Review of Linear Algebra



Definition 2.1 (Matrix). With m,n € IN a real-valued matrix A is
an m-n-tuple of elements a;;, 7 = 1,...,m, j = 1,...,n, which is ordered
according to a rectangular scheme con51st1ng of m rows and n co

» = mxn
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columns. These special matrices are also called column vectors.

By convention (1, n)-matrices are called rows and (m ‘ 1)-matrices are called

R™*™ is the set of all real-valued (m,n)-matrices. /Z € R™*"\an be
equivalently represented as a € R™" by stacking all n columns of the

matrix lntO d lOHg VeCtQI', S€e Flgure 2.4.
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» Associativity:

e

VA € R™", B € R"?,C c R"*: (AB)C = A(BC) (2.18)

—
7

= Distributivity:
VA, BeR"",C,DeR"":(A+ B)C =AC + BC (2.19a)

—

A(C+D)=AC+ AD (2.19b)

» Multiplication with the identity matrix:

VA € R @;4 — 4f.)- 4 (2.20)
Note that I,, # I,, for m # n. _Tf - I ' Q
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Definition 2.3 l(lnverse ;l Consider a square matﬂxm Let matrix
B € R™ ™ have the property that AB = I,, = BA. B is called the
inverse of A and denoted by A™".

Unfortunately, not every matrix A possesses an i A" If this
inverse does exist, A is called regular@ nonsingular{ otherwise

singular/noninvertible. When the matrix inverse exists, it 1S unique.

{ABz EDA=I; —> P;:g called Ha Tnverse J} A
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Definition 2.4 (Transpose). For A € R™*" the m e R™*™ with

@: a;; is called the transpose of A. We write B =

In general, A" can be obtained by writing the columns of A as the rows
of A". The following are important properties of inverses and transposes:

(Ag) AB: T AN =T=A"4 (2.26)
_(@% [(aB)1=B-1a | V (2.27)
%A (A+B)1£A7"4+ B! (2.28)
R LG (ATIT = 4 (2.29)
LY (A+B)"=A"T+B" (2.30)
=T (AB) =B'AD / (2.31)

Definition 2.5 (Symmetric Matrix). A matrix A € R"*" is symmetric if
A=A"T.
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Note that only (n,n)-matrices can be symmetric. Generally, we call
(n,n)-matrices also square matrices because they possess the same num-

ber of rows and columns. Moreover, if A is invertible, then so is A", and
(A HT=AN)1=A"".
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Solving systems of linear equations
m &Wm
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Elementary row operations

—

2.3 Solving Systems of Linear Equations 29

» Exchange of two equations (rows in the matrix representing the system
of equations)

» Multiplication of an equation (row) with a constant A € R\{0}

» Addition of two equations (rows)


xhx


Example 2.6

For a € R, we seek all solutions of the following system of equations:
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—

build the augmented matrix (in the form [A | b])

Row echelon form
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Definition 2.6 (Row-Echelon Form). A matrix is in row-echelon form if

—

= All rows that contain only zeros are at the bottom of the matrix; corre-
spondingly, all rows that contain at least one nonzero element are on
top of rows that contain only zeros.

» Looking at nonzero rows only, the first nonzero number from the left
(also called the pivot or the leading coefficient) is always strictly to the
right of the pivot of the row above it. Py 2} Colamud

?;QO%N l : ‘

-l o2 o1 -1 1 o
0 (I -1 3| -2
o 0 (O -2| 1
0 0 0 O0|a+1l
) 8 Y Y3 X X

Remark (Basic and Free Variables). The variables corresponding to the
pivots in the row-echelon form are called basic variables and the other
variables are free variables. For example, in (2.45), =, x5, x, are basic
variables, whereas x5, x5 are free variables. —

—
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Iq

— 25 + 13 — x4 + x5 =
T3 — Ty + 3xs —2
Tt o2t = 1
0 = a+1
Only for a = —1 this system can be solved. A particular solution is
EA 2
I 0
3| = |—1 (2.46)
Ty
| 5 | | 0]
The general solution, which captures the set of all possible solutions, is
i [ 2 [2] [ 2 i
0 1 0
dace B’ 2= -1} A 0 L2 1 AnweR . (2.47)
1 0 2
! | O 10 |1 J




Remark (Reduced Row Echelon Form). An equation system is in reduced
row-echelon form (also: row-reduced echelon form or row canonical form) if

» [t is in row-echelon form.
= Every pivot is 1.
» The pivot is the only nonzero entry in its column.



