Modeling Articulation Work in Software Engineering Processes

Peiwei Mi' and Walt Scacchi® ,
Computer Science DepartmentTand Decision Systems Department
University of Southern Californial- Los Angeles, CA 90089

Abstract

Current software process modeling techniques do not generally support articulation work.
Articulation work is the diagnosis, recovery and resumption of development activities that un-
expectedly fail. It is an integral part of software process enactment since software processes
can sometimes fail or breakdown. This paper presents a knowledge-based model of articulation
work in software engineering processes. It uses empirically-grounded heuristics to address three
problems in articulation work: diagnosing failed development activities, determining appropri-
ate recovery, and resuming software processes. We first investigate the role and importance of
articulation work with respect to planned software development activities. We then outline a
knowledge-based model of articulation work. The model has been implemented in a knowledge-
based software process modeling environment called the Articulator. Combining the available
software process modeling techniques and the model of articulation leads to a better foundation
in process improvement and evolution.

1 Introduction

Software process modeling is aimed at understanding and facilitating software development pro-
cesses. A software process model (SPM) is an abstract representation of a software engineering
process [HK89, MS90, Ost87]. Enacting an SPM enables software developers to carry out de-
velopment according to the activities specified in the SPM [Dow90, MS91b]. SPMs act as plans
that anticipate types of development activities involved, their performance sequence, and resources
needed to perform them. To this end, development activities specified in SPMs are articulated or
planned activities, and software development under the guidance of an SPM becomes an organized
execution of the SPM.

While SPMs provide powerful assistance, they fail at handling unexpected events that inter-
rupt software development. Such an interruption is called a breakdown of planned development
activities. A number of empirical studies of development work have revealed both the frequent
occurrence of such breakdowns, and a recurring type of activity that resolves or mitigate them
(BS87, BS89, CKSI87, CKI88, KCI87, Gas86, GS86, GKC87, Str88, WEKCS87]. This type of res-
olution or recovery activity is called articulation work, which normally occurs as an emerging
response to breakdowns in planned activities and is difficult to describe in existing SPMs.

Articulation work is an integral part of SPM enactment because of the inherent existence of
breakdowns. Due to the unpredictability of changes in the real world, unexpected events happen
during software development. Similarly, since our knowledge of how software processes are actually
enacted is limited, mistakes or oversights are made in configuring activities and resources in SPMs.

! Acknowledgements: This work has been supported in part by contracts and grants from AT&T, Northrop Inc.,
Pacific Bell, and the Office of Naval Technology through the Naval Ocean Systems Center. No endorsement implied.

Recommended by: Bill Curtis

188
0-8186-2490-6/91/0000/0188$01.00 © 1991 IEEE

Subsequently, articulation work is the response developers make to adapt to changes in the real
world and to correct previous misjudgements.

Articulation work is also a complementary technique to process modeling. Adaptation of an
existing SPM is a common approach to create a customized SPM. However, practical experience
can help evolve SPMs to more matured forms that better address process situations that develop-
ers frequently encounter, or where more automated support is required. As an SPM is enacted,
articulation work effectively updates or augments the SPM to better fit the local environment and
expands it in overlooked aspects. The continuous application of articulation work results in a better
situated SPM that can be more successfully enacted in the future.

We present a strategy for modeling and supporting articulation work in this paper. This strategy
focuses on constructing a knowledge-based model of articulation work based on empirical studies
of various kinds of development work. It abstracts knowledge and skill of articulation work from
these studies and formalizes them into a computational process of articulation and articulation
heuristics that direct the result of the articulation process. In turn, we describe two types of
articulation heuristics: problem-solving heuristics to indicate plausible solutions to breakdowns,
and selection heuristics to constrain the use of these solutions according to circumstances that
surround a breakdown.

In what follows, we identify a set of important features of process modeling from some repre-
sentative software process modeling techniques in Section 2. In the same section, we also present
findings from representative empirical studies on software development and other types of work.
They help to reveal the oftentimes circumstantial and idiosyncratic practices of software engineer-
ing. In Section 3, we present the results of our previous work to date in the study of software
engineering processes with a process modeling environment called the Articulator[MS90]. In Sec-
tion 4, we present a knowledge-based model of articulation work in terms of a process description
of articulation work and a set of articulation heuristics. We conclude the paper by summarizing
some major benefits provided by the model of articulation work.

2 Related Work

In this section, we first summarize some representative techniques for modeling software processes
and identify a group of common capabilities that are used to model planned development activities.
Then, we review several empirical studies that investigate the practice of software development in
different settings. In these studies, articulation work is repeatedly observed, and it is found to be
a type of software development activity that is unsupported. By comparing the current process
modeling techniques and the empirical studies, we identify articulation work as an area that on the
one hand is critical to the success of software development, but on the other hand lacks of support
from these modeling techniques.

