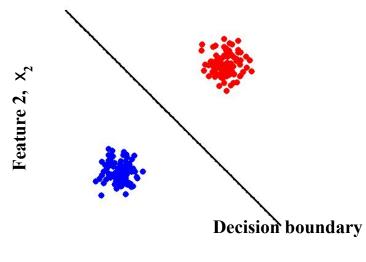
From P. Smyth

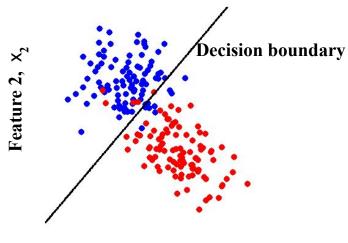
# Separability

- A data set is separable by a learner if
  - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
  - Can separate the two classes using a straight line in feature space
  - in 2 dimensions the decision boundary is a straight line

#### Linearly separable data

Linearly non-separable data



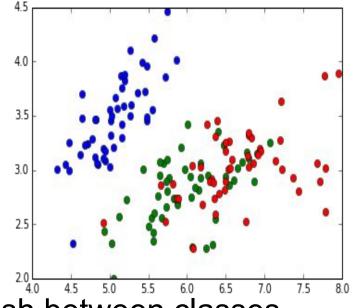


Feature 1, X<sub>1</sub>

Feature 1, X<sub>1</sub>

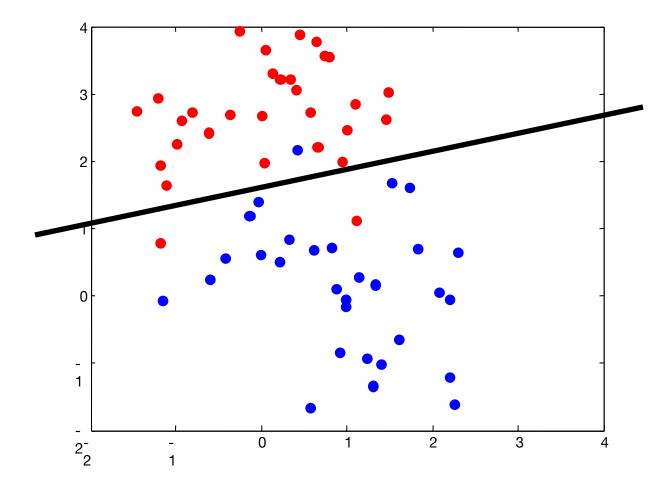
# **Class overlap**

- Classes may not be well-separated
- Same observation values possible under both classes
  - High vs low risk; features {age, income}
  - Benign/malignant cells look similar
- Common in practice



- May not be able to perfectly distinguish between classes
  - Maybe with more features?
  - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

# Another example

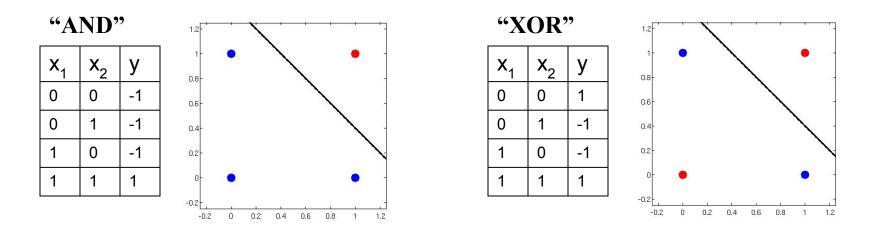


### Non-linear decision boundary



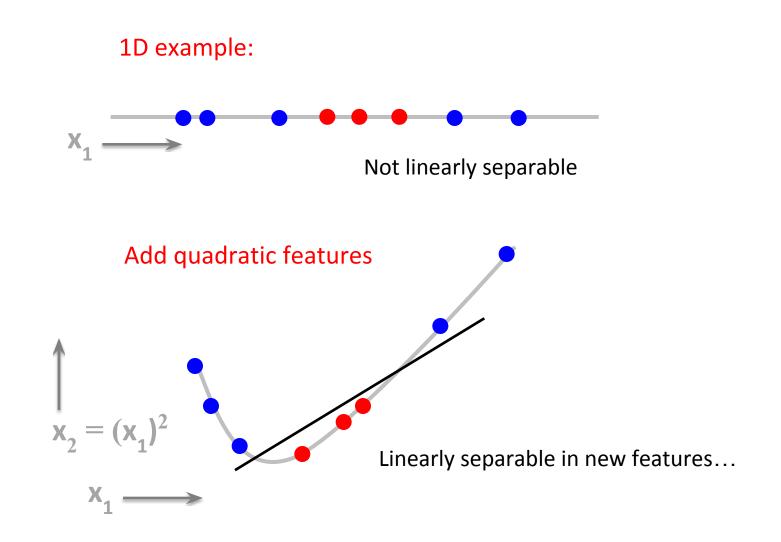
### **Representational Power of Perceptrons**

- What mappings can a perceptron represent perfectly?
  - A perceptron is a linear classifier
  - thus it can represent any mapping that is linearly separable
  - some Boolean functions like AND (on left)
  - but not Boolean functions like XOR (on right)



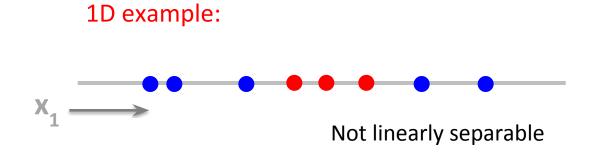
# **Adding features**

• Linear classifier can't learn some functions

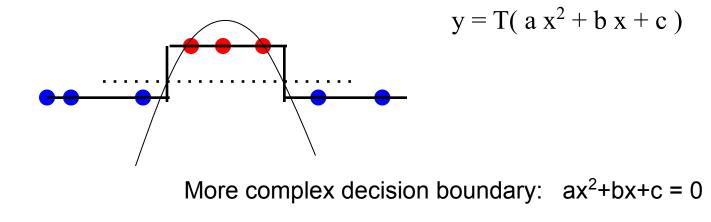


# Adding features

• Linear classifier can't learn some functions

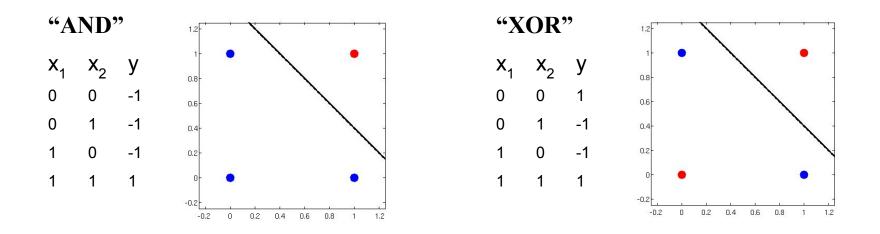


Quadratic features, visualized in original feature space:



