Linear Classification

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex lhler

Machine Learning

Linear Classification with Perceptrons

4 N
NS J
4 N
NS J
4 N
N j
4 N

Linear regression

“Predictor”:
40r .
. Evaluate line:
> r =0y + 0121
N
[<P]
=Y))
E‘: returnr
e
2 L

0
Feature x

 Contrast with classification
— Classify: predict discrete-valued target y
— Initially: “classic” binary { -1, +1} classes; generalize later

Perceptron Classifier (2 features)

Classifier f(x; 6) — T
1 *‘/ N—)

—- “linear response”
T
r=p X, +p,x,+ Bl) _’f(.flf, 9) -1, 41

2
P
1 / 0 ThreShOId Output or, {0, 1}
0

Qveighted sum of the inputs Function / _ class decision

A

r = X.dot(theta.T) # compute linear response
Yhat = (r > 0) # predict class 1 vs 0
Yhat = 2*(r > 0)-1 # or 7sign”: predict +1 / -1

Note: typically convert classes to ’canonical” values 0,1,...
then convert back (“learner.classes[c]”) after prediction

“,,

Visualizing for one feature “x”:

f(x) O
Vo y T()

Perceptrons

« Perceptron = a linear classifier

— The parameters p. are sometimes called weights (“w”)
* real-valued constants (can be positive or negative)

— Input features x,...x_are arbitrary numbers
— Define an additional constant input feature x =1

* A perceptron calculates 2 quantities:

— 1. Aweighted sum of the input features
— 2. This sum is then thresholded by the T(.) function

» Perceptron: a simple artificial model of human neurons
— weights = “synapses”
— threshold = “neuron firing”

Notation

* Inputs:
— Xgs Xqs Xoy eeeevnnnnnn, , X,
SR ST GO , X4, X are the values of the n features
— X, =1 (aconstant input)
= X = [[Xgs Xqs Xgs wevneennnns , X_]] : feature vector (row vector)

« Weights (parameters):

= g By Pogs vnvnennnnns y s
— we have n+1 weights: one for each feature + one for the constant
SV | (VPRSP TSR , 1,11 : parameter vector (row vector)

* Linear response

— PXy X, Fo X =X w ' then threshold

F = X.dot(theta.T); # compute linear response
Yhat = np.sign(F) # predict class +1 or -1
Yhat = 2*(F>0)-1 # manual “’sign” of F

Perceptron Decision Boundary

* The perceptron is defined by the decision algorithm:
(- T
+1 it 6-z° >0

—1 otherwise

f(z;0) =<

\

« The perceptron represents a hyperplane decision surface in
d-dimensional space
— Aline in 2D, a plane in 3D, etc.

* The equation of the hyperplane is given by

T
px =0
This defines the set of points that are on the boundary.

Example, Linear Decision Boundary

o= (g Wy)
=(1, 5, -5)

From P. Smyth

|[Example, Linear Decision Boundary
|

L= (e By 1)

=1, 5 -5)
A p-x =0
X, //
S // =>93 X-9X%x,+1=0
// =>-5x,=-5x, -1
// \ —s X2=X1+2
7
7
) 4
7
7 O >
7 X

From P. Smyth

|[Example, Linear Decision Boundary
|

L= (e By 1)

=1, .5, -.5)
4 X a x'=0
& . Z, < O 2 /
(©) A 7
=> X1 + 2 < X2 /
(this is the J/ p.x >0
equation for / B
dec_|S|on =>x, +2> X,
region -1) /7 (decision
/// region +1)
7 =
/ %
7

From P. Smyth

Separability

- Adata set is separable by a learner if
— There is some instance of that learner that correctly predicts all the data

points

* Linearly separable data
— Can separate the two classes using a straight line in feature space

— in 2 dimensions the decision boundary is a straight line

Linearly separable data Linearly non-separable data

Feature 2, X,
Feature 2, X,

boundary

Feature 1, X, Feature 1, X,

Class overlap

» Classes may not be well-separated

Same observation values possible
under both classes

— High vs low risk; features {age, income}
— Benign/malignant cells look similar

Common in practice

May not be able to perfectly distinguish between classes
— Maybe with more features?
— Maybe with more complex classifier?

Otherwise, may have to accept some errors

25}

20

40

45

50

55

6.0

6.5

70

15

8.0

|Another example
|

|Non-linear decision boundary
|

Representational Power of Perceptrons

« What mappings can a perceptron represent perfectly?
— A perceptron is a linear classifier
— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)
— but not Boolean functions like XOR (on right)

“AND”

1X2

“XOR”
2 | Y

1

y
-1
-1
-1

a|lalo|o]| x

_\Aoox

~|lo|l-a|lol %
—

0
1
0
1

1 or ® ®

Adding features

* Linear classifier can’t learn some functions

1D example:

L N o 060 0 o ®
 —
Not linearly separable

Add quadratic features @

Linearly separable in new features...

