# CS 273P Machine Learning and Data Mining

PROF XIAOHUI XIE Winter 2021

# Machine Learning

**Introduction to Machine Learning** 

**Course Logistics** 

**Data and Visualization** 

**Supervised Learning** 

# Artificial Intelligence (AI)

- Building "intelligent systems"
- Lots of parts to intelligent behavior



RoboCup



Darpa GC (Stanley)





Chess (Deep Blue v. Kasparov)

# Machine learning (ML)

- One (important) part of Al
- Making predictions (or decisions)
- Getting better with experience (data)
- Problems whose solutions are "hard to describe"





# This course



Statistics
Probability
Linear Algebra
Optimization

Data Structures
Algorithms
Computational Complexity
Data Management

### Types of prediction problems

- Supervised learning
  - "Labeled" training data
  - Every example has a desired target value (a "best answer")
  - Reward prediction being close to target
  - Classification: a discrete-valued prediction (often: action / decision)
  - Regression: a continuous-valued prediction





# Types of prediction problems

- Supervised learning
- Unsupervised learning
  - No known target values
  - No targets = nothing to predict?
  - Reward "patterns" or "explaining features"

Often, data mining





### **Human Gene Expression Data**

- 6830x64 matrix of real numbers
- Rows correspond to genes, columns to tissue samples
- Cluster rows (genes) to deduce function of unknown genes from experimentally known genes with similar profiles
- Cluster columns (samples) to hypothesize disease profiles

Hastie, Tibshirani, & Friedman 2009



# Types of prediction problems

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
  - Similar to supervised
  - some data have unknown target values
- Ex: medical data
  - Lots of patient data, few known outcomes
- Ex: image tagging
  - Lots of images on Flikr, but only some of them tagged

# Types of prediction problems

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning



- "Indirect" feedback on quality
  - No answers, just "better" or "worse"
  - Feedback may be delayed

# Summary

### What is machine learning?

- Computer science + Math (Optimization & Statistics)
- How do we learn from data to improve performance

### Types of machine learning

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning

# Machine Learning

**Introduction to Machine Learning** 

**Course Logistics** 

**Data and Visualization** 

**Supervised Learning** 

### Online teaching

- This quarter all teaching will be done online through Zoom.
- Zoom meeting schedules are posted on Canvas. Please check them out.
- Lab discussions will be done through Zoom as well.
- Lectures will be recorded and available online.

### Online resources

Course website

https://www.ics.uci.edu/~xhx/courses/CS273P/

Canvas:

https://canvas.eee.uci.edu/courses/26545

Piazza:

https://piazza.com/uci/spring2020/cs273p/home

### **Course Staff**

- Instructor: Prof. Xiaohui Xie
   Research Interests: AI/Machine Learning, Image analysis,
   Applications in biology and medicine ...
- Teaching Assistants:
  - Xiangyi Yan

Contact us on Piazza
We may be delayed on email, or miss it.

# **Grading**



- Midterm: online midterm
- Final: Online final exam
- No rescheduling except in extraordinary, unexpected circumstances!
- No late assignments will be accepted except for legitimate medical reasons

# **Programming Assignments**



#### **5 Programming Assignments**

• We will drop lowest grade

#### **Objective**

- Learn to apply ML techniques
- Submission is a "report"

#### **Source Code (Python)**

- Submit relevant code snippets
  - We will not run it, but will read it
- Statement of collaboration, if any
  - Only limited discussions allowed

# **Project**



#### **Groups for the Project**

- Team size should be 2-3
  - Larger teams not allowed
- More details coming later (most work after midterm)
- Short report due at the end of the quarter

# **Participation**

### Surveys and Course Evaluation

- Occasional polls on Canvas
- Participate in Course Evals

#### Discussions on Piazza

- Ask questions about material
- Answer posted questions
- Up vote helpful resources
- Post useful links related to the course

Lecture attendance is not required.

### Discussion session

### **Python Notebooks**

- Present demos
- Questions about coding
- Hints for homeworks
- Led by TA



# Machine Learning

**Introduction to Machine Learning** 

**Course Logistics** 

**Data and Visualization** 

**Supervised Learning** 

# Data exploration

- Machine learning is a data science
  - Look at the data; get a "feel" for what might work

- What types of data do we have?
  - Binary values? (spam; gender; ...)
  - Categories? (home state; labels; ...)
  - Integer values? (1..5 stars; age brackets; ...)
  - (nearly) real values? (pixel intensity; prices; ...)
- Are there missing data?
- "Shape" of the data? Outliers?