### **Representational Power of Perceptrons**

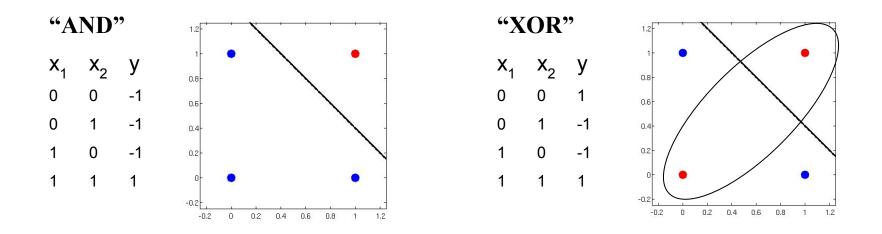
- What mappings can a perceptron represent perfectly?
  - A perceptron is a linear classifier
  - thus it can represent any mapping that is linearly separable
  - some Boolean functions like AND (on left)
  - but not Boolean functions like XOR (on right)



What kinds of functions would we need to learn the data on the right?

### **Representational Power of Perceptrons**

- What mappings can a perceptron represent perfectly?
  - A perceptron is a linear classifier
  - thus it can represent any mapping that is linearly separable
  - some Boolean functions like AND (on left)
  - but not Boolean functions like XOR (on right)



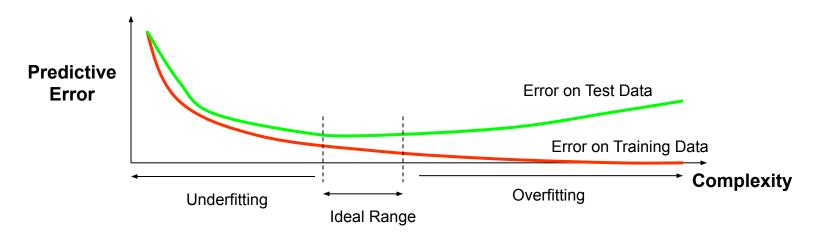
What kinds of functions would we need to learn the data on the right? Ellipsoidal decision boundary:  $a x_1^2 + b x_1 + c x_2^2 + d x_2 + e x_1 x_2 + f = 0$ 

### Feature representations

- Features are used in a linear way
- Learner is dependent on representation
- Ex: discrete features
  - Mushroom surface: {fibrous, grooves, scaly, smooth}
  - Probably not useful to use  $x = \{1, 2, 3, 4\}$
  - Better: 1-of-K, x = { [1000], [0100], [0010], [0001] }
  - Introduces more parameters, but a more flexible relationship

# Effect of dimensionality

- Data are increasingly separable in high dimension is this a good thing?
- "Good"
  - Separation is easier in higher dimensions (for fixed # of data m)
  - Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!
- "Bad"
  - Remember training vs. test error? Remember overfitting?
  - Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data...



# Summary

- Linear classifier <>> perceptron
- Linear decision boundary
  - Computing and visualizing
- Separability
  - Limits of the representational power of a perceptron
- Adding features
  - Complex features => Complex decision boundaries
  - Effect on separability
  - Potential for overfitting

# **Machine Learning**

**Linear Classification with Perceptrons** 

**Perceptron Learning** 

**Gradient-Based Classifier Learning** 

**Multi-Class Classification** 

**Regularization for Linear Classification** 

# Learning the Classifier Parameters

- Learning from Training Data:
  - training data = labeled feature vectors
  - Find parameter values that predict well (low error)
    - error is estimated on the training data
    - "true" error will be on future test data
- Define a loss function  $J(\theta)$ :
  - Classifier error rate (for a given set of weights  $\theta$  and labeled data)
- Minimize this loss function (or, maximize accuracy)
  - An optimization or search problem over the vector ( $\theta_0, \theta_1, \theta_2, ...$ )

# Training a linear classifier

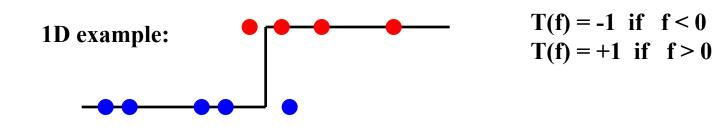
- How should we measure error?
  - Natural measure = "fraction we get wrong" (error rate)

$$\operatorname{err}(\theta) = \frac{1}{m} \sum_{i} \mathbb{1} \left[ y^{(i)} \neq f(x^{(i)}; \theta) \right] \quad \text{where} \quad \mathbb{1} \left[ y \neq \hat{y} \right] = \begin{cases} 1 & y \neq \hat{y} \\ 0 & \text{o.w.} \end{cases}$$

1

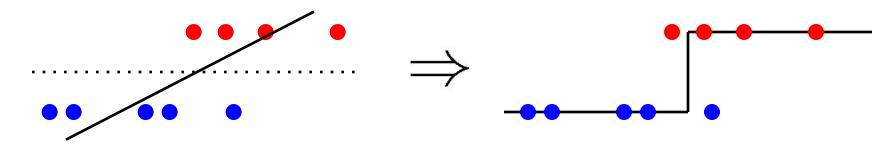
Yhat = np.sign(X.dot(theta.T)) # predict class (+1/-1) err = np.mean(Y != Yhat) # count errors: empirical error rate

