
Bayes Classifiers

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining

Slides courtesy of Alex Ihler



Machine Learning

Bayes Classifiers

Naive Bayes Classifiers

Bayes Error

Gaussian Bayes Classifiers



A basic classifier
• Training data D={x(i),y(i)}, Classifier  f(x ; D)

– Discrete feature vector x

– f(x ; D) is a contingency table

• Ex: credit rating prediction (bad/good)
– X

1
 = income (low/med/high)

– How can we make the most # of correct predictions?

Features # bad # good
X=0 42 15
X=1 338 287
X=2 3 5
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A basic classifier
• Training data D={x(i),y(i)}, Classifier  f(x ; D)

– Discrete feature vector x

– f(x ; D) is a contingency table

• Ex: credit rating prediction (bad/good)
– X

1
 = income (low/med/high)

– How can we make the most # of correct predictions?

– Predict more likely outcome

for each possible observation

– Can normalize into probability:

p( y=good | X=c )

– How to generalize?

Features # bad # good
X=0 .7368 .2632
X=1 .5408 .4592
X=2 .3750 .6250



Bayes rule
• Two events: headache, flu
• p(H) = 1/10
• p(F) = 1/40
• p(H|F) = 1/2

• You wake up with a headache – what is the chance that 
you have the flu?

H
F

Example from Andrew
    Moore’s slides
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Bayes rule
• Two events: headache, flu
• p(H) = 1/10
• p(F) = 1/40
• p(H|F) = 1/2

• P(H & F) = p(F) p(H|F)
  = (1/2) * (1/40) = 1/80

• P(F|H) = ?
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Bayes rule
• Two events: headache, flu
• p(H) = 1/10
• p(F) = 1/40
• p(H|F) = 1/2

• P(H & F) = p(F) p(H|F)
  = (1/2) * (1/40) = 1/80

• P(F|H) = p(H & F) / p(H)
= (1/80) / (1/10) = 1/8

H
F

Example from Andrew
    Moore’s slides



Classification and probability
• Suppose we want to model the data

• Prior probability of each class,  p(y)
– E.g., fraction of applicants that have good credit

• Distribution of features given the class, p(x | y=c)
– How likely are we to see “x” in users with good credit?

• Joint distribution

• Bayes Rule: 

(Use the rule of total probability
     to calculate the denominator!)



Bayes classifiers
• Learn “class conditional” models

– Estimate a probability model for each class
• Training data, D

– Split by class, Dc = { x(j) : y(j) = c }
• Estimate p(x | y=c) using Dc
• For a discrete x, this recalculates the same table…

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

p(y) 383/690 307/690

p(x | y=0) p(x | y=1)

   42 / 383   15 / 307

338 / 383 287 / 307

    3 / 383     5 / 307

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250



Bayes classifiers
• Learn “class conditional” models

– Estimate a probability model for each class
• Training data

– Split by class
– Dc = { x(j) : y(j) = c }

• Estimate p(x | y=c) using Dc

• For continuous x, can use any density estimate we like
– Histogram
– Gaussian
– …
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Gaussian models
• Estimate parameters of the Gaussians from the data

Feature x1 !



Multivariate Gaussian models
• Similar to univariate case

Maximum likelihood estimate:

𝛍   = length-d column vector
𝚺 = d x d matrix

|𝚺|  = matrix determinant
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Example: Gaussian Bayes for Iris Data

• Fit Gaussian distribution to each class {0,1,2}
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Bayes classifiers
• Estimate p(y) = [ p(y=0) , p(y=1) …]
• Estimate p(x | y=c)  for each class c
• Calculate  p(y=c | x) using Bayes rule
• Choose the most likely class c

• For a discrete x, can represent as a contingency table…
– What about if we have more discrete features?

