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Course information

Prerequisites: multivariate calculus, linear algebra

Textbooks:
e Numerical Linear Algebra by Trefethen and Bau
e Convex Optimization by Boyd and Vandenberghe
e Mathematics for Machine Learning https://mml-book.qithub.io/

Course website:
e https://www.ics.uci.edu/~xhx/courses/CS206/

Piazza:
e Course announcements and other communications will be carried out through
piazza. Please sign up.


https://mml-book.github.io/
https://www.ics.uci.edu/~xhx/courses/CS206/

Grading

Grading based on:
e Midterm exam (40%)
e Final exam (50%)
e Class participation (10%)

Homework assignments:
e Not graded (no need to submit)
e Some exam questions will be taken directly from the assignments.



Scientific Computing

» What is Scientific Computing?

» Design and analysis of algorithms for numerically solving
mathematical problems in science and engineering
» sometimes called numerical analysis

» What's special about Scientific Computing?

» Deals with continuous quantities/variables
» Considers effects of approximations

» Why Scientific Computing?

» Simulation of natural phenomena
» Solving real-world engineering problems



Typical topics in scientific computing

» Numerical linear algebra
» Optimization
» Numerical integration and differentiation

» Solving ODEs - initial value problems, boundary value
problems

» Solving PDEs



Topics covered this quarter

» Numerical linear algebra
» Optimization
>

>

And other topics important for Machine Learning



Problems you will be able to solve by the end of this
quarter

» Linear equations: Ax = b, where A€ R™*™ and b € R™

» |east square problems: Given A € R™*™ m > n,b € R™, find
x € R" such that ||b — Ax||2 is minimized.

» Find eigenvalues and eigenvector of a square matrix A -
A=QrQ!

» Find singular value decomposition (SVD) of a matrix A -
A=UxZV'



Solving optimization problems

Mathematical optimization problem:

minimize fy(x)
subject to fi(x) <b;, i=1---'m

where
» X = (x1,--- ,Xp) € R": optimization variables
» fo : R” — R: objective function

» fi : R"” — R: constraint function

Optimal solution x* has smallest value of f among all vectors
that satisfy the constraints.



Foundations of machine learning
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Linear algebra
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Analytic Geometry
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Matrix Decompositions
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Vector Calculus

Optimization
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Probability and Distributions
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Continuous Optimizations
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