- But, hard to train via gradient descent
  - Not continuous
  - As decision boundary moves, errors change abruptly

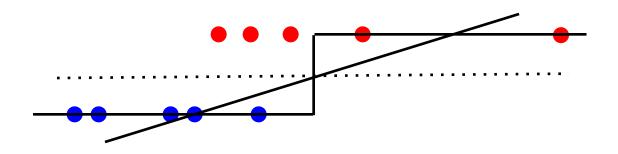


# Linear regression?

• Simple option: set  $\theta$  using linear regression



- In practice, this often doesn't work so well...
  - Consider adding a distant but "easy" point
  - MSE distorts the solution



• Perceptron algorithm: an SGD-like algorithm

while  $\neg$  done:

for each data point j:

$$\begin{split} \hat{y}^{(j)} &= \operatorname{sign}(\theta \cdot x^{(j)}) & \text{(predict output for point j)} \\ \theta &\leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)} & \text{("gradient-like" step)} \end{split}$$

- Compare to linear regression + MSE cost
  - Identical update to SGD for MSE except error uses thresholded ŷ(j) instead of linear response θ•x:

(1) For correct predictions,  $y(j) - \hat{y}(j) = 0$ (2) For incorrect predictions,  $y(j) - \hat{y}(j) = \pm 2$ 

"adaptive" linear regression: correct predictions stop contributing

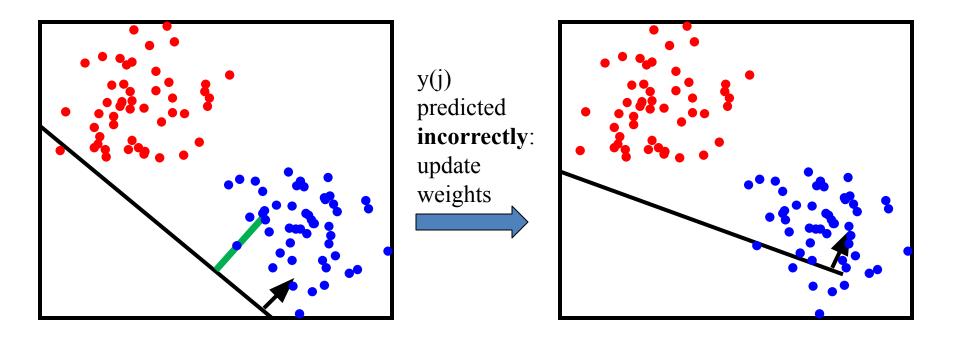
Perceptron algorithm: an SGD-like algorithm 

while  $\neg$  done:

for each data point j:

 $\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$  $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$  ("gradient-like" step)

(predict output for point j)



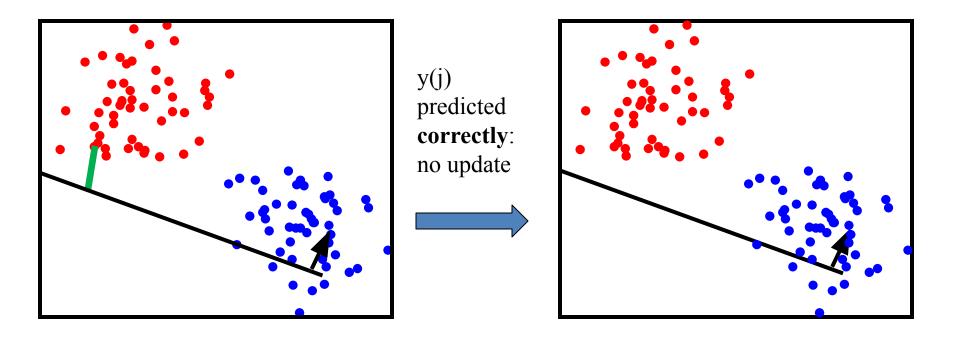
Perceptron algorithm: an SGD-like algorithm ullet

while  $\neg$  done:

for each data point j:

 $\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$  $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$  ("gradient-like" step)

(predict output for point j)

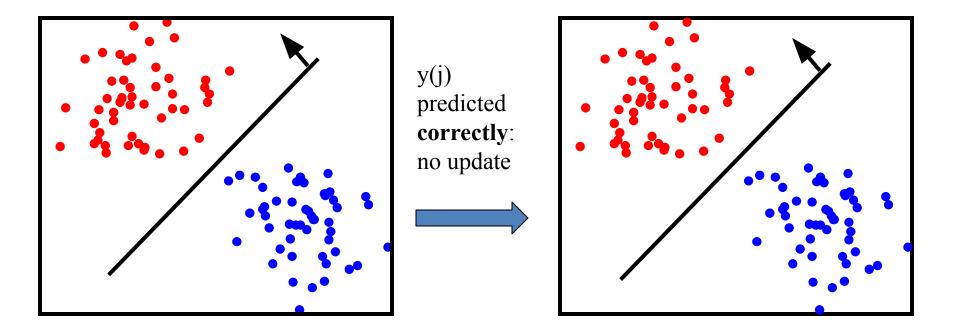


Perceptron algorithm: an SGD-like algorithm

while  $\neg$  done:

for each data point j:

 $\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$  (predict output for point j)  $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$  ("gradient-like" step) (Converges if data are linearly separable)



### Perceptron MARK 1 Computer



Frank Rosenblatt, late 1950s

# **Machine Learning**

**Linear Classification with Perceptrons** 

**Perceptron Learning** 

**Gradient-Based Classifier Learning** 

**Multi-Class Classification** 

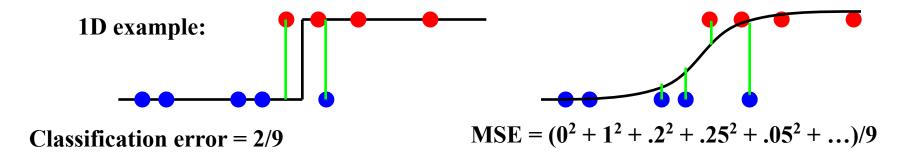
**Regularization for Linear Classification** 

