

Definition 3.1 (Norm). A norm on a vector space V is a function

$$\|\cdot\|: V \to \mathbb{R}, \tag{3.1}$$

$$x \mapsto \|x\|, \tag{3.2}$$

which assigns each vector x its $length ||x|| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $x, y \in V$ the following hold:

- Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- lacksquare Triangle inequality: $\|x+y\|\leqslant \|x\|+\|y\|$
- $lacksquare Positive definite: <math>\|oldsymbol{x}\| \geqslant 0$ and $\|oldsymbol{x}\| = 0 \iff oldsymbol{x} = oldsymbol{0}$

Example 3.2 (Euclidean Norm)

The Euclidean norm of $x \in \mathbb{R}^n$ is defined as

(3.4)

(3.3)

 $\|x\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^{\top} x}$

and computes the Euclidean distance of x from the origin. The right panel of Figure 3.3 shows all vectors $x \in \mathbb{R}^2$ with $||x||_2 = 1$. The Euclidean norm is also called ℓ_2 norm.

Example 3.1 (Manhattan Norm)

norm.

The Manhattan norm on \mathbb{R}^n is defined for $x \in \mathbb{R}^n$ as

$$\|\boldsymbol{x}\|_1 := \sum_{i=1}^n |x_i|$$
, (3.3) where $|\cdot|$ is the absolute value. The left panel of Figure 3.3 shows all vectors $\boldsymbol{x} \in \mathbb{R}^2$ with $\|\boldsymbol{x}\|_1 = 1$. The Manhattan norm is also called ℓ_1

Inner product

Definition 3.2. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- Ω is called *symmetric* if $\Omega(x, y) = \Omega(y, x)$ for all $x, y \in V$, i.e., the order of the arguments does not matter.
- Ω is called *positive definite* if

$$\forall \boldsymbol{x} \in V \setminus \{\boldsymbol{0}\} : \Omega(\boldsymbol{x}, \boldsymbol{x}) > 0, \quad \Omega(\boldsymbol{0}, \boldsymbol{0}) = 0.$$
 (3.8)

Definition 3.3. Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then

- A positive definite, symmetric bilinear mapping $\Omega: V \times V \to \mathbb{R}$ is called an *inner product* on V. We typically write $\langle x, y \rangle$ instead of $\Omega(x, y)$.
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an *inner product space* or (real) *vector space* with inner product. If we use the dot product defined in (3.5), we call $(V, \langle \cdot, \cdot \rangle)$ a *Euclidean vector space*.

Example 3.3 (Inner Product That Is Not the Dot Product)

Consider $V = \mathbb{R}^2$. If we define

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$

then $\langle \cdot, \cdot \rangle$ is an inner product but different from the dot product. The proof will be an exercise.

(3.9)

Definition 3.4 (Symmetric, Positive Definite Matrix). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ that satisfies (3.11) is called *symmetric*, *positive definite*, or just *positive definite*. If only \geqslant holds in (3.11), then A is called *symmetric*, *positive semidefinite*.

Theorem 3.5. For a real-valued, finite-dimensional vector space V and an ordered basis B of V, it holds that $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is an inner product if and only if there exists a symmetric, positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \hat{\boldsymbol{x}}^{\top} \boldsymbol{A} \hat{\boldsymbol{y}} \,. \tag{3.15}$$

inner product induces a norm

$$\|x\| := \sqrt{\langle x, x
angle}$$

Remark (Cauchy-Schwarz Inequality). For an inner product vector space $(V, \langle \cdot, \cdot \rangle)$ the induced norm $\| \cdot \|$ satisfies the *Cauchy-Schwarz inequality*

$$|\langle x, y \rangle| \leqslant ||x|| ||y||. \tag{3.17}$$

Definition 3.6 (Distance and Metric). Consider an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then

$$d(\boldsymbol{x}, \boldsymbol{y}) := \|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle}$$
(3.21)

A metric d satisfies the following:

positive definite 1.
$$d$$
 is positive definite, i.e., $d(x,y) \ge 0$ for all $x,y \in V$ and $d(x,y) = 0 \iff x = y$.

symmetric 2. d is symmetric, i.e., d(x, y) = d(y, x) for all $x, y \in V$.

triangle inequality: $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in V$.

The angle between vectors x and y:

$$\cos \omega = \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}.$$

Definition 3.7 (Orthogonality). Two vectors x and y are *orthogonal* if and only if $\langle x, y \rangle = 0$, and we write $x \perp y$. If additionally ||x|| = 1 = ||y||, i.e., the vectors are unit vectors, then x and y are *orthonormal*.

Definition 3.8 (Orthogonal Matrix). A square matrix $A \in \mathbb{R}^{n \times n}$ is an *orthogonal matrix* if and only if its columns are orthonormal so that

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{I} = \mathbf{A}^{\top}\mathbf{A}, \tag{3.29}$$

which implies that

$$\boldsymbol{A}^{-1} = \boldsymbol{A}^{\top}, \tag{3.30}$$

i.e., the inverse is obtained by simply transposing the matrix.

Transformations by orthogonal matrices are special because the

length of a vector x is not changed when transforming it using an

orthogonal matrix A, not the inner product between vectors x and y.

Definition 3.9 (Orthonormal Basis). Consider an n-dimensional vector space V and a basis $\{b_1, \ldots, b_n\}$ of V. If

$$\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0 \quad \text{for } i \neq j$$
 (3.33)
 $\langle \boldsymbol{b}_i, \boldsymbol{b}_i \rangle = 1$ (3.34)

for all i, j = 1, ..., n then the basis is called an *orthonormal basis* (ONB). If only (3.33) is satisfied, then the basis is called an *orthogonal basis*. Note that (3.34) implies that every basis vector has length/norm 1.

Example 3.8 (Orthonormal Basis)

The canonical/standard basis for a Euclidean vector space \mathbb{R}^n is an orthonormal basis, where the inner product is the dot product of vectors.

In \mathbb{R}^2 , the vectors

$$\boldsymbol{b}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \boldsymbol{b}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$
 (3.35)

form an orthonormal basis since $\boldsymbol{b}_1^{\top} \boldsymbol{b}_2 = 0$ and $\|\boldsymbol{b}_1\| = 1 = \|\boldsymbol{b}_2\|$.

Consider a D-dimensional vector space V and an M-dimensional subspace $U \subseteq V$. Then its orthogonal complement U^{\perp} is a (D-M)-dimensional subspace of V and contains all vectors in V that are orthogonal to every vector in U. Furthermore, $U \cap U^{\perp} = \{\mathbf{0}\}$ so that any vector $\mathbf{x} \in V$ can be uniquely decomposed into

$$\boldsymbol{x} = \sum_{m=1}^{M} \lambda_m \boldsymbol{b}_m + \sum_{j=1}^{D-M} \psi_j \boldsymbol{b}_j^{\perp}, \quad \lambda_m, \ \psi_j \in \mathbb{R},$$
 (3.36)

where $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_M)$ is a basis of U and $(\boldsymbol{b}_1^{\perp},\ldots,\boldsymbol{b}_{D-M}^{\perp})$ is a basis of U^{\perp} .

Definition 3.10 (Projection). Let V be a vector space and $U \subseteq V$ a subspace of V. A linear mapping $\pi:V\to U$ is called a *projection* if $\pi^2=\pi\circ\pi=\pi$.

Since linear mappings can be expressed by transformation matrices (see Section 2.7), the preceding definition applies equally to a special kind of transformation matrices, the *projection matrices* P_{π} , which exhibit the property that $P_{\pi}^2 = P_{\pi}$.