Adding features

* Linear classifier can’t learn some functions

1D example:

L N o 060 0 o ®
 —
Not linearly separable

Quadratic features, visualized in original feature space:
y=T(ax*+bx+c)

More complex decision boundary: ax?+bx+c =0

Representational Power of Perceptrons

« What mappings can a perceptron represent perfectly?

A perceptron is a linear classifier
thus it can represent any mapping that is linearly separable
some Boolean functions like AND (on left)

but not Boolean functions like XOR (on right)

“AND”

- o O O X

1

X

0
1
0
1

2 Y
-1
-1
-1

1

“XOR”

What Kkinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

« What mappings can a perceptron represent perfectly?
— A perceptron is a linear classifier
— thus it can represent any mapping that is linearly separable
— some Boolean functions like AND (on left)
— but not Boolean functions like XOR (on right)

“AND” “XO0OR”
i ® 1k

X XY N X XY o

0 0 -1 o 0 1

0 1 1 04} 0 1 -1

1 0 1 oz 1 0o -1

1T 1 1 T . 1T 1 1

-0.2 0 0.z 0.4 0.6 0.8 1 1.2

What Kkinds of functions would we need to learn the data on the right?
Ellipsoidal decision boundary: ax’*+bx +ex +dx,+exx,+f=0

Feature representations

- Features are used in a linear way
« Learner is dependent on representation

- Ex: discrete features
— Mushroom surface: {fibrous, grooves, scaly, smooth}
— Probably not useful to use x = {1, 2, 3, 4}
— Better: 1-of-K, x ={[1000], [0100], [0010], [0001] }
— Introduces more parameters, but a more flexible relationship

Effect of dimensionality

Data are increasingly separable in high dimension — is this a good thing?

“Good”

— Separation is easier in higher dimensions (for fixed # of data m)

— Increase the number of features, and even a linear classifier will eventually be able to
separate all the training examples!

“Bad”

— Remember training vs. test error? Remember overfitting?

— Increasingly complex decision boundaries can eventually get all the training data right,
but it doesn’t necessarily bode well for test data...

A

Predictive
Error Error on Test Data

Error on Training Data

) : | N ~ Complexity
Underfitting Overfitting

Ideal Range

Summary

Linear classifier <=- perceptron

Linear decision boundary
— Computing and visualizing

Separability

— Limits of the representational power of a perceptron

Adding features

— Complex features => Complex decision boundaries
— Effect on separability

— Potential for overfitting

Machine Learning

| J

Perceptron Learning

NS J
4 N
N j
4 N

Learning the Classifier Parameters

 Learning from Training Data:
— training data = labeled feature vectors

— Find parameter values that predict well (low error)
* error is estimated on the training data
* “true” error will be on future test data

* Define a loss function J(0) :
— Classifier error rate (for a given set of weights 0 and labeled data)

« Minimize this loss function (or, maximize accuracy)
— An optimization or search problem over the vector (0, 0., 0,,...)

Training a linear classifier

- How should we measure error?
— Natural measure = “fraction we get wrong” (error rate)

er(®) = 310 # 1 30)] v ﬂ[y#@]‘{l e

0 o.w.

Yhat = np.sign(X.dot(theta.T)) # predict class (+1/-1)
err =np.mean(Y !=Yhat) # count errors: empirical error rate

- But, hard to train via gradient descent
— Not continuous
— As decision boundary moves, errors change abruptly

T =-1 if £<0
T(H) =+1 if £>0

1D example: ®—o ®

—00 o0 o

Linear regression?

* Simple option: set 0 using linear regression

* In practice, this often doesn’t work so well...
— Consider adding a distant but “easy” point
— MSE distorts the solution

Perceptron algorithm

e Perceptron algorithm: an SGD-like algorithm

while — done:

for each data point j:
G = sign (6 - -CU(j)) (predict output for point j)
0+ 0+ oy — 5zl (‘gradient-like” step)

e Compare to linear regression + MSE cost
o |dentical update to SGD for MSE except error uses thresholded
y(j) instead of linear response Qex:

(1) For correct predictions, y(j)-y(j)=0
(2) For incorrect predictions, y(j) - y(j) = £ 2

“adaptive” linear regression: correct predictions stop contributing

Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm

while — done:

for each data point j:

G = sign (6 - -I’(j)) (predict output for point j)
0+ 0+ oy — 5zl (‘gradient-like” step)

® '.
0% *
y() oo :0 ¢
predicted °0fe :.’

incorrectly: °
o
update « A,

weights

Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm

while — done:

for each data point j:

G = sign (6 - -I’(j)) (predict output for point j)
0+ 0+ oy — 5zl (‘gradient-like” step)

y()
predicted
correctly:

no update

I

Perceptron algorithm

* Perceptron algorithm: an SGD-like algorithm
while — done:
for each data point j:
Q(j) = sign(6 - x(j)) (predict output for point j)
0 O+ a(y(]‘) B g(j))x(j) (“gradient-like” step)
(Converges if data are linearly separable)

y()
predicted
correctly:

no update

I

Perceptron MARK 1 Computer

Perceptro

AN,

Frank Rosenblatt, late 1950s

Machine Learning

4 N
- j
4 N
NS J

Gradient-Based Classifier Learning

4 N
N j
4 N

Surrogate loss functions

* Another solution: use a “smooth” loss
— e.g., approximate the threshold function

—T®
— Usually some smooth function of distance) r(=x)
« Example: logistic “sigmoid”, looks like an “S”
— Now, measure e.g. MSE /—"(r)
o

1 : N\ 2
JO) = = g (20 —)
— Far m Z ((r(@)) ~v) nall errofclass y =10, 1} ...

J
— Nearby the boundary: [f(.)| near 1/2, larger error

1D example: o ® ® ’/."—_'
‘ /
o —o—o-/o/o O

Classification error = 2/9 MSE = (0% + 1% + .2% + 252 + .05% + ...)/9

Beyond misclassification rate

« Which decision boundary is “better”?
— Both have zero training error (perfect training accuracy)

— But, one of them seems intuitively better...

o o
» i .~. X
- L -
S i » » N
2 RE PO 2
= ol =
= o‘ o - =
5 R od 5
< . =

Feature 1, X,

Feature 1, X,

+ Side benefit of many “smoothed” error functions
— Encourages data to be far from the decision boundary

— See more examples of this principle later...

Training the Classifier

* Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

— * *
r(x,,x,) = a*x, + b*x, + ¢

- Example: 2D feature space <= parameter space

Training the Classifier

* Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

— * *
r(x,,x,) = a*x, + b*x, + ¢

- Example: 2D feature space <= parameter space

Training the Classifier

* Once we have a smooth measure of quality, we can find the
“best” settings for the parameters of

— * *
r(x,,x,) = a*x, + b*x, + ¢

- Example: 2D feature space <= parameter space

&S

>

Best POiIJ:
(minimupn MSE)

Finding the Best MSE

* As in linear regression, this is now just optimization

 Methods:

— Gradient descent
* Improve loss by small

. Gradient Descent
changes in parameters

(“small” = learning rate)

— Or, substitute your favorite
optimization algorithm...

« Coordinate descent
« Stochastic search

>

Gradient Equations

- MSE (note, depends on function o(.))

J(0 = [a,b,d) = — Z(a(am)bl o) —y(@D)2

* What’s the derivative with respect to one of the parameters?

o7 1 . . —
P () D) — OV oe (- 2Dy 2

Error between class Sensitivity of prediction to

* Similar for parametgrgiltios [replaceckangerin karoneter “a”
(constant)]

Gradient Equations
- MSE (note, depends on function o(.))

J(O0 = [a,b,c]) = Z(O'(CLCL'l)-I-ba:(i)-l—c) y(i))2
* Whats uic ucllvauvc WIL I ISDPELL WU UIIE Ul LIS parameters’?
— Recall the chain rule of calculus:

flg)=(9)° = f'(9) = 2(9)

g(h) =o(h) —y = g'(h) =0'(h)

h(a) = aacg) 4+ bg;() = h(a) = x&i) w.r.t. b,c : similar;
replace x,
with x, or 1

o] 1 : : - .

Yo > Ao (6 2y — y(z)j 9o (0 - (D) a;gz)
' Error between class Sensitivity of prediction to

and prediction changes in parameter “a”

Saturating Functions

« Many possible “saturating” functions

* “Logistic” sigmoid (scaled for range [0,1]) is
o(z)=1/(1+ exp(-z2)) (z = linear response, x'p.)

