Open Source Ecosystems: Challenges and Opportunities

Walt Scacchi

Institute for Software Research and

Institute for Virtual Environments and Computer Games University of California, Irvine Irvine, CA 92697-3455 USA

Http://www.ics.uci.edu/~wscacchi

Overview

- Definition of terms (for this presentation)
- Personal history of OSS ecosystem studies
- OSS requirements practices and processes
- OSS role sets and role migration
- Component-based open architecture software systems
 - Intellectual property licenses
 - Cybersecurity
- Conclusions

What is open source?

- Open source software (OSS) denotes specifications, representations, socio-technical processes, and multi-party coordination mechanisms in *human readable, computer* processable formats.
- Socio-technical control of OSS is elastic, negotiated, and amenable to decentralization.
- OSS development subsidized by participants.

What is a (software) ecosystem?

- An ecology of systems with diverse species juxtaposed in adaptive prey-predator food chain relationships.
- Economic network of processes that transform the flow of resources, enacted by actors in different roles, using tools, to produce products, services, or capabilities.
- Software supply network of component producers, system integrators, and consumers.

Personal History of OSS Ecosystem Studies

- 2000-2015 (60+ publications)
 - Computer games, defense, X-ray astronomy,
 Internet/Web infrastructure, bioinformatics, higher education, e-commerce, neuroscience, virtual reality.
- Discovering requirements practices and processes across OSS communities of practice.
- Participant role sets, role migration, and social movements within/across OSS projects.
- Open architecture (OA) systems with heterogeneously licensed components.

Source: C. Jensen and W. Scacchi, Process Modeling Across the Web Information Infrastructure, Software Process--Improvement and Practice, 10(3), 255-272, July-September 2005.

Link to Tools

Links to all Agents

Link to all Use Cases

Legend: Boxes are *activities* (using *informalisms*); Ellipses are *resources* required or provided; Actor *roles* in boldface; *flow dependencies* as arrows.

Artifact ecologies and repositories enable collaboration in OSS development

Email lists	Discussion forum	News postings	Project digests
IM/Internet Relay Chat	Scenarios of usage	How-to guides	Screenshots
FAQs; to-do lists: item lists	Project Wikis	System documentation	External publications
Copyright licenses	Architecture diagrams	Intra-app scripting	Plug-ins
Code from other projects	Project Web site	Multi-project portals	Project source code
Project repositories	Software bug reports	Issue tracking databases	Blogs, videos, photos, etc.

A *meritocratic* role sets, role hierarchy, and role migration paths for OSSD

Figure 2. An "onion" pyramid representation of a generic OSSD project organizational hierarchy with multiple role-sets and advancement tracks.

OA software ecosystems

OA development ecosystems

A sample elaboration of producers (vendors), software component applications, and IP licenses for OA system components.

Open Architectures, OSS, and OSS license analysis

- Goal: identify software architecture principles and IP licenses that mediate OA
- OSS elements subject to different IP licenses
- Govt/business policies and initiatives now encouraging OA with OSS elements
- How to determine the requirements needed to realize OA strategies with OSS?

Source: W. Scacchi and T. Alspaugh, Emerging Issues in the Acquisition of Open Source Software within the U.S. Department of Defense, *Proc. 5th Annual Acquisition Research Symposium*, Vol. 1, 230-244, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA, 2008.

Legend: Grey boxes are components; ellipses are connectors; white boxes are interfaces; arrows are data or control flow paths; complete figure is architectural design configuration

OSS elements subject to different IP/Security licenses

- Intellectual Property and Security licenses stipulate <u>rights</u> and <u>obligations</u> regarding use of the software components/systems
- How to determine which rights and obligations will apply to a component-based configured system?
 - At design-time (maximum flexibility)
 - At integration build-time (may/not be able to redistribute components at hand)
 - At release deployment run-time (may/not need to install/link-to components from other sources)

Source: T. Alspaugh, H. Asuncion, and W. Scacchi, Intellectual Property Rights Requirements for Heterogeneously Licensed Systems, in *Proc. 17th. Intern. Conf. Requirements Engineering (RE09)*, Atlanta, GA, 24-33, September 2009.

Design-time view of an OA system

Software product line of *functionally* similar OA system alternatives

Product line selection of one alternative system configuration

A security capability specification encapsulating the *design-time* configuration via multiple virtual machine containers

Build-time view of OA design selecting OSS product family alternatives

Run-time deployment view of OA system family member configuration

Product line selection of different functionally similar alternative

Run-time deployment view of a similar alternative OA system configuration

Build-time view of OA design selecting proprietary product family alternatives

Conclusions

- OSS ecosystems can be:
 - modeled, analyzed, and understood, via
 - discovery of actor practices and processes, that
 - manipulate artifact ecologies, with
 - different tools and repositories, across
 - diverse OSS project communities.
- OSS ecosystems pose new challenges and opportunities in *Intellectual Property* and *Cybersecurity*.
- OSS ecosystems can be shaped and stimulated to act via strategic actions.

Acknowledgements

Research collaborators (partial list)

- Mark Ackerman, UMichigan, Ann Arbor; Kevin Crowston, Syracuse U; Les Gasser, UIllinois, Urbana-Champaign; Chris Jensen, Google; Greg Madey, Notre Dame U; John Noll, LERO; Megan Squire, Elon U; and others.
- Thomas Alspaugh, Hazel Asuncion, Margaret Elliott, and others at the UCI ISR.

Funding support (No endorsement, review, or approval implied).

- National Science Foundation: #0083075, #0205679, #0205724, #0350754, #0534771, #0749353, #0808783, and #1256593.
- Naval Postgraduate School
 - Acquisition Research Program (2007-2015+)
 - N00244-1-15-0010 (2015-2016)
 - Center for the Edge Research Program (2010-2012).
- Computing Community Consortium (2009-2010).