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Definition 3.1 (Norm). A norm on a vector space V is a function

|-]:V =R, &0
x = ||z, (3.2)

which assigns each vector «x its length ||x| € R, such that for all A € R
and x,y € V the following hold:

= Absolutely homogeneous: ||[Ax|| = |A|||z||
» Triangle inequality: ||z + y|| < ||| + ||y||
m Positive definite: ||x|| > 0and ||| =0 < =0



Example 3.2 (Euclidean Norm)
The Euclidean norm of @ € R" is defined as

(3.4)

||33||2 =

and computes the Euclidean distance of x from the origin. The right panel
of Figure 3.3 shows all vectors € R* with |||l» = 1. The Euclidean
norm is also called ¢, norm.

Example 3.1 (Manhattan Norm)
The Manhattan norm on R" is defined for & € R" as

llly =) |, (3.3)
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where | - | is the absolute value. The left panel of Figure 3.3 shows all
vectors x € R? with ||z||;, = 1. The Manhattan norm is also called ¢,

norm.



Inner product

Definition 3.2. Let V be a vector space and 2 : V x V' — IR be a bilinear
mapping that takes two vectors and maps them onto a real number. Then

= () is called symmetric if Q(x,y) = Q(y,x) for all x,y € V, i.e., the
order of the arguments does not matter.
» () is called positive definite if

Ve € V\{0}: Q(z,z) >0, (0,0)=0. (3.8)

Definition 3.3. Let V' be a vector space and 2 : V x V' — IR be a bilinear
mapping that takes two vectors and maps them onto a real number. Then

= A positive definite, symmetric bilinear mapping 2 : V' xV — R is called
an inner product on V. We typically write (x, y) instead of Q(x, y).

= The pair (V, (-, -)) is called an inner product space or (real) vector space
with inner product. If we use the dot product defined in (3.5), we call
(V. (-, -)) a Euclidean vector space.



Example 3.3 (Inner Product That Is Not the Dot Product)
Consider V = RZ2. If we define

(:B,y) = T1Y1 — (T1Y2 + Toy1) + 2Ty (3.9)

then (-, -) is an inner product but different from the dot product. The proof
will be an exercise.



Definition 3.4 (Symmetric, Positive Definite Matrix). A symmetric matrix
A € R™" that satisfies (3.11) is called symmetric, positive definite, or
just positive definite. If only > holds in (3.11), then A is called symmetric,

positive semidefinite.

Theorem 3.5. For a real-valued, finite-dimensional vector space V and an
ordered basis B of V, it holds that (-,-) : V x V — R is an inner product if
and only if there exists a symmetric, positive definite matrix A € R"*" with

(x,y) = Ay. (3.15)



inner product induces a norm

]| := 4/{z, x)

Remark (Cauchy-Schwarz Inequality). For an inner product vector space
(V, (-,-)) the induced norm || - || satisfies the Cauchy-Schwarz inequality

(=, y) [ <llzlllly]l- (3.17)



Definition 3.6 (Distance and Metric). Consider an inner product space
(V, (-,-)). Then

d(x,y) = ||z -yl = \/{z —y.z — ) (3.21)

A metric d satisfies the following:

positive definite 1. d is positive definite, i.e., d(x,y) > 0 for all x,y € V and d(x,y) =
0 &= =g,
symmetric 2. d is symmetric, i.e., d(x,y) = d(y,x) forall x,y € V.

triangle inequality 3. Triangle inequality: d(x,z) < d(x,y) + d(y, z) forall z,y,z € V.



The angle between vectors x and y:

CoSw = —<$ Y)

|| Iyl

—— oocfhom



Definition 3.7 (Orthogonality). Two vectors @ and y are orthogonal if and
only if (x,y) = 0, and we write | y. If additionally ||z| = 1 = ||y||,
i.e., the vectors are unit vectors, then x and y are orthonormal.



Definition 3.8 (Orthogonal Matrix). A square matrix A € R"*" is an
orthogonal matrix if and only if its columns are orthonormal so that

AAT=T=A"TA, (3.29)

which implies that
Al=AT, (3.30)

i.e., the inverse is obtained by simply transposing the matrix.



Transformations by orthogonal matrices are special because the
length of a vector x is not changed when transforming it using an
orthogonal matrix A, not the inner product between vectors x and .



Definition 3.9 (Orthonormal Basis). Consider an n-dimensional vector
space V and a basis {b;,...,b,} of V. If

(b b= 1 (3.34)
forall7,j = 1,...,n then the basis is called an orthonormal basis (ONB).

If only (3.33) is satisfied, then the basis is called an orthogonal basis. Note
that (3.34) implies that every basis vector has length/norm 1.



Example 3.8 (Orthonormal Basis)
The canonical/standard basis for a Euclidean vector space R" is an or-
thonormal basis, where the inner product is the dot product of vectors.

In R?, the vectors
i
1]. bgz—lll (3.35)

il
b-:—
y ﬁ[l '

form an orthonormal basis since b, b, = 0 and ||b|| = 1 = ||b,]|.



Consider a D-dimensional vector space V' and an M -dimensional sub-
space U C V. Then its orthogonal complement U+ is a (D— M )-dimensional
subspace of V' and contains all vectors in V' that are orthogonal to every
vector in U. Furthermore, U NU~+ = {0} so that any vector € V can be

uniquely decomposed Into
D—M

L = Z /\mbm + Z w] ’ )‘ma d}j = R7 (336)
m=1
where (by,..., b)) is abasis of U and (b, ..., by,_,,) is a basis of U™,
83‘
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Definition 3.10 (Projection). Let V' be a vector space and U C V a
subspace of V. A linear mapping @ : V — U is called a projection if
2 =Tomw=.

Since linear mappings can be expressed by transformation matrices (see
Section 2.7), the preceding definition applies equally to a special kind
of transformation matrices, the projection matrices P, which exhibit the
property that P> = P.,..
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