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

p(y) 383/690 307/690

p(x | y=0) p(x | y=1)

   42 / 383   15 / 307

338 / 383 287 / 307

    3 / 383     5 / 307

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250



Joint distributions
• Make a truth table of all 

combinations of values
A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Joint distributions
• Make a truth table of all 

combinations of values

• For each combination of values,
determine how probable it is

• Total probability must sum to one

• How many values did we specify?

A B C p(A,B,C | y=1)

0 0 0 0.50

0 0 1 0.05

0 1 0 0.01

0 1 1 0.10

1 0 0 0.04

1 0 1 0.15

1 1 0 0.05

1 1 1 0.10



Overfitting and density estimation
• Estimate probabilities from the data

– E.g., how many times (what fraction) 
did each outcome occur?

• M data  <<  2^N parameters?

• What about the zeros?
– We learn that certain combinations are impossible?
– What if we see these later in test data?

• Overfitting!

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10



Overfitting and density estimation
• Estimate probabilities from the data

– E.g., how many times (what fraction) 
did each outcome occur?

• M data  <<  2^n parameters?

• What about the zeros?
– We learn that certain combinations are impossible?
– What if we see these later in test data?

• One option: regularize
• Normalize to make sure values sum to one…

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10



Overfitting and density estimation
• Another option: reduce the model complexity

– E.g., assume that features are independent of one another

• Independence:
• p(a,b) = p(a) p(b)

• p(x1, x2, … xN | y=1) = p(x1 | y=1) p(x2 | y=1) … p(xN | y=1)
• Only need to estimate each individually

A p(A |y=1)

0 .4

1 .6

A B C p(A,B,C | y=1)

0 0 0 .4 * .7 * .1

0 0 1 .4 * .7 * .9

0 1 0 .4 * .3 * .1

0 1 1 …

1 0 0

1 0 1

1 1 0

1 1 1

B p(B |y=1)

0 .7

1 .3

C p(C |y=1)

0 .1

1 .9



Example: Naïve Bayes

x1 x2 y
1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:

<
>

Prediction given some observation x = (1,1)?

Decide class 0



Example: Naïve Bayes

x1 x2 y
1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:



Example: Joint Bayes

x1 x2 y
1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

Observed Data:

x1 x2 p(x | y=0)

0 0 1/4

0 1 0/4

1 0 1/4

1 1 2/4

x1 x2 p(x | y=1)

0 0 1/4

0 1 1/4

1 0 2/4

1 1 0/4



Naïve Bayes models
• Variable y to predict, e.g. “auto accident in next year?”

• We have many co-observed vars  x=[x1…xn]
– Age, income, education, zip code, …

• Want to learn p(y | x1…xn ), to predict y
– Arbitrary distribution:  O(dn) values!

• Naïve Bayes: 
– p(y|x)= p(x|y) p(y) / p(x)   ; p(x|y) = ∏ι p(xi|y)
– Covariates are independent given “cause”

• Note: may not be a good model of the data
– Doesn’t capture correlations in x’s
– Can’t capture some dependencies

• But in practice it often does quite well!



Naïve Bayes models for spam
• y ϵ {spam,  not spam}
• X = observed words in email

– Ex: [“the” … “probabilistic” … “lottery”…]
– “1” if word appears; “0” if not

• 1000’s of possible words:  21000s parameters?
• # of atoms in the universe:  » 2270…

• Model words given email type as independent
• Some words more likely for spam (“lottery”)
• Some more likely for real (“probabilistic”)
• Only 1000’s of parameters now…



Naïve Bayes Gaussian models

 𝛔2
11     0 

 0       𝛔2
22   

 𝛔2
11    >  𝛔2

22   

Again, reduces the number of parameters of the model:
              Bayes:  n2/2          Naïve Bayes: n x1

x2



You should know…
• Bayes rule;  p( y | x )
• Bayes classifiers

– Learn p( x | y=C ) , p( y=C )
• Naïve Bayes classifiers

– Assume features are independent given class:
p( x | y=C )   =   p( x1 | y=C ) p( x2 | y=C ) …

• Maximum likelihood (empirical) estimators for
– Discrete variables
– Gaussian variables
– Overfitting; simplifying assumptions or regularization
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A Bayes classifier
• Given training data, compute p( y=c| x) and choose largest

• What’s the (training) error rate of this method?