 Derivative (slope of the function at a point z) is
do(z) = o(z) (1-0(2))
(to predict:

- Matlab Implementation: threshold zat0 or
threshold ¢ (z) at 72)

function s = sig(z)
% value of [0,1] sigmoid
s=1./(1+exp(-2));
For range [-1 , +1]:
function ds = dsig(x) ge]
% derivative of (scaled) sigmoid p(z) =20(z)-1

Predict: threshold z or p at zero

Saturating Functions

« Many possible “saturating” functions

* “Logistic” sigmoid (scaled for range [0,1]) is

o(z)=1/(1+ exp(-z2)) (z = linear response, x'p.)
 Derivative (slope of the function at a point z) is

d5(z) = o(z) (1-0(2))

(to predict:
* Python Implementation: threshold zat0 or
threshold ¢ (z) at 72)

def sig(z): # logistic sigmoid For range [-1, +1]:
return 1.0/ (1.0 + np.exp(-z)) # in [0,1]
p(z) =20o(z)-1
def dsig(z): # its derivative at z

return sig(z) * (1-sig(z)) 0p(z) = 2 6(z) (1-0(2))

Predict: threshold z or p at zero

Class posterior probabilities

Useful to also know class probabilities

Some notation
— p(y=0), p(y=1) — class prior probabilities
* How likely is each class in general?
— p(x | y=c) — class conditional probabilities
* How likely are observations “x” in that class?
— p(y=c | x) — class posterior probability
* How likely is class ¢ given an observation x?

We can compute posterior using Bayes' rule

— p(y=c | x) = p(x|]y=c) p(y=c) / p(x)

Compute p(x) using sum rule / law of total prob.
— p(x) = p(x|ly=0) p(y=0) + p(x|y=1)p(y=1)

Class posterior probabilities

« Consider comparing two classes
— p(x|y=0)*p(y=0) vs px]|y=1)" p(y=1)
— Write probability of each class as
— p(y=0 [x) = p(y=0, x) / p(x)
- = p(y=0, x) / (p(y=0,x) + p(y=1,x))
- =1/(1 +exp(-a)) (*)

— a=log [p(x]y=0) p(y=0) / p(x|y=1) p(y=1)]
— (™) called the logistic function, or logistic sigmoid.

Gaussian models and Logistics

« For Gaussian models with equal covariances

N w3) = ol e { 5@ w2 - |

< . plzly=0)ply =0) Ty
0 log = — >." "x + constants
> B Py =D ply=1) e m)x e consta

4-

The probability of each class is given by: =
p(y=0 | x) = Logistic(w' x+b) 1 o

Logistic regression

* Interpret o(0+x) as a probability that y = 1
+ Use a negative log-likelihood loss function
— If y=1, costis -log Prl[y=1] = -log o(0X)
— If y=0, costis -logPr[y=0] = -log (1-c(0X))

+ Can write this succinctly:

J(@)-——(Zy“ loga<e:c<>>+<1) log(1— a(@x@)))
m i |
| |

Nonzero only if y=1 Nonzero only if y=0

Logistic regression

* Interpret o(0-x) as a probability that y = 1
» Use a negative log-likelihood loss function

— If y=1, costis -log Prl[y=1] = -log o(0+X)
* If y=0, costis -logPr[y=0] = -log (1-o(0X))

+ Can write this succinctly:

1@ = ——(2y 10g 5(0-s))+(1-y D) log(1-0(0-))))

. Convex! Otherwise similar: optimize J(0) via ...

1D example: o ® ® ’/./'—_'
‘ /
o —o—o-/o/o O

Classification error = MSE = 2/9 NLL = - (log(.99) + 1log(.97) + ...)/9

Gradient Equations

* Logistic neg-log likelinood loss:

7@ = (24 log o(8-e)+(1-yD) log(1-o (02))
m ;
* What's the derivative with respect to one of the parameters?

Y- = (2) @)y () (i
— (EZ Y (020 0o (0-2\") 17 + (1 y(z)))

oa m

=y -00-2®) «f + -y

Surrogate loss functions

* Replace 0/1loss A, (9) =1 T (02D) # y@]
with something easier:

O0/1 Loss

 Logistic MSE \
Ji(0) = 4(0(82D) — y D) ‘E

* Logistic Neg Log Likelihood \

(i) |
Ji(0) =~ log o (0 - (D) 4 ... \

log 2

Summary

 Linear classifier <=> perceptron

« Measuring quality of a decision boundary
— Error rate (0/1 loss)
— Logistic sigmoid + MSE criterion
— Logistic Regression

 Learning the weights of a linear classifier from data
— Reduces to an optimization problem
— Perceptron algorithm
— For MSE or Logistic NLL, we can do gradient descent
— Gradient equations & update rules

Machine Learning

4 N
- j
4 N
NS J

| J

Multi-Class Classification

Multi-class linear models

* What about multiple classes? One option:
— Define one linear response per class
— Choose class with the largest response Boo ... fon

f(x:0) = argmax 6, -z’ | bco ... bon
C

— Boundary between two classes, c vs. ¢’?
B {c it 0.-27 > 02T & (0, — 0)2T >0

¢ otherwise

* Linear boundary: (6 _-6_)x'=0

Multiclass linear models

* More generally, can define a generic linear classifier by

f(x;0) =argmax 6 - ®(x,y)
Y

* Example: y €{-1, +1}

Oz, y) =y [l x2* ...

f(CE;Q){+1 (9)“[1563;] >=0-[1xza..]