2.1 Modeling Techniques for Software Processes

Modeling software processes requires abstracting important features of software development activ-
ities, formalizing them into SPMs, and supporting development through enactment of the SPMs.
This section surveys a group of modeling techniques and prototype systems that are representative
of state-of-the-art technology. We group these modeling techniques into four categories based the
modeling formalisms: Language-based modeling, such as Arcadia [TBCO89]; Rule-based modeling,
such as Marvel [Kai88]; Al-based modeling, such as Grapple [HL88]; Object-based modeling, such
as IPSE 2.5 [War89]; and Evolution-based modeling, such as Prism[MG90] and TAME[BR88].

189

We characterize the modeling techniques by the type of development activities they model, the
modeling formalism, the elements in a model, and the tools supporting process modeling:

1. SPMs created by these modeling techniques consist of descriptions of development activities
and resources. Different techniques have their own variations of SPMs. Most provide a
specification language or notation to let users describe SPMs. Some modeling techniques
also provide a meta-model.? For example, Marvel uses inference rules to model software
development, while Grapple uses plans. Other techniques use object-oriented or object-based
specification. Prism has a Petri-net based meta-model of SPMs.

2. Development activities are a major part of an SPM. They are an abstract description of
planned development activities. A description of planned development activities includes
activity decomposition, execution sequence, or resource usage. The activities are represented
either as inference rules (Marvel), plans (Grapple), and programming language constructors
(Arcadia).

3. Enactment of SPMs guides software development by indicating active or suspended activities
and by invoking needed tools. Software development is carried out according to the sequence
of planned activities in an SPM. This performance sequence can be explicit as in Arcadia
process programs, or implicit as effects of production rules in Marvel and subgoals in Grapple.

4. Prism and TAME are focused on analyzing and improving SPMs through empirical measure-
ments, evaluations and process refinements. They suggest a learning and feedback process so
that developers can improve their practice of software engineering by having a better SPM.
However, at this time, process improvement is mainly performed off-line.

5. None of the modeling techniques provides a mechanism describing and modeling unexpected
breakdowns in planned activities. Enactment is only responsible for carrying out SPMs.
When a breakdown occurs, enactment will be interrupted and development stopped. The
enactment and other support of the SPM will be suspended until some external remedy, or
intervention occurs.

Although not modeled in these SPMs, articulation work nonetheless exists in software devel-
opment. It has been repeatedly identified as a crucial part of development work as shown next.
As such, we will now review a set of empirical studies that report and substantiate the repetitive
occurrence of articulation work.

2.2 Related Empirical Studies

A number of empirical studies have examined the organization and behavior of people in soft-
ware development projects and other types of development work. In these studies, two types of
activities are identified. One type of activity is well understood, mostly routine, and performed
with expected order. For example, developers often plan to construct programs according to a
previously prepared architectural design. Articulation work, however, is a response to emergent
situations that unexpectedly cause planned activities to breakdown. For instance, a compiler bug
may be discovered while writing and compiling application programs. The architectural design and
programming activities should anticipate application program debugging, but generally would not
anticipate compiler bugs. However, the programmers involved must determine what to do in order

2 A software process meta-model is a formalism used to describe a family of SPMs.

190

[Researcher

Development Work | Form of Breakdown

Type of Breakdown

| Artic. Method

|

Bendifallah & Software Maint. Contingencies of Changes in Workplace Accommodation
Scacchi [BS87] Primary Work and Negotiation
Bendifallah $ Software Spec Contingencies of Idiosyncratic Setup, Negotiation,
Scacchi [BS89] Primary Work Changes in Workplace, Shifts in Work
Work Structure Adequacy Structure
Krasner, Curtis | Software Design No Communication, Difference in Skill, Incentive, | Boundary
& Iscoe and Communication | Miscommunication, Changes in Workplace, Spanner as
[KCI87] Conflicting Information | Other Breakdowns, Articulator
Guindon, etc Software Design Ineffectiveness and Lack of Knowledge, N/A
[GKC87] Group Work Difficulties in Work Cognitive Limitation N/A
Walz, etc Req’s Definition, Contingencies of Lack of Knowledge, N/A
[WEKC87] Group Work Group Work Group Interaction N/A
Gasser Routine Use and Disruption and Misfit of Resources Fitting,
[Gas86] Evolution of Contingency of Augmenting,
Organizational Sys. | Routine Work Workaround
Gerson & Routine Use and Conflict of Different Viewpoints, Skepticism,
Star [GS86] Evolution of Interests Changes in Workplace Trade-off,
Office Systems A special
articulator
Suchman Routine Use of Equipment malfunction | People do not follow Interaction,
[Suc83] Office Equipment or becomes inoperable operation procedures Negotiation
Strauss General Disruption, Nonroutineness, Interaction,
[Str88] Project Work Contingencies Altered Alignment,
Arrangements Negotiation

Figure 1: Summary of The Empirical Studies

to eventually complete the programming activity, either by getting the compiler bug fixed, or by
somehow working around it. Thus, our focus of attention in reviewing these studies is to identify and
compare what kinds of breakdowns occur, and what articulation work is performed in response. We
have collected three representative groups of empirical studies: those from the USC System Factory
project[BS87, BS89], MCC’s Design Process Group[CKSI87, CKI88, GKC87, KCI87, WEKC87],
and other studies of system development work[Gas86, GS86, Suc83, Str88].