#### Scientific software

- Python
  - Numpy, MatPlotLib, SciPy...



- Matlab
  - Octave (free)
- R
  - Used mainly in statistics
- C++
  - For performance, not prototyping
- And other, more specialized languages for modeling...

# Representing data

• Example: Fisher's "Iris" data http://en.wikipedia.org/wiki/Iris\_flower\_data\_set



- Three different types of iris
  - "Class", y
- Four "features", x<sub>1</sub>,...,x<sub>4</sub>
  - Length & width of sepals & petals
- 150 examples (data points)





# Intro to Basic Terminology and Notations



# Representing the data in Python

Have m observations (data points)

$$\left\{x^{(1)}\dots,x^{(m)}\right\}$$

Each observation is a vector consisting of n features

$$x^{(j)} = [x_1^{(j)} x_2^{(j)} \dots x_n^{(j)}]$$

Often, represent this as a "data matrix"

$$\underline{X} = \begin{bmatrix} x_1^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

```
import numpy as np #import numpy
iris = np.genfromtxt("data/iris.txt",delimiter=None)

X = iris[:,0:4] # load data and split into features, targets

Y = iris[:,4]

print(X.shape) # 150 data points; 4 features each

(150, 4)
```

#### **Basic statistics**

- Look at basic information about features
  - Average value? (mean, median, etc.)
  - "Spread"? (standard deviation, etc.)
  - Maximum / Minimum values?

```
print(np.mean(X, axis=0)) # compute mean of each feature
[5.8433 3.0573 3.7580 1.1993]
print(np.std(X, axis=0)) #compute standard deviation of each feature
[0.8281 0.4359 1.7653 0.7622]
print(np.max(X, axis=0)) # largest value per feature
[7.9411 4.3632 6.8606 2.5236]
print(np.min(X, axis=0)) # smallest value per feature
[4.2985 1.9708 1.0331 0.0536]
```

### Histograms

- Count the data falling in each of K bins
  - "Summarize" data as a length-K vector of counts (& plot)
  - Value of K determines "summarization"; depends on # of data
    - K too big: every data point falls in its own bin; just "memorizes"
    - K too small: all data in one or two bins; oversimplifies



```
% Histograms in MatPlotLib
import matplotlib.pyplot as plt
X1 = X[:,0] # extract first feature
Bins = np.linspace(4,8,17) # use explicit bin locations
plt.hist(X1, bins=Bins) # generate the plot
```

# **Scatterplots**

Illustrate the relationship between two features



% Plotting in MatPlotLib plt.plot(X[:,0], X[:,1], 'b.'); % plot data points as blue dots

### Scatterplots

For more than two features we can use a pair plot:



# Supervised learning and targets

- Supervised learning: predict target values
- For discrete targets, often visualize with color





ml.histy(X[:,1], Y, bins=20)



# Machine Learning

**Introduction to Machine Learning** 

**Course Logistics** 

Data and Visualization

**Supervised Learning** 

### How does machine learning work?

- "Meta-programming"
  - Predict apply rules to examples
  - Score get feedback on performance
  - Learn change predictor to do better



# How does machine learning work?

#### Notation

- Features x
- Targets y
- $\circ$  Predictions  $\hat{y} = f(x; \theta)$



# Regression; Scatter plots



- Suggests a relationship between x and y
- Prediction: new x, what is y?

# Nearest neighbor regression



• Find training datum  $x^{(i)}$  closest to  $x^{(new)}$  Predict  $y^{(i)}$ 

# Nearest neighbor regression



#### "Predictor":

Given new features:
Find nearest example
Return its value

- Defines a function f(x) implicitly
- "Form" is piecewise constant

# Linear regression



#### "Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

# Measuring error



MSE = 
$$\frac{1}{m} \sum_{i} (y^{(i)} - \hat{y}(x^{(i)}))^2$$

# Regression vs. Classification

#### Regression



Features x Real-valued target y

Predict continuous function  $\hat{y}(x)$ 

#### Classification



X

Features x
Discrete class c
(usually 0/1 or +1/-1)
Predict discrete function  $\hat{y}(x)$ 

# Classification



### Classification

ERR = 
$$\frac{1}{m} \sum_{i} [y^{(i)} \neq \hat{y}(x^{(i)})]$$



# **Upcoming**

- Sign up on Piazza
  - All course announcements will be done through Piazza! You may miss information announcements if you are not on Piazza.
- Homework 1 will be up soon.
  - Meanwhile, get familiar with Python, Numpy, Matplotlib

# Acknowledgement

Based on slides by Alex Ihler