Complexity of Gaussian elimination: O(n>)

of a vector space (Section 2.6.1). Gaussian elimination is an intuitive and
constructive way to solve a system of linear equations with thousands of
variables. However, for systems with millions of variables, it is impracti-
cal as the required number of arithmetic operations scales cubically in the
number of simultaneous equations.

In practice, systems of many linear equations are solved indirectly, by ei-
ther stationary iterative methods, such as the Richardson method, the Ja-
cobi method, the Gaul3-Seidel method, and the successive over-relaxation
method, or Krylov subspace methods, such as conjugate gradients, gener-
alized minimal residual, or biconjugate gradients. We refer to the books
by Stoer and Burlirsch (2002), Strang (2003), and Liesen and Mehrmann
(2015) for further details.



lterative (approximate) methods

Let «, be a solution of Ax = b. The key idea of these iterative methods
is to set up an iteration of the form

2t — Cc2®) 4 d (2.60)

for suitable C and d that reduces the residual error ||z**1) — .|| in every
iteration and converges to x.. We will introduce norms || - ||, which allow
us to compute similarities between vectors, in Section 3.1.

Basic idea: splitting Ainto M - N where M is invertible.
Then

Mx=Nx+Db

lterate: x ~— M T(Nx+b)




Definition 2.9 (Vector Space). A real-valued vector space V = (V, +, -) is
a set V with two operations
+: VXV >V (2.62)
c:RXxVYV =V (2.63)

where

1. (V,+) is an Abelian group

2. Distributivity:
L.V eER,z,yeV: A-(x4+y)=A-x+ ) -y
2. Vv eR,zeV:(A+Y)-x=\-x+¢-x

3. Associativity (outer operation): VA, € R,z € V: A-(¢-x) = (\))-x
4. Neutral element with respect to the outer operation:Vx € V : 1.-x = @
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RY\
Definition 2.10 (Vector]Subspacej. Let V = (V,+,-) be a vector space
andd CV,U # (. Then U = (U, +, -) is called vector subspace of V (or
linear subspace) if U is a vector space with the vector space operations +
and - restricted toUd x4 and R xUU. We write U C V to denote a subspace

UotV. QC\_/_

- %@@%ﬁicul@

2.(Closure of U

a. With respect to the outer operation: VA € RVx e U :(\x)e U.
b. With respect to the inner operation: Va,y € U @6 U.



xhx

xhx

xhx

xhx

xhx

xhx

xhx

xhx


Subspace
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Definition 2.11 (Linear Combination). Consider a vector space V' and a

finite number of vectors x,...,x;, € V. Then, every v € V of the form
k
v=MNT 4+ T =Y A €V (2.65)
=1

with A\, ..., A € R is a linear combination of the vectors x4, . ... x;.

/ /



Definition 2.12 (Linear (In)dependence). Let us consider a vector space

V with ¥k € IN and x¢,...,x;, € V. If there is a non-trivial linear com-
bination, such that 0 = Zle \;x; with at least one \; # 0, the vectors
xq,...,x; are linearly dependent. If only the trivial solution exists, i.e.,

A = ...= )\, =0 the vectors x, . ... x . are linearly independent.

/ /



2.6.1 Generating Set and Basis

Definition 2.13 (Generating Set and Span). Consider a vector space V' =
(V,+,-) and set of vectors A = {x,...,z,} C V. If every vector v €
) can be expressed as a linear combmatlon of x{,...,x, A is called a
generating set of V. The set of all linear combinations of vectors in A is
called the pans the vector space V', we write V' = span[A]

Anj vell con be writes dows as
\‘_ @X\ By 91\(2. +02¥h
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Definition 2.14 (Basis). Consider a vector space V' = (V,+,-) and A C
V. A generating set A of V' is called minimal if there exists no smaller set
A C A C YV that spans V. Every linearly independent generating set of V'
is minimal and is called a basis of V.



Let V = (V,+,-) be a vector space and B C V,B # (. Then, the
following statements are equivalent:

= B is a basis of V.
» B is a minimal generating set.

» B is a maximal linearly independent set of vectors in V, i.e., adding any
other vector to this set will make it linearly dependent.