Figure 1 lists the basic findings about articulation work in these empirical studies in terms of
types of development work examined, forms of process breakdowns that occur, reported types of
breakdowns, and the methods of articulation work observed in response. From these findings, we
draw several conclusions:

1. Software development and other types of systems work consist of two types of activities:
planned activities and articulation work. Planned activities which account for expected work
flow constitute the routine or conventional part of software development. Articulation work,
on the other hand, is the normal response to breakdowns in planned activities. The purpose
of articulation work is to restore or reorganize intended work flow. The occurrence of break-
downs is a recurring phenomenon developers experience in many types of work. In software
development, breakdowns have been observed in most of the development phases, and likely
occur throughout the entire system life cycle. Further, coping skills and experience in similar
situations seem to provide a behavioral foundation for articulation work.3

2. Articulation work mainly involves three kinds of activities: diagnosing breakdowns, searching

3This suggests that the ability or inability to call upon such skills and experiences can help distinguish competent
and naive articulation work effort.

191

for solutions, and implementing a suggested solution. The relationship between planned
activities and articulation work is identified as an interruption-driven interaction.

3. Seven major types of breakdowns are reported: 1) Some activities are left unfinished; 2) Un-
necessary activities have been done; 3) Developers have to use other resources than allocated;
4) Developers do not get necessary resources; 5) Developers get different resources than they
expect; 6) Developers can not use assigned resources that are being used by others; 7) Re-
sources are unavailable when they are needed. These types are abstracted forms of those
types identified in Figure 1.

4. Several articulation methods are also abstracted from Figure 1 as ways developers follow
when performing articulation work. They represent effective articulation skill gained through
experience. In our system, we consider six major types of methods: 1) replace a resource with
another of the same class; 2) replace a resource with another of a similar class; 3) restructure
an SPM, such as add, delete activities and relations among activities; 4) modify values of
resources; 5) redo some activities; 6) split or merge activities.

After we compare these findings with the process modeling techniques, it becomes apparent that
current software process modeling techniques do not directly address articulation work. First, the
nature of articulation work has not been understood and modeled from a software process viewpoint.
Second and more important, the situated occurrence of articulation work is unpredictable though
potentially frequent in a development project. Articulation work can not be planned per se in an
SPM. Therefore, we believe a new modeling technique is needed. To this end, these empirical studies
provide an empirically-grounded foundation for a model of articulation. The model of articulation
outlined in this paper is thus based on this foundation.

3 The Articulator: An Environment for Studying Software Pro-
cesses

The Articulator is a knowledge-based environment that models and simulates software engineering
processes. This section provides a brief overview of the Articulator, while the details appear
elsewhere [MS90, MS91b, MS91a).

The Articulator provides a meta-model of software engineering processes and workplace. The
simulator in the Articulator symbolically enacts SPMs in an artificially defined workplace. SPMs in
the Articulator are described in an object-oriented process specification language that incorporates
rule-based procedural and non-procedural methods [MS90].

The Articulator meta-model is a web of object classes. Each of the object classes represents a
type of development resource useful in software development. Definition of an object class includes
a set of attributes, relations with other object classes, and inheritance from its super-class. Some
important object classes are: 1) individual developers that are modeled as agents* with problem-
solving capabilities, 2) development organization agents with organizational structure and local
hierarchy or authority, 3) development tasks with activity hierarchy, development tools, resource
requirements, and resource possession, 4) workplaces with embedded resources, and 5) development
tools, such as different kinds of hardware and software. Altogether, these foundational object
classes that define the class database constitute the set of building elements for describing software
engineering processes and workplaces.

* Agents represent a cluster of interrelated objects, attributes and behavioral methods.

192

In the Articulator, an SPM describes an development approach such as the waterfall model,
the Spiral model, or some other formulation [Sca87]. An SPM is represented as an extension of the
Articulator meta-model. The model database in the Articulator stores all defined SPMs. Definition
of an SPM includes a set of subclasses of objects in the class database and a set of constraints in
terms of defined attributes. Such a defined SPM is prescriptive because it is a generalization of a
set of software processes and represents a projection of what should happen in them.