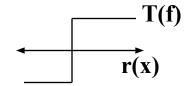
# Surrogate loss functions

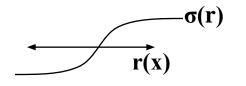
- Another solution: use a "smooth" loss
  - e.g., approximate the threshold function
  - Usually some smooth function of distance
    - Example: logistic "sigmoid", looks like an "S"
  - Now, measure e.g. MSE

- Far 
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} \left( \sigma(r(x^{(j)})) - y^{(j)} \right)$$

- Nearby the boundary: |f(.)| near 1/2, larger error





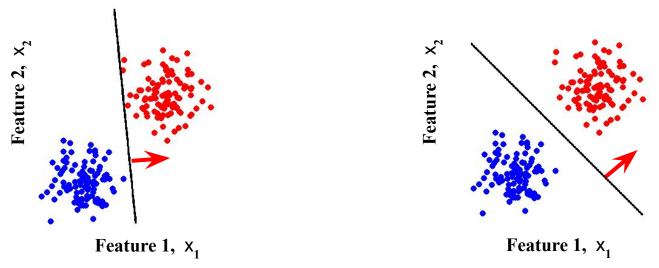


nall error 
$$Class y = \{0, 1\} \dots$$

2

# Beyond misclassification rate

- Which decision boundary is "better"?
  - Both have zero training error (perfect training accuracy)
  - But, one of them seems intuitively better...



- Side benefit of many "smoothed" error functions
  - Encourages data to be far from the decision boundary
  - See more examples of this principle later...

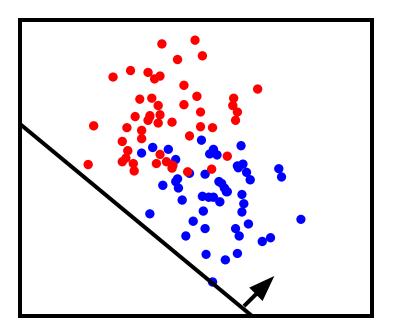
# **Training the Classifier**

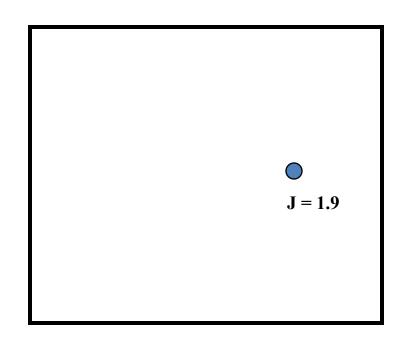
 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1, x_2) = a^* x_1 + b^* x_2 + c$$

• Example: 2D feature space







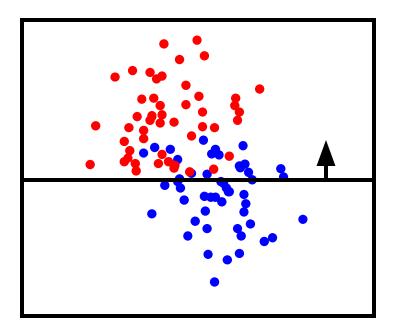
# **Training the Classifier**

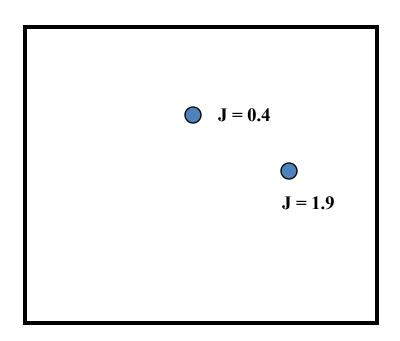
 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1, x_2) = a^* x_1 + b^* x_2 + c$$

• Example: 2D feature space







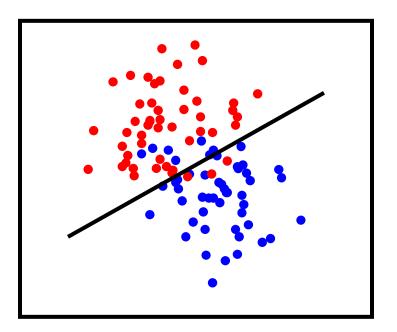
# **Training the Classifier**

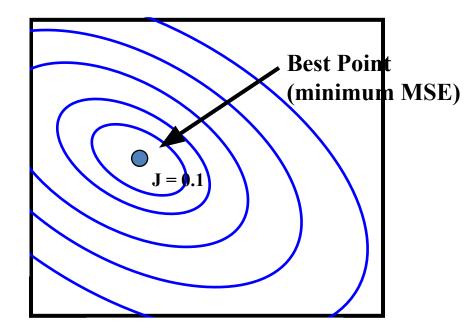
 Once we have a smooth measure of quality, we can find the "best" settings for the parameters of

$$r(x_1, x_2) = a^* x_1 + b^* x_2 + c$$

• Example: 2D feature space



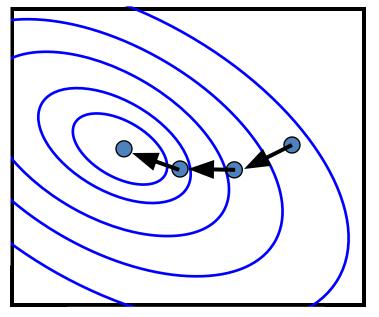




# Finding the Best MSE

- As in linear regression, this is now just optimization
- Methods:
  - Gradient descent
    - Improve loss by small changes in parameters ("small" = learning rate)
  - Or, substitute your favorite optimization algorithm...
    - Coordinate descent
    - Stochastic search





# **Gradient Equations**

• MSE (note, depends on function  $\sigma(.)$ )

$$J(\underline{\theta} = [a, b, c]) = \frac{1}{m} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

• What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = \frac{1}{m} \sum_{i} 2(\sigma(\theta \cdot x^{(i)}) - y^{(i)}) \ \partial \sigma(\theta \cdot x^{(i)}) \ x_1^{(i)}$$