Features # bad # good
X=0 42 15
X=1 338 287
X=2 3 5



A Bayes classifier
• Given training data, compute p( y=c| x) and choose largest

• What’s the (training) error rate of this method?

Features # bad # good
X=0 42 15
X=1 338 287
X=2 3 5

Gets these examples wrong:

Pr[ error ] = (15 + 287 + 3) / (690)

    (empirically on training data: 
        better to use test data)



Bayes Error Rate

• Suppose that we knew the true probabilities:

– Observe any x:

– Optimal decision at that particular x is:

– Error rate is:

• This is the best that any classifier can do!

• Measures fundamental hardness of separating y-values given only 
features x

• Note: conceptual only!
– Probabilities p(x,y) must be estimated from data

– Form of p(x,y) is not known and may be very complex

(at any x)

= “Bayes error rate”



A Bayes classifier
• Bayes classification decision rule compares probabilities:

• Can visualize this nicely if x is a scalar:

Feature x1 !

Shape: p(x | y=0 )

Area: p(y=0)
Shape:  p(x | y=1 )

Area: p(y=1)

p(x , y=1 )

p(x , y=0 )

Decision boundary

<
>

<
>

=



A Bayes classifier
• Not all errors are created equally…
• Risk associated with each outcome?  

p(x , y=1 )
p(x , y=0 ) Decision boundary

{ {
Type 1 errors: false positivesType 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0) False negative rate:  (# y=1, ŷ=0) / (#y=1) 

<
>
<
>

Add multiplier alpha:



A Bayes classifier
• Increase alpha: prefer class 0
• Spam detection

{ {
Type 1 errors: false positivesType 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0) False negative rate:  (# y=1, ŷ=0) / (#y=1) 

p(x , y=1 )
Decision boundaryp(x , y=0 )

<
>

Add multiplier alpha:



A Bayes classifier
• Decrease alpha: prefer class 1
• Cancer detection

{ {
Type 1 errors: false positivesType 2 errors: false negatives

False positive rate:  (# y=0, ŷ=1) / (#y=0) False negative rate:  (# y=1, ŷ=0) / (#y=1) 

p(x , y=1 )
Decision boundaryp(x , y=0 )

<
>

Add multiplier alpha:



Measuring errors
• Confusion matrix
• Can extend to more classes

• True positive rate:     #(y=1 , ŷ=1) / #(y=1)    -- “sensitivity”
• False negative rate:  #(y=1 , ŷ=0) / #(y=1)
• False positive rate:   #(y=0 , ŷ=1) / #(y=0)
• True negative rate:   #(y=0 , ŷ=0) / #(y=0)     -- “specificity”

Predict 0 Predict 1
Y=0 380 5
Y=1 338 3



Likelihood ratio tests
• Connection to classical, statistical decision theory:

• Likelihood ratio: relative support for observation “x” under 
“alternative hypothesis” y=1, compared to “null hypothesis” 
y=0

• Can vary the decision threshold:

• Classical testing: 
– Choose gamma so that FPR is fixed (“p-value”)
– Given that y=0 is true, what’s the probability we decide y=1?

<
>

<
>=

“log likelihood ratio”

<
>



ROC Curves
• Characterize performance as we vary the decision threshold?