An instance of an SPM represents a process enactment in a particular workplace. In this sense,
multiple enactments of a single SPM creates multiple instances for it. The Articulator supports
two types of instantiation: simulation and development. A simulation instance is created in an
artificial workplace by the Simulator and recorded in the Articulator. A development instance is a
historical, empirically grounded record of real development activities that followed the SPM in a
real workplace. Such records are entered through external interfaces[MS91b]. Instances of SPMs
are descriptive since they are (replayable) records of what happened in a software process, either
in an artificial or real situation. In the Articulator, the simulation database and the development
database store simulation and development instances respectively. The Instantiation Manager in
the Articulator provides cross reference among the SPMs and their individual instances.

Software development is simulated in the Articulator as the creation or reconfiguration of an
instance of an SPM in a defined workplace. At first, the Simulator binds the SPM with a set of
developers, tools and resources in a workplace according to the SPM’s resource requirement when
the required resources become available, the simulation then carries out the SPM with the initial
resource possession. Then, during simulation, the modeled agents must accommodate circumstan-
tial changes in the workplace, such as unexpected shifts in resource possession, which are to be
resolved by articulation.

The Articulator is also able to simulate circumstantial changes which can cause the four ma-
Jjor types of breakdown reported in Section 2. By using the Articulator, the types of breakdowns
are modeled by different configurations of resources and their relations in specified situations to
simulate the occurrence of breakdowns. For example, changes in the workplace are cited as a type
of breakdown where the evolution of a resource makes it unavailable for use when it is needed.
In the Articulator, workplace changes are represented by changes in the related objects and their
associated values spanning over a period of time. For example, the operational viability of a com-
puter can be represented by an attribute, called status, with values such as available or unavailable
[MS91a]. In this case, switching from available to unavailable signals the computer is effectively
out of service. Thus, some actions that use the computer at the moment may break down. This
represents a circumstantial configuration of resources under which a particular type of breakdown
occurs. Accordingly, we now turn to discuss a model of articulation that can resolve either arti-
ficially created breakdowns in process simulation or to help resolving real identified breakdowns
during process enactment.

4 The Model of Articulation Work

In this section, we present a conceptual model of articulation work. The model is an abstraction of
articulation work observed in the empirical studies. It describes a process of articulation driven by
a set of articulation heuristics. At the end, we illustrate an example of the model of articulation.

4.1 Process of Articulation

When a breakdown occurs, the agent performing the activity that broke is responsible to initialize
articulation work to create a solution to the breakdown. A solution is a set of replacing activities

193

|

Diagnosis

Selection of
Problem-solving Heuristics

execute one

Formulation of
Solutions

Re-diagnosis

\
Selection of

Solutions

Realization

unsuccessful

succegssful
A

Result Assessment

!

Figure 2: A Process of Articulation

or changes in resource possession. By executing the solution, either the broken activity can be
recovered and resumed, or the identified problem can be solved else avoided. Articulation generally
consists of the following stages: diagnosis of the breakdown, selection of problem-solving heuristics
by selection heuristics, formulation of solutions by the problem-solving heuristics, selection of solu-
tions by selection heuristics again, realization of the solution, rediagnosis and iteration if needed,
and result assessment (Figure 2), which is implemented through inference rules. Figure 3 lists an
example rule in the diagnosis stage. This rule detects a missing required resource and creates a
schema to store this information. The three conditions for the rule state that an individual agent
performs an action, which requires and uses resources. The conditions are satisfied if there is
a resource that is required but not available for use. The assertions then direct the articulation
process to select problem-solving heuristics (as goal articulate-select-psh) and create an object
(by cschema) to save relevant information, such as the agent, the diagnosis, etc. Problem-solving
and articulation heuristics are an abstraction of problem-solving and articulation methods identified
before. They will be discussed in the next section.

In diagnosis, the agent identifies what type of breakdown occurred based on the symptoms of the
breakdown and the available types of breakdowns. Next, based on its current set of problem-solving
heuristics, the agent uses its selection heuristics to select a subset of problem-solving heuristics,
which according to the selection heuristics satisfies the agent’s current preference and its effective-
ness in resolving the breakdown. Then, the agent applies the chosen problem-solving heuristic to
create solutions. At this moment, one problem-solving heuristic may lead to several possible solu-
tions. These solutions are evaluated according to the selection heuristics again in order to decide
which one is most preferable. The selected solution is then executed to resolve the breakdown.
If the breakdown is resolved successfully, articulation is complete. Otherwise, the agent needs to

194

s; diagnosis: a required resource is not available

(p resource-not-available :context t
(individual-agent “schema-name <agent>
“controller-goal articulate~diagnosis
“status <action>)
(action “~schema-name <action>
“task-using-resource <reso-used>
“task-require-resource <reso-req>)
(resource “schema-name <reso>
“schema-name (not-member <> <reso-used>)