 Error between class Sensitivity of prediction to
 Similar for parametersibilities [replace kanwith karoneter "a" (constant)]

# **Gradient Equations**

• MSE (note, depends on function  $\sigma(.)$  )

$$J(\underline{\theta} = [a, b, c]) = \frac{1}{m} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

What's the derivative whith respect to one of the parameters?
 Recall the chain rule of calculus:

$$\frac{\partial}{\partial a} f(g(h(a))) = f'(g(h(a))) g'(h(a)) h'(a)$$

$$f(g) = (g)^2 \qquad \Rightarrow f'(g) = 2(g)$$

$$g(h) = \sigma(h) - y \qquad \Rightarrow g'(h) = \sigma'(h)$$

$$h(a) = ax_1^{(i)} + bx_2^{(i)} + c \qquad \Rightarrow h'(a) = x_1^{(i)} \qquad \text{w.r.t. b,c: similar; replace } x_1$$

$$\frac{\partial J}{\partial a} = \frac{1}{m} \sum_{i} 2 \underbrace{ \left( \sigma(\theta \cdot x^{(i)}) - y^{(i)} \right)}_{\text{Error between class and prediction}} \underbrace{ \partial \sigma(\theta \cdot x^{(i)}) x_1^{(i)} }_{\text{Sensitivity of prediction to changes in parameter "a"}$$

# **Saturating Functions**

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is  $\sigma(z) = 1 / (1 + \exp(-z))$
- Derivative (slope of the function at a point z) is  $\partial \sigma(z) = \sigma(z) (1-\sigma(z))$
- Matlab Implementation:

function s = sig(z)
% value of [0,1] sigmoid
s = 1 ./ (1+exp(-z));

function ds = dsig(x)
% derivative of (scaled) sigmoid
ds = sig(z) .\* (1-sig(z));

(z = linear response,  $x^{T}\mu$ )

```
(to predict:
threshold z at 0 or
threshold \sigma (z) at \frac{1}{2} )
```

```
For range [-1, +1]:

\rho(z) = 2 \sigma(z) - 1
\partial \rho(z) = 2 \sigma(z) (1 - \sigma(z))
```

Predict: threshold z or p at zero

# **Saturating Functions**

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is σ(z) = 1 / (1 + exp(-z))
- Derivative (slope of the function at a point z) is  $\partial \sigma(z) = \sigma(z) (1-\sigma(z))$
- Python Implementation:

(z = linear response,  $x^{T}\mu$ )

(to predict: threshold z at 0 or threshold  $\sigma$  (z) at  $\frac{1}{2}$  )

def sig(z): # logistic sigmoid return 1.0 / (1.0 + np.exp(-z)) # in [0,1]

def dsig(z): # its derivative at z
return sig(z) \* (1-sig(z))

For range [-1, +1]:  $\rho(z) = 2 \sigma(z) - 1$   $\partial \rho(z) = 2 \sigma(z) (1 - \sigma(z))$ 

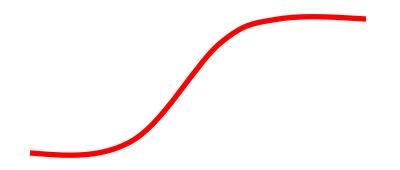
Predict: threshold z or  $\rho$  at zero

# **Class posterior probabilities**

- Useful to also know class probabilities
- Some notation
  - p(y=0), p(y=1) class prior probabilities
    - How likely is each class in general?
  - p(x | y=c) class conditional probabilities
    - How likely are observations "x" in that class?
  - p(y=c | x) class posterior probability
    - How likely is class c given an observation x?
- We can compute posterior using Bayes' rule
   p(y=c | x) = p(x|y=c) p(y=c) / p(x)
- Compute p(x) using sum rule / law of total prob.
  - p(x) = p(x|y=0) p(y=0) + p(x|y=1)p(y=1)

# **Class posterior probabilities**

- Consider comparing two classes
  - p(x | y=0) \* p(y=0) vs p(x | y=1) \* p(y=1)
  - Write probability of each class as
  - p(y=0 | x) = p(y=0, x) / p(x)
    - = p(y=0, x) / (p(y=0,x) + p(y=1,x))
  - = 1 / (1 + exp(-a)) (\*\*)
  - a = log [ p(x|y=0) p(y=0) / p(x|y=1) p(y=1) ]
  - (\*\*) called the logistic function, or logistic sigmoid.



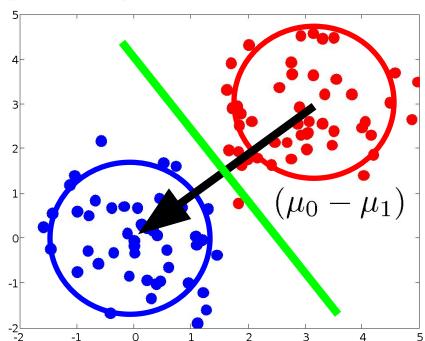
#### **Gaussian models and Logistics**

For Gaussian models with equal covariances

$$\mathcal{N}(\underline{x} \; ; \; \underline{\mu}, \Sigma) = \frac{1}{(2\pi)^{d/2}} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu})^T \Sigma^{-1}(\underline{x} - \underline{\mu})\right\}$$

$$0 \stackrel{<}{>} \log \frac{p(x|y=0)}{p(x|y=1)} \frac{p(y=0)}{p(y=1)} = (\mu_0 - \mu_1)^T \Sigma^{-1} x + constants$$

The probability of each class is given by:  $p(y=0 | x) = Logistic(w^T x + b)$ 



# Logistic regression

- Interpret  $\sigma(\theta \cdot x)$  as a probability that y = 1
- Use a negative log-likelihood loss function

- If y = 1, cost is - log Pr[y=1] = - log 
$$\sigma(\theta \cdot x)$$

- If y = 0, cost is log Pr[y=0] = log (1  $\sigma(\theta \cdot X)$ )
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \left( \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$
  
