CS206: Principles of Scientific Computing

Xiaohui Xie
Department of Computer Science
University of California, Irvine

Course information

Prerequisites: multivariate calculus, linear algebra

Textbooks:

- Numerical Linear Algebra by Trefethen and Bau
- Convex Optimization by Boyd and Vandenberghe
- Mathematics for Machine Learning https://mml-book.github.io/

Course website:

https://www.ics.uci.edu/~xhx/courses/CS206/

Piazza:

 Course announcements and other communications will be carried out through piazza. Please sign up.

Grading

Grading based on:

- Midterm exam (40%)
- Final exam (50%)
- Class participation (10%)

Homework assignments:

- Not graded (no need to submit)
- Some exam questions will be taken directly from the assignments.

Scientific Computing

- What is Scientific Computing?
 - Design and analysis of algorithms for numerically solving mathematical problems in science and engineering
 - sometimes called numerical analysis
- What's special about Scientific Computing?
 - Deals with continuous quantities/variables
 - Considers effects of approximations
- Why Scientific Computing?
 - Simulation of natural phenomena
 - Solving real-world engineering problems

Typical topics in scientific computing

- Numerical linear algebra
- Optimization
- Numerical integration and differentiation
- Solving ODEs initial value problems, boundary value problems
- Solving PDEs

Topics covered this quarter

- Numerical linear algebra
- Optimization
- Numerical integration and differentiation
- Solving ODEs initial value problems, boundary value problems
- ► Solving PDEs

And other topics important for Machine Learning

Problems you will be able to solve by the end of this quarter

- ▶ Linear equations: Ax = b, where $A \in R^{m \times m}$ and $b \in R^m$
- Least square problems: Given $A \in R^{m \times m}$, $m \ge n, b \in R^m$, find $x \in R^n$ such that $||b Ax||_2$ is minimized.
- Find eigenvalues and eigenvector of a square matrix A $A = Q\Sigma Q^{-1}$
- Find singular value decomposition (SVD) of a matrix $A A = U\Sigma V^T$

Solving optimization problems

Mathematical **optimization problem**:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq \mathbf{b}_i$, $i = 1, \dots, m$

where

- $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $ightharpoonup f_i: \mathbb{R}^n \to \mathbb{R}$: constraint function

Optimal solution x* has smallest value of f_0 among all vectors that satisfy the constraints.

Foundations of machine learning

Linear algebra

Analytic Geometry

Matrix Decompositions

Vector Calculus

Probability and Distributions

Continuous Optimizations