“schema-name (member <> <reso-req>))
-—>

(new-value <agent> ’controller-goal ’articulate-select-psh)
(new-value <agent> ’controller-parameter

(intern (string-append ’articulate+ (unique-name))))
(cschema (get-value <agent> ’controller-parameter)

(’instance ’articulate)

(’performer <agent>)

(’diagnosis ’missing-required-resource)

(’broken-action <action>)

(’needed-resource <reso>)))

Figure 3: A Rule of Detecting A Missing Resource

re-diagnose the breakdown. Based on the result of rediagnosis, the agent may repeat one of se-
lected heuristics and selected solutions. For example, if the chosen problem-solving heuristic did
not work well in the last solution, selection of heuristics must be redone in order to choose a new
problem-solving heuristic. This subprocess is repeated until the breakdown is removed successfully
and the task can be resumed following a modified SPM. In the last step, the realized solution and
the changed SPM will be assessed to see if they need to be saved permanently into the model based
in the Articulator. Alternatively, if in the end none of the available heuristics resolves the break-
down, the task is suspended until some other external intervention occurs and the agent moves on
to another task.

4.2 Heuristics of Articulation

Knowledge of articulation work is represented in the form of heuristics. They are used to direct
how articulation work is carried out, how a solution is formulated and selected, and how a solution
is realized. But as heuristics, they can not guarantee that a complete solution to a breakdown can
be found and applied. Nontheless, in the this section, articulation heuristics are discussed in more
detail.

There are at least two types of articulation heuristics: problem-solving heuristics that direct
types of solutions for breakdowns, and selection heuristics that direct selection of plausible solutions.
Problem-solving heuristics represent knowledge of articulation methods that often resolve various
breakdowns. The model of articulation utilizes problem-solving heuristics to create particular
solutions to a breakdown. Although problem-solving heuristics are able to resolve breakdowns,
they are not equally applicable to different breakdowns in different circumstances. Also, people
(and agents) may prefer certain methods over others. Selection heuristics, therefore, represent
constraints on the applicability of problem-solving heuristics. Two type of selection constraints

195

| No. | Heuristics Possible Solutions |

1 | Replace-instance Find another compiler
2 | Replace-class Find alternative task to do the job,
€.g. use another language
3 | Restructure Add a debug activity to fix the compiler
or Add a write activity for a new compiler
4 | Modify n/a in this case
5 | Redo n/a in this case
6 | Split/Merge n/a in this case
7 | Change Agent Report to the team leader,
or look for service from someone else
8 | Create a new alternative subtask Learn another language
9 | Impose new constraints in the SPM | Check the complier before use
10 | Others Wait, Switch to another task

Figure 4: A Sample Set of of Problem-Solving Heuristics and An Example

are possible. Global selection heuristics define overall constraints or personal preferences over
problem-solving heuristics and solutions. Circumstantial selection heuristics limit the applicability
of problem-solving heuristics in various situations.

o Problem-solving heuristics describe articulation methods to resolve breakdowns. For different
types of breakdowns, people use different methods. A set of effective articulation methods,
therefore, gives a developer the capability to resolve a wide range of breakdowns. Our goalis to
establish a set of problem-solving heuristics that indicate possible solutions for different types
of recurring breakdowns. Figure 4 lists a sample set of problem-solving heuristics. It also lists
possible solutions for our example of articulation work in Section 4.3, which will be explained
later. These heuristics are an extension of articulation methods identified before. Figure 5
gives two inference rules that implement part of the problem-solving heuristic: search for
an existing alternative action. The first rule identifies the currently selected problem-solving
heuristic, find an alternative task. The second rule finds an alternative action in the
agent’s past experience, which lists tasks the agent has performed before. The alternative
task is selected because it provides the same set of resources as the broken action, but requires
different resources. The assertions replaces the broken action by the newly selected one and
continues the articulation process.

o Global selection heuristics describe global constraints or personal preferences over problem-
solving heuristics and solutions. They may exclude some under certain circumstances or just
specify an order of selection. Figure 6 lists a sample set of global selection heuristics and
their implications. Some of them may be mutually exclusive, while others may mutually
inclusive. Global selection heuristics are used twice in the model of articulation. First, they
are used to select problem-solving heuristics before solutions are formulated. In this case,
some of the problem-solving heuristics are excluded because of the existence of some global
selection heuristics in the current configuration of the model of articulation, others may be
ordered. After that, the problem-solving heuristics on top of the ordered list will be applied
to create possible solutions to a breakdown. Furthermore, the ordered list is subject to
circumstantial heuristics as explained below. Second, global selection heuristics are used in
selecting solutions once they are formulated. Here, the solutions may come from a single
problem-solving heuristic or a group of them.