(Standard perceptron rule)

Multiclass linear models

* More generally, can define a generic linear classifier by

f(x;0) =argmax 6 - ®(x,y)
Y

 Example: y €{0,1,2,...}

[1y =0][Lz2* ...] ly=1][lz2*..]..]]
== [[900 901 902 . o] [910 911 012 .] . s]

(parameters for each class c)

O(x,y)
0

flx;0) = arg max O - [1x 2 ..]

(predict class with largest linear response)

Multiclass perceptron algorithm

» Perceptron algorithm:
» Make prediction f(x)
* Increase linear response of true target y; decrease for prediction f

While (~done)
For each data point j:
fi) = arg max (8,* x1)) : predict output for data point j
6, =6, - axV¥ : decrease response of class f) to
«0)
6,=6,+a xV) - increase response of true class
()
y

More general form update:
: P f(z;0) =argmax 0 - ®(x,y)

Y

0 <+ 0+ a(P(x,y) — (z, f(2)))

Multilogit regression

* Define the probability of each class:

exp (0, - x1)
> .exp(f; - xT)
* Then, the NLL loss function is:

p(Y =ylX =) =

(Y binary = logistic regression)

1) = —— S 10g p(y D)) = ~ L 57 [ey@-m@—log zexpwcox@)]
m = m p

1

— P: “confidence” of each class
* Soft decision value

— Decision: predict most probable
* Linear decision boundary

— Convex loss function

Machine Learning

p

N

\

-

N

€

|

J

|

J

Regularization for Linear Classification

Regularization

- Reminder: Regularization for linear regression

Alpha =0
(Unregularized) ¢s5t

Alpha =1

Regularized logistic regression

- Intepret 34(u. x') as a probability that y = 1
+ Use a negative log-likelihood loss function
— If y=1, costis -log Prly=1] = -log %(wx")
— If y=0, costis -log Pr[y=0] -log (1-3%(px"))

« Minimize weighted sum of negative log-likelihood
and a regularizer that encourages small weights:

J(0) = —%@@(@ 0g 7(0-2'”)+(1-y") log(l—a(@-x@')?))
’ J J

Nonzero only if y=1 Nonzero only if y=0

+al|0]],

Different regularization functions

* In general, for the Lp regularizer:

ho il

= {101},

(Y)

p=1

Different regularization functions

* In general, for the Lp regularizer:

(Y)

Isosurfaces: ||9||p = constant

ho il

= {101},

a

\

L

p=0.5 p=1 p=2
Lasso Quadratic

_

.

p=4

L, = limit as p goes to 0 : "number of nonzero weights”, a natural notion of complexity

Regularization: L vs L,

- Estimate balances data term & regularization term

Minimizes data term

Minimizes combination

91 —
Minimizes regularization

/\/\ QOH
(>

Regularization: L, vs L,

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.

I

Data term only:
all 91 Nnon-zero

Regularized estimate:
some O. may be zero

|
/é
\/ f, — \ f, —

|Gradient-Based Optimization
|

* L, makes (all) coefficients smaller
* L, makes (some) coefficients exactly zero: feature selection

 Laplacian prior

N
~ regularizatio

 Lasso

Objective Function:
Negative Gradient:

=i

-4

- Gaussian prior

~ regularization

" Ridge
regression

-4

f(0;) =
—f'(05)

10;|F

(Informal intuition: Gradient of L , objective not defined at zero)

|Regularization Paths
|

Prostate Cancer Dataset with M=67, N=8

—6— lcavol o B OO | —e— cavol
—O— Ilweight o _ o -0 —O— |lweight
—— age 7 i —©— age
—©&— Ibph ” - —©&— loph
—O— svi o : “ —O— svi

lep lcp
—©— gleason ‘' . " —©6— gleason
—©— pgg45 o

Ridge:
onl_norm

0 Horizontal axis increases bound on weights (less regularization, smaller)
0 Foreach bound, plot values of estimated feature weights
0 Vertical lines are models chosen by cross-validation

Acknowledgement

Based on slides by Alex |hler