Nonzero only if y=1 Nonzero only if y=0

# Logistic regression

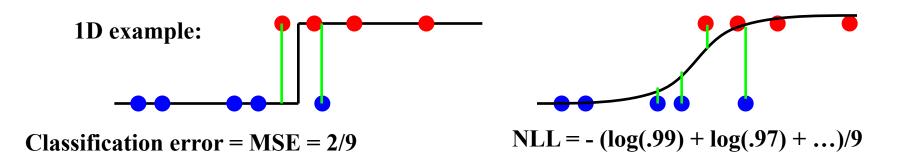
- Interpret  $\sigma(\theta \cdot x)$  as a probability that y = 1
- Use a negative log-likelihood loss function

- If y = 1, cost is - log Pr[y=1] = - log 
$$\sigma(\theta \cdot x)$$

- If y = 0, cost is  $-\log \Pr[y=0] = -\log (1 \sigma(\theta \cdot X))$
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \left( \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$
  
Convex! Otherwise similar: optimize  $I(\theta)$  via

• Convex! Otherwise similar: optimize  $J(\theta)$  via ...



#### **Gradient Equations**

• Logistic neg-log likelihood loss:

$$J(\underline{\theta}) = -\frac{1}{m} \left( \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$

What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = -\frac{1}{m} \left( \sum_{i} y^{(i)} \frac{1}{\sigma(\theta \cdot x^{(i)})} \ \partial \sigma(\theta \cdot x^{(i)}) \ x_1^{(i)} + (1 - y(i)) \dots \right)$$
$$= -\frac{1}{m} \left( \sum_{i} y^{(i)} (1 - \sigma(\theta \cdot x^{(i)})) \ x_1^{(i)} + (1 - y^{(i)}) \dots \right)$$

# Surrogate loss functions

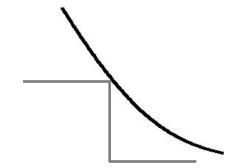
• Replace 0/1 loss  $\Delta_i(\theta) = \mathbb{1}[T(\theta x^{(i)}) \neq y^{(i)}]$ with something easier:

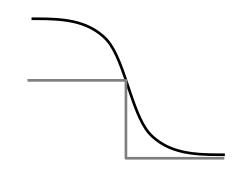
Logistic MSE

$$J_i(\theta) = 4 \left( \sigma(\theta x^{(i)}) - y^{(i)} \right)^2$$

Logistic Neg Log Likelihood

$$J_i(\underline{\theta}) = -\frac{y^{(i)}}{\log 2} \log \sigma(\theta \cdot x^{(i)}) + \dots$$





0 / 1 Loss

# Summary

- Linear classifier <>> perceptron
- Measuring quality of a decision boundary
  - Error rate (0/1 loss)
  - Logistic sigmoid + MSE criterion
  - Logistic Regression
- Learning the weights of a linear classifier from data
  - Reduces to an optimization problem
  - Perceptron algorithm
  - For MSE or Logistic NLL, we can do gradient descent
  - Gradient equations & update rules

# **Machine Learning**

**Linear Classification with Perceptrons** 

**Perceptron Learning** 

**Gradient-Based Classifier Learning** 

**Multi-Class Classification** 

**Regularization for Linear Classification** 

# Multi-class linear models

- What about multiple classes? One option:
  - Define one linear response per class
  - Choose class with the largest response

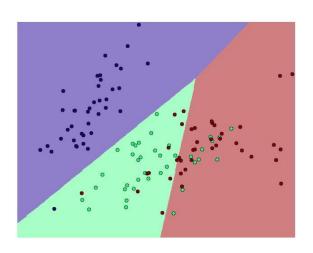
$$\theta = \begin{bmatrix} \theta_{00} & \dots & \theta_{0n} \\ \vdots & \ddots & \vdots \\ \theta_{C0} & \dots & \theta_{Cn} \end{bmatrix}$$

$$f(x;\theta) = \arg\max_{c} \ \theta_{c} \cdot x^{T}$$

Boundary between two classes, c vs. c'?

$$= \begin{cases} c & \text{if } \theta_c \cdot x^T > \theta_{c'} x^T \quad \Leftrightarrow (\theta_c - \theta_{c'}) x^T > 0 \\ c' & \text{otherwise} \end{cases}$$

• Linear boundary:  $(\theta_c - \theta_c) x^T = 0$ 



#### Multiclass linear models

• More generally, can define a generic linear classifier by

$$f(x;\theta) = \arg\max_{y} \ \theta \cdot \Phi(x,y)$$

• Example: y ∈ {-1, +1}

$$\Phi(x,y) = y \ [1 \ x \ x^2 \ \dots]$$

$$f(x;\theta) = \begin{cases} +1 & \theta \cdot [1 \ x \ x^2 \dots] > -\theta \cdot [1 \ x \ x^2 \dots] \\ -1 & \text{o.w.} \end{cases}$$

(Standard perceptron rule)

### Multiclass linear models

• More generally, can define a generic linear classifier by

$$f(x;\theta) = \arg\max_{y} \ \theta \cdot \Phi(x,y)$$

• Example: y ∈ {0,1,2,...}

$$\Phi(x,y) = \begin{bmatrix} \mathbbm{1}[y=0] \begin{bmatrix} 1 \ x \ x^2 \ \dots \end{bmatrix} & \mathbbm{1}[y=1] \begin{bmatrix} 1 \ x \ x^2 \ \dots \end{bmatrix} \\ \theta = \begin{bmatrix} \theta_{00} \ \theta_{01} \ \theta_{02} \dots \end{bmatrix} & \begin{bmatrix} \theta_{10} \ \theta_{11} \ \theta_{12} \dots \end{bmatrix} & \begin{bmatrix} \theta_{10} \ \theta_{11} \ \theta_{12} \dots \end{bmatrix} \\ & \text{(parameters for each class c)} \end{bmatrix}$$

$$f(x;\theta) = \arg \max_{c} \ \theta_{c} \cdot [1 \ x \ x^2 \ \dots]$$
(predict class with largest linear response)