196

;5 start articulation with heuristic: find an alternative task.

(p articulate-by-alt-task :context t
(individual-agent “schema-name <agent>
“controller-goal articulate-select
“status <action>)
(articulate “schema-name <action>
“currently-chosen-psh find-alt-task)
-—>
(format t "Articulate by find-alternative-task")
(new-value <agent> ’controller-goal ’articulate-alt~task-select))

;s Jind an alternative task in the agent’s experience

(p articulate-alt-task-select-find-in-experience :context t
(individual-agent “schema-name <agent>
“controller-goal articulate-alt-task-select
“status <action>
“individual-agent-has-experience <experience>)
(experience “schema-name <experience>
“experience-has-task <new-action>)
(articulate “schema-name <action>
“currently-chosen-psh find-alt-task
“symptom <<non-existing-resource non-authorized-resource>>
“broken-action <p-action>
“needed-resource <p-resource>)
(action “schema-name <p-action>
“task-provide-resource <pro-reso>)
(action “schema-name <new-action>
“status <> selected
“task-provide-resource (set-equal <> <pro-reso>)
“task-require-resource (not-member <p-resource> <>))
-2
(add-alternative-list <agent> <p-action> <new-action> <p-resource>)
(new-value <new-action> ’status ’selected))

Figure 5: Portion of Rules for Problem-solving Heuristic No. 2

o Circumstantial selection heuristics describe an order of selection of problem-solving heuristics
for each of the identified types of breakdowns. They may also include other local constraints.
For example, use of some resources can be prohibited at a given moment. Circumstantial
selection heuristics basically indicate under what circumstances which heuristics are more
effective and therefore more preferable. Qur current study suggests a possible ordering of
problem-solving heuristics for different types of breakdowns (Figure 7), where the numbers
refer to the problem-solving heuristic defined in Figure 4. From Figure 7, it is easy to observe
that some of problem-solving heuristics are not applicable in certain circumstances. Also some
problem-solving heuristics in Figure 7 are grouped to indicate they are equally applicable in
the situation. For example, like global selection heuristics, circumstantial selection heuristics
help to select and order problem-solving heuristics before they are used to find solutions
for a breakdown. However, circumstantial selection heuristics differ from global selection
heuristics in that they depend heavily on the context of development situations and may
change dynamically. Otherwise, use of circumstantial selection heuristics is similar to that of

197

No. | Global Selection Heuristics | Solution Selection]

1 Find a solution One solution is enough

2 Find no solution No solution is searched

3 Minimize extra tasks Solutions with less tasks.

4 Maximize extra tasks Solutions with more tasks

5 Minimize tasks by self Solutions with less tasks by self

6 Maximize tasks by self Solutions with more tasks by self

7 Minimize tasks by others Solutions with less tasks by others
8 Maximize tasks by others | Solutions with more tasks by others

Figure 6: A Sample Set of Global Selection Heuristics

I Types of Breakdowns | Ordering of PS Heuristics j
Not Finished Activity Restructure, Modify, Split
Unnecessary Activity Restructure, Modify
No Resource Specification Modify, Restructure
No Resource Allocation Replace-instance, Replace-class, Restructure, Redo

Unavailability of Resource, occupied | Replace-instance, Replace-class, Restructure, Redo
Unavailability of Resource, broken Replace-instance, Replace-class, Restructure, Redo
Others All of them can be used

Figure 7: A Sample Set of Circumstantial Selection Heuristics

global selection heuristics.

We would like to emphasize here that these heuristics are not definite solutions for breakdowns.
In some cases, they may not be applicable. However, they do represent experiences that expert
developers often use. Furthermore, the more such heuristics a developer has, the more flexibility
she has in articulation work.

4.3 An Example of Articulation

As an example of how the model of articulation works, consider the following: A team of pro-
grammers is involved in developing a graph editor [KS90]. During development, the team follows a
customized waterfall development process model (let us name it Model W), where all development
stages, milestones, tools, and used resources are specified. Major development stages in Model
W include requirements definition, architectural design, detailed design, implementation, test, and
integration. The project is started as expected. Everything proceeds according to Model W until
a compiler bug is discovered while a junior programmer compiles her programs. The architectural
design and implementation activities generally would not anticipate such compiler bugs. However,
the involved junior programmer, and the team as well, must determine what to do in order to
eventually complete the overall development activity. Therefore, articulation work is started by the
junior programmer, which in turn initiates the model of articulation work.

The first articulation activity is to evaluate the circumstances and to identify the type of the
breakdown. In this situation, the compiler with the bug is assigned as a tool for implementation
task. It turns out that this is a Unavailability of Resource-broken because the compiler could not
be successfully applied due to the existence of bugs.