= Every vector € V is a linear combination of vectors from B, and every
linear combination is unique, i.e., with

k

7
=1

=1

and \;,; € R, b; € Bitfollowsthat \; =v;, i=1,...,k.

/



Example 2.16

» In R?, the canonical/standard basis is

-

» Different bases in R> are

T

D~ &

» The set

A=

IS VCIN N R

i
| &

|

(2.78)
—2.2
—1.3| . (2.79)
3.5

(2.80)

is linearly independent, but not a generating set (and no basis) of R*:
For instance, the vector [1,0, 0, 0] cannot be obtained by a linear com-

bination of elements in A.



Remark. Every vector space V possesses a basis B. The preceding exam-
ples show that there can be many bases of a vector space V/, i.e., there is

no unique basis. However, all bases possess the same number of elements,
the basis vectors. &

We only consider finite-dimensional vector spaces V. In this case, the
dimension of V' is the number of basis vectors of V', and we write dim(V).
If U C V is a subspace of V, then dim(U) < dim(V)



Remark. A basis of a subspace U = span|x;

, - ~=3%m] € R™ean be found
by executing the following steps:

1. Write the spanning vectors as columns of a matrix A
2. Determine the row-echelon form of A.

3. The spanning vectors associated with the pivot columns are a basis of
v



The number of linearly independent columns of a matrix A € R™*"
equals the number of linearly independent rows and is called the rank
of A and is denoted by rk(A).



Rank Theorem

For any m x n matrix A:
rk(A) + dim Null(A) = n

Num of pivot columns + num of nonpivot columns = num of columns



» tk(A) = rk(A "), i.e., the column rank equals the row rank.

= The columns of A € R™*" span a subspace U C R™ with dim(U) =
rk(A). Later we will call this subspace the image or range. A basis of
U can be found by applying Gaussian elimination to A to identify the
pivot columns.

= The rows of A € R™*" span a subspace W C R"™ with dim(W) =
rkgA). A basis of W can be found by applying Gaussian elimination to
A .

» For all A € R™ " it holds that A is regular (invertible) if and only if
rk(A) = n.

» For all A € R™*" and all b € R™ it holds that the linear equation
system Ax = b can be solved if and only if rk(A) = rk(A|b), where
A|b denotes the augmented system.

» For A € R™*" the subspace of solutions for Axz = 0 possesses dimen-
sion n — rk(A). Later, we will call this subspace the kernel or the null
space.

» A matrix A € R™*" has full rank if its rank equals the largest possible
rank for a matrix of the same dimensions. This means that the rank of
a full-rank matrix is the lesser of the number of rows and columns, i.e.,

rk(A) = min(m,n). A matrix is said to be rank deficient if it does not
have full rank.



Definition 2.15 (Linear Mapping). For vector spaces V, W, a mapping
® : V. — W is called a linear mapping (or vector space homomorphism/
linear transformation) if

Ve, y e VYN Y € R: @Az + Yy) = A0 () + P (y) . (2.87)

= [somorphism: ® : V' — W linear and bijective
» Endomorphism: ® : V' — V linear
= Automorphism: ® : V' — V linear and bijective

= We define idy : V — V,  — x as the identity mapping or identity
automorphism in V.

Theorem 2.17 (Theorem 3.59 in Axler (2015)). Finite-dimensional vector
spaces V and W are isomorphic if and only if dim(V') = dim(W).



Definition 2.23 (Image and Kernel).
For ® : V' — W, we define the kernel/null space

ker(®) := 7 '(0w) ={veV:®(v) =0y} (2.122)
and the image/range
Im(®) :=®(V)={weW|FveV:d(v)=w}. (2.123)
We also call V and W also the domain and codomain of ®, respectively.

Intuitively, the kernel is the set of vectors in v € V that & maps onto
the neutral element Oy, € W. The image is the set of vectors w € W that
can be “reached” by ® from any vector in V. An illustration is given in
Figure 2.12.



= ® is injective (one-to-one) if and only if ker(®) = {0}.



Fundamental theorem of linear mapping

Theorem 2.24 (Rank-Nullity Theorem). For vector spaces V, W and a lin-
ear mapping ¢ : V. — W it holds that

dim(ker(®)) + dim(Im(®)) = dim(V). (2.129)