# Multiclass perceptron algorithm

- Perceptron algorithm:
  - Make prediction f(x)
  - Increase linear response of true target y; decrease for prediction f

```
While (~done)

For each data point j:

f^{(j)} = \arg \max \left( \theta_c * \underline{x}^{(j)} \right) : predict outp

\theta_f = \theta_f - \alpha \underline{x}^{(j)} : decrease re

x^{(j)}

\theta_y = \theta_y + \alpha \underline{x}^{(j)} : increase res
```

- : predict output for data point j
- : decrease response of class f<sup>(j)</sup> to

: increase response of true class

More general form update:

$$f(x;\theta) = \arg\max_{y} \ \theta \cdot \Phi(x,y)$$
$$\theta \leftarrow \theta + \alpha \big( \Phi(x,y) - \Phi(x,f(x)) \big)$$

# **Multilogit regression**

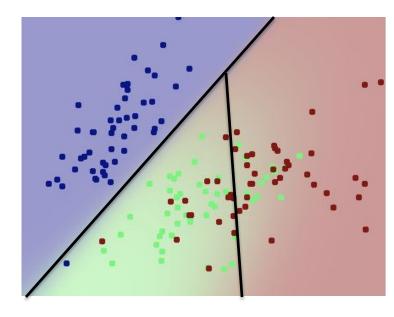
• Define the probability of each class:

$$p(Y = y | X = x) = \frac{\exp(\theta_y \cdot x^T)}{\sum_c \exp(\theta_c \cdot x^T)} \quad \text{(Y binary = logistic regression)}$$

• Then, the NLL loss function is:

$$J(\theta) = -\frac{1}{m} \sum_{i} \log p(y^{(i)} | x^{(i)}) = -\frac{1}{m} \sum_{i} \left[ \theta_{y^{(i)}} \cdot x^{(i)} - \log \sum_{c} \exp(\theta_c \cdot x^{(i)}) \right]$$

- P: "confidence" of each class
  - Soft decision value
- Decision: predict most probable
  - Linear decision boundary
- Convex loss function



# **Machine Learning**

**Linear Classification with Perceptrons** 

**Perceptron Learning** 

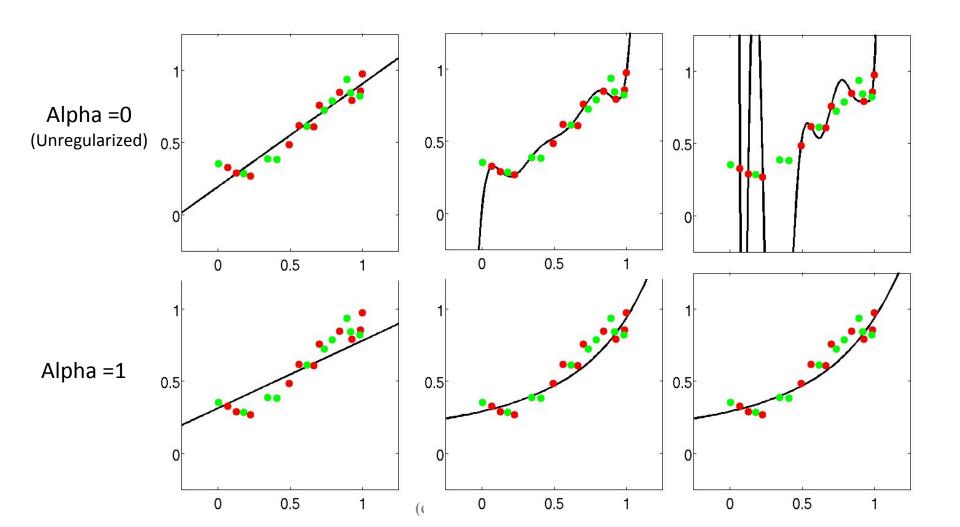
**Gradient-Based Classifier Learning** 

**Multi-Class Classifiction** 

**Regularization for Linear Classification** 

# Regularization

Reminder: Regularization for linear regression



# **Regularized logistic regression**

- Intepret  $\frac{3}{4}(\underline{\mu} \mathbf{x}^T)$  as a probability that y = 1
- Use a negative log-likelihood loss function

- If y = 1, cost is - log Pr[y=1] = - log 
$$\frac{3}{4}(\underline{\mu} x^{T})$$

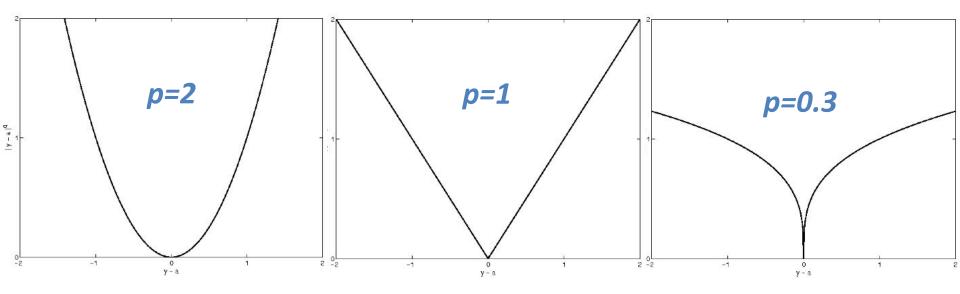
- If y = 0, cost is log Pr[y=0] = log  $(1 \frac{3}{4}(\mu x^T))$
- Minimize weighted sum of negative log-likelihood and a regularizer that encourages small weights:

$$J(\underline{\theta}) = -\frac{1}{m} \left( \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)})) \right)$$
  
Nonzero only if y=1 Nonzero only if y=0  
$$+\alpha ||\theta||_{p}$$

### **Different regularization functions**

• In general, for the L<sub>p</sub> regularizer:

$$\left(\sum_{i} |\theta_{i}|^{p}\right)^{\frac{1}{p}} = \left|\left|\theta\right|\right|_{p}$$



# **Different regularization functions**

• In general, for the L<sub>p</sub> regularizer:

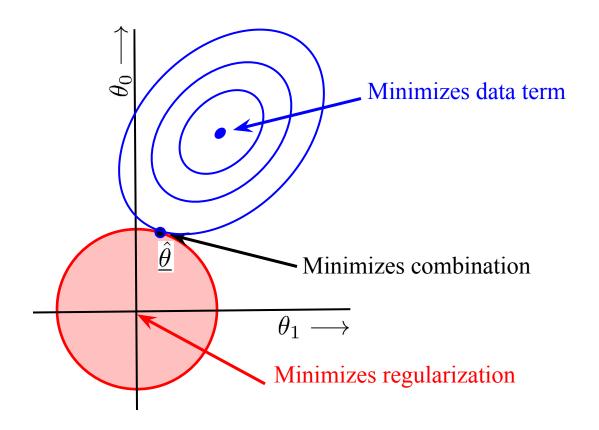
$$\left(\sum_{i} |\theta_{i}|^{p}\right)^{\frac{1}{p}} = \left|\left|\theta\right|\right|_{p}$$

Isosurfaces:  $\|\theta\|_{p} = \text{constant}$  p=0.5 p=1 p=2 p=4Lasso Quadratic

 $L_0$  = limit as p goes to 0 : "number of nonzero weights", a natural notion of complexity

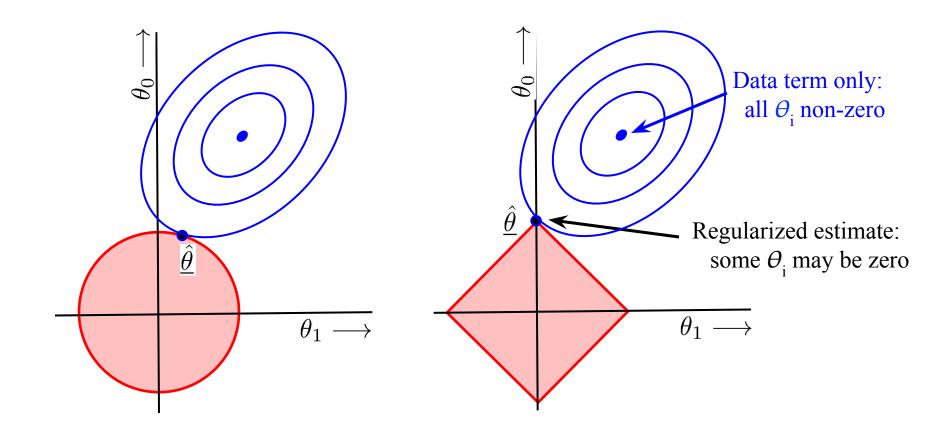
# Regularization: L<sub>2</sub> vs L<sub>1</sub>

• Estimate balances data term & regularization term



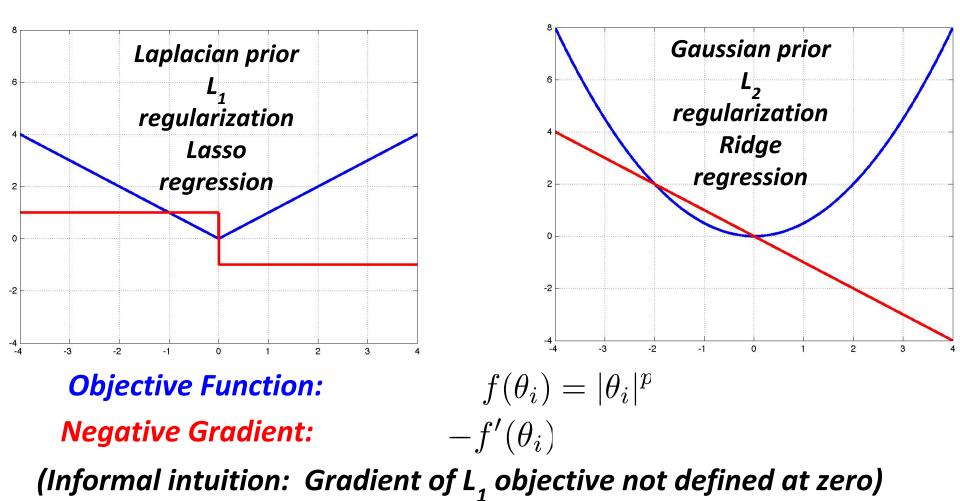
# Regularization: L<sub>2</sub> vs L<sub>1</sub>

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.



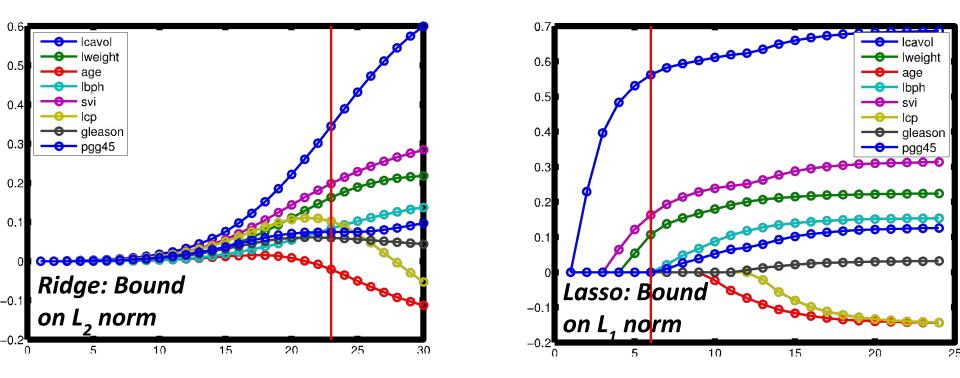
# **Gradient-Based Optimization**

- L<sub>2</sub> makes (all) coefficients smaller
- L<sub>1</sub> makes (some) coefficients exactly zero: *feature selection*



# **Regularization Paths**

#### **Prostate Cancer Dataset with M=67, N=8**



- $\Box$  Horizontal axis increases bound on weights (less regularization, smaller  $\alpha$ )
- **For each bound, plot values of estimated feature weights**
- Vertical lines are models chosen by cross-validation

#### Acknowledgement

Based on slides by Alex Ihler