There exist a number of possible solutions for this breakdown as indicated by the available
problem-solving heuristics (see Column 3 in Figure 4). The programmer may stop her activity
without doing anything (Heuristic 10.1), or she may switch to another task if she has one (Heuristic
10.2). These two methods involve only schedule changes without solving the problem. Taking more

198

active approach, the programmer may search for alternatives to replace the problematic compiler,
such as looking for a different, hopefully bug-free version of the compiler (Heuristic 1), or debugging
the compiler (Heuristic 3). Other solutions may include: reporting to the team leader, finding some
kind of external technical support to resolve the problem (Heuristic 7), or using another language
to finish the job if the junior programmer knows one (Heuristic 2). From the Articulator’s point
of view, these heuristics result in changes in the structure of Model W, such as replace resource
allocation, adding an activity, or replace an existing activity. They also require dynamic scheduling
since proper resource arrangement is needed for an SPM to be enacted efficiently.

Without considering circumstances, one might take any of above possible solutions to solve
the problem. However, local constraints do limit choice of these solutions, as embedded in the
selection heuristics. For example, if the model of articulation sets global selection heuristics No. 1
and 5 (Figure 6), which state that the junior programmer should use minimum extra tasks during
articulation, the chosen problem-solving heuristic will be No. 7, even though the circumstance
selection heuristics state that problem-solving heuristic No. 1 is a better choice.

Once problem-solving heuristic No. 7 is selected, the model of articulation uses it to create two
solutions: reporting to the team leader and finding technical support. Although finding technical
support might be more effective and time-saving, the model of articulation chooses to report the
bug in the problematic compiler. This is because the global selection heuristics restricts extra work
for the junior programmer and the other solution implies more work.

The final chosen solution from the model of articulation is to report to the team leader the
discovery of bugs in the compiler. This solution transfers the problem to other agents without
actually solving it. However, from the point of view of the junior programmer, it is no longer
her problem anymore, and at the same time the solution satisfies her articulation heuristics. The
Articulator implements the solution by adding a report activity before the broken activity and
suspending the broken activity until the report activity gets a response from the team leader.

As time goes on, it might be possible that the compiler bug problem remains for a long period
without being solved. The junior programmer becomes concerned because further delay may jeop-
ardize her finishing the job, and eventually the whole project. Under the new circumstance, the
model of articulation iterates and decides to use another solution, i.e. to find technical support
by the junior programmer herself. In this case, the Articulator once again re-constructs Model W
so that another call-service activity is added before the broken activity while abandoning the
report activity. In this example, three different versions of this part of Model W have been created
and recorded. They reflect articulation work under changed constraints at different times.

5 Conclusion

Software development can be better supported with the combination of software process modeling
techniques and the model of articulation work. Planned activities are carried out under the guidance
of SPMs with data and tool integration. In case a breakdown of planned activities occurs, the model
of articulation work helps identify applicable solutions to recover or reorganize planned activities.
The model of articulation work, at the same time, helps SPMs evolve during process enactment.
As developers’ understanding and experience about software processes grow, their applied SPMs
become more realistic and reflect more local arrangements of software development. During this
period, the model of articulation work serves as a means to accommodate changes within a project,
or an organization into enhanced SPMs.

In sum, such a combination of software process modeling techniques and the model of articula-

199

tion work leads to a better foundation in process improvement and evolution.’

References

[BR8S8] V.R. Basili and H.D. Rombach. The TAME Project: Towards Improvement-Oriented
Software Environments. IEEE Trans on Software Engineering, 14(6), Jun 1988. ’

[BS87] S. Bendifallah and W. Scacchi. Understanding Software Maintenance Work. IEFFE
Trans on Software Engineering, 13(3):311-323, Mar 1987.

[BS89] S. Bendifallah and W. Scacchi. Work Structures and Shifts: An Empirical Analysis
of Software Specification Teamwork. In Proc. of 11th International Conference on
Software Engineering, pages 260~270, Pittsburgh, PA, May 1989.

[CKI8S8| B. Curtis, H. Krasner, and N. Iscoe. A Field Study of the Software Design Process for
Large Systems. Communications of ACM, 31(11):1268-1287, Nov 1988.

[CKSI87] B. Curtis, H. Krasner, V. Shen, and N. Iscoe. On Building Software Process Model
Under the Lamppost. In Proc. of 9th International Conference on Software Engineering,
pages 96-103, Monterey, CA, Apr 1987.

[Dow90] M. Dowson. Software Process Themes and Issues. In Software Process Symposium,
Washington, DC, Sept 1990.

[FHF91] S. Fickas, R. Helm, and M. Feather. When Things Go Wrong: Predicting Failure in
Multi-agent Systems. In The AAAI Spring Symposium on Composite System Design,
Mar 1991.