False positive rate
  = 1 - specificity

Tr
ue

 p
os

iti
ve

 ra
te

   
  =

 s
en

si
tiv

ity

Guess all 0

Guess all 1

Guess at random, proportion alpha

Bayes classifier,
 multiplier alpha

<
>



Demo of ROC

http://www.navan.name/roc/

http://www.navan.name/roc/


Probabilistic vs. Discriminative learning

• “Probabilistic” learning
– Conditional models just explain y:  p(y|x)
– Generative models also explain x: p(x,y)

• Often a component of unsupervised or semi-supervised learning

– Bayes and Naïve Bayes classifiers are generative models

“Discriminative” learning:
    Output prediction ŷ(x) 

“Probabilistic” learning:
    Output probability p(y|x)
  (expresses confidence in outcomes) 



Probabilistic vs. Discriminative learning

• Can use ROC curves for discriminative models also:
– Some notion of confidence, but doesn’t correspond to a probability

– In our code: “predictSoft”  (vs. hard prediction, “predict”)

>> learner = gaussianBayesClassify(X,Y);  % build a classifie
>> Ysoft = predictSoft(learner, X);              %  N x C matrix of confidences
>> plotSoftClassify2D(learner,X,Y);            %  shaded confidence plot

“Discriminative” learning:
    Output prediction ŷ(x) 

“Probabilistic” learning:
    Output probability p(y|x)
  (expresses confidence in outcomes) 



ROC Curves
• Characterize performance as we vary our confidence 

threshold?

False positive rate
  = 1 - specificity

Tr
ue

 p
os

iti
ve

 ra
te

   
  =

 s
en

si
tiv

ity

Guess all 0

Guess all 1

Guess at random, proportion alphaClassifier A

Classifier B

Reduce performance to one number?
AUC = “area under the ROC curve”
               0.5   < AUC  <  1
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Gaussian models
• “Bayes optimal” decision

– Choose most likely class
• Decision boundary

– Places where probabilities equal

• What shape is the boundary?



Gaussian models
• Bayes optimal decision boundary

– p(y=0 | x) = p(y=1 | x)
– Transition point between p(y=0|x) >/< p(y=1|x)

• Assume Gaussian models with equal covariances



Gaussian example
• Spherical covariance: 𝚺= 𝛔2 I
• Decision rule



• Equal covariances => still linear decision rule
– May be “modulated” by variance direction
– Scales;  rotates (if correlated) 

Ex:
Variance
 [ 3   0   ]
 [ 0  .25 ]

Non-spherical Gaussian distributions



Class posterior probabilities
• Useful to also know class probabilities
• Some notation

– p(y=0) , p(y=1) – class prior probabilities
• How likely is each class in general?

– p(x | y=c) – class conditional probabilities
• How likely are observations “x” in that class?

– p(y=c | x) – class posterior probability
• How likely is class c given an observation x?



Class posterior probabilities
• Useful to also know class probabilities
• Some notation

– p(y=0) , p(y=1) – class prior probabilities
• How likely is each class in general?

– p(x | y=c) – class conditional probabilities
• How likely are observations “x” in that class?

– p(y=c | x) – class posterior probability
• How likely is class c given an observation x?

• We can compute posterior using Bayes’ rule
– p(y=c | x) = p(x|y=c) p(y=c) / p(x)

• Compute p(x) using sum rule / law of total prob.
– p(x) = p(x|y=0) p(y=0) + p(x|y=1)p(y=1)



Class posterior probabilities
• Consider comparing two classes

– p(x | y=0) * p(y=0)     vs     p(x | y=1) * p(y=1)
– Write probability of each class as
– p(y=0 | x) = p(y=0, x) / p(x) 
–                 = p(y=0, x) / ( p(y=0,x) + p(y=1,x) )
–     =  1 / (1  + exp( -a  ) )     (**)

– a = log [ p(x|y=0) p(y=0) / p(x|y=1) p(y=1) ]
– (**) called the logistic function, or logistic sigmoid.



Gaussian models
• Return to Gaussian models with equal covariances

Now we also know that the probability of each class is given by:
    p(y=0 | x) = Logistic( ** )  = Logistic(  aT x + b ) 

We’ll see this form again soon…

(**)



Upcoming

● Sign up on Piazza
○ All course announcements will be done through Piazza!   You may miss 

information announcements if you are not on Piazza.

● Homework 1 is up. 
○ Meanwhile, get familiar with Python, Numpy, Matplotlib