[Gas86] L. Gasser. The Integration of Computing and Routine Work. ACM Trans on Office
Information Systems, 4(3):205-225, Jul 1986.

[Gas91] L. Gasser. Social Conceptions of Knowledge and Action: DAI Foundations and Open
Systems Semantics. Artificial Intelligence, 47(1-3):107-138, Jan 1991.

[GKC87] R. Guindon, H. Krasner, and B. Curtis. Breakdowns and Processes during the Early Ac-
tivities of Software Design by Professionals. In G.M Olson, S. Sheppard, and E. Soloway,
editors, Empirical Studies of Programmers (Second Workshop), pages 65-82. Ablex
Publishing Corporation, 1987.

[GS86) E.M. Gerson and S.L. Star. Analyzing Due Process in the Workplace. ACM Trans on
Office Information Systems, 4(3):257-270, Jul 1986.

[Hew91] C. Hewitt. Open Information Systems Semantics. Artificial Intelligence, 47(1-3):47~
106, Jan 1991.

[HK89] W.S. Humphrey and M.I. Kellner. Software Process Modeling: Principles of Entity

Process Models. In Proc. of 11th International Conference on Software Engineering,
pages 331-342, Pittsburgh, PA, May 1989.

®Most recently, concepts and computational mechanisms for detecting and resolving related forms of articulation
work in other domains are now under study by researchers in the area of distributed artificial intelligence [Hew91,
Gas91, FHF91].

[HL88]

[K2i88]

[KCI87]

[KS90]

[MG90]

[MS90]

[MS91a]

[MS91b]

[Ost87]

[Sca87]

[Strs8]
[Sucs3]
[TBCOS9]
[War89]

[WEKC87]

K.E. Huff and V.R. Lesser. A Plan-Based Intelligent Assistant That Supports the
Process of Programming. ACM SIGSOFT Software Engineering Notes, 13:97-106,
Nov 1988.

G.E. Kaiser. Rule-Based Modeling of the Software Development Process. In Proc. of
the 4th International Software Process Workshop, pages 84-86, New York, NY, 1988.

H. Krasner, B. Curtis, and N. Iscoe. Communication Breakdowns and Boundary Span-
ning Activities on Large Programming Project. In G.M Olson, S. Sheppard, and
E. Soloway, editors, Empirical Studies of Programmers (Second Workshop), pages 47—
64. Ablex Publishing Corporation, 1987.

A. Karrer and W. Scacchi. Requirements for An Extensive, Object-oriented Tree/Graph
Editor. In Proc. ACM SIGGRAPH Symposium on User Interface Software and Tech-
nology, pages 84-91. ACM Press, Oct 1990.

N.H. Madhavji and V. Gruhn. Prism = Methodology + Process-oriented Environment.
In Proc. of 12th International Conference on Software Engineering, 1990.

P. Mi and W. Scacchi. A Knowledge-based Environment for Modeling and Simulating
Software Engineering Processes. IEEE Trans on Knowledge and Data Engineering,
2(3):283-294, Sep 1990.

P. Mi and W. Scacchi. Process Integration in CASE Environments. Technical report,
Computer Science Dept., USC, Los Angeles, CA, Jun 1991. Submitted for Publication.

P. Mi and W. Scacchi. Semantics of Process Enactment and Its Prototype Imple-
mentations. Technical report, Computer Science Dept., USC, Los Angeles, CA, Mar
1991.

L. Osterweil. Software Processes are Software Too. In Proc. of 9th International
Conference on Software Engineering, pages 2-13, Monterey, CA, Apr 1987.

W. Scacchi. Models of Software Evolution: Life Cycle and Process. Technical Report
SEI-CM-10, Software Engineering Institute, Carnegie-Mellon Unversity, Pittsburgh,
PA, 1987.

A. Strauss. The Articulation of Project Work: An Organizational Process. The Socio-
logical Quarterly, 29(2):163-178, Apr 1988.

L.A. Suchman. Office Procedure as Practical Action: Models of Work and System
Design. ACM Trans on QOffice Information Systems, 1(4):320-328, Oct 1983.

R.N. Taylor, F.C. Belz, L.A. Clarke, and L. Osterweil. Foundations for the Arcadia
Environment Architecture. ACM SIGPLAN Notice, pages 1-13, Feb 1989,

B. Warboys. The IPSE 2.5 Project: Process Modeling as the Basis for a Support
Environment. Technical report, University of Manchester, Sep 1989.

D.B. Walz, J.J. Elam, H. Krasner, and B. Curtis. A Methodology for Studying Software
Design Teams: An Investigation of Conflict Behaviors in the Requirements Definition
Phase. In G.M Olson, S. Sheppard, and E. Soloway, editors, Empirical Studies of
Programmers (Second Workshop), pages 83-99. Ablex Publishing Corporation, 1987.

201

