
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

Understanding Software Maintenance Work
SALAH BENDIFALLAH AND WALT SCACCHI, MEMBER, IEEE

Abstract-Software maintenance can be successfully accomplished if
the computing arrangements of the people doing the maintenance are
compatible with their established patterns of work in the setting. To
foster and achieve such compatibility requires an understanding of the
reasons and the circumstances in which participants carry out main-
tenance activities. In particular, it requires an understanding of how
software users and maintainers act toward the changing circumstances
and unexpected events in their work situation that give rise to software
system alterations. To contribute to such an understanding, we de-
scribe a comparative analysis of the work involved in maintaining and
evolving text-processing systems in two academic computer science or-
ganizations. This analysis shows that how and why software systems
are maintained depends on occupational and workplace contingencies,
and vice versa.

Index Terms-Articulation work, computing milieux, maintenance
work, primary work, social analysis of computing, software evolution,
software maintenance, software productivity, text-processing.

I. INTRODUCTION
S OFTWARE maintenance is complex and costly.

Maintenance activities are estimated to take up more
than half of the life-cycle cost of software systems [7],
[25]. Yet software maintenance remains the least under-
stood and most problematic part of the software process.
Reducing the cost of software maintenance entails un-

derstanding the various kinds of alterations that people
make to software systems and providing tools for carrying
out these alterations. But more importantly, we believe it
entails understanding the circumstances that give rise to
why alterations are made, how they are performed, and
how these circumstances are tied to the evolution of the
work arrangements in the setting: the organization and
distribution of productive resources (computers, software
tools, skills, time, money, computer facility staff, etc.)
committed to supporting current work activities, the con-
straints upon use of these resources, and how people work
within these constraints to transform the resources into
finished products or services [11], [30], [10].
A common classification of alterations [40], [27], [13],

[28], [1], [41] distinguishes corrective, adaptive, perfec-
tive, and preventive alterations according to their imme-
diate causes, the evolution of system requirements or the
inadequacy of the current system. Adaptive, perfective,
and preventive activities are typically considered en-

Manuscript received September 2, 1985; revised February 11, 1986.
This work was supported by AT&T Information Systems, TRW Defense
Systems Group, and IBM through Project Socrates at USC.

The authors are with the Department of Computer Science, University
of Southern California, Los Angeles, CA 90089.-

IEEE Log Number 8610901.

hancement activities. They are the major share of main-
tenance work, consuming as much as 75 percent or more
of maintenance time [25]. This is especially true in cases
where maintenance is an afterthought and an explicitly
separate phase of the software life-cycle, completely in-
dependent from development. The recognition of en-
hancement as the dominant maintenance activity has given
rise to a new approach to software engineering, where in-
cremental system enhancement is deemed the main soft-
ware activity and hence tools and methods are devised
which reclaim maintenance into the realm of development
activities [2], [33], [3].
However, further emphasis on tools cannot alone solve

the problems of software maintenance. Merely mobilizing
technical means cannot suffice to solve what appear to be
more fundamental problems concerning the reasons sys-
tems are altered and the conditions under which they are
altered. Maintenance activities are labor intensive and in-
volve programming as well as nonprogramming tasks.
Enhancement activities, in particular, depend on work ar-
rangements in the organizational setting. Thus, following
the introduction of the new enhancement tools, demands
on work arrangements must be shifted for assuring that
these tools can be effectively utilized; in particular for as-
suring that such tools can be successfully fit into the rou-
tine work practices of the setting [30].
Our purpose in this paper is to contribute to a better

understanding of the fundamental aspects of software
maintenance work. Specifically, we want to understand
the ways local circumstances in the workplace affect how
and why people perform software maintenance tasks, and
conversely, how maintenance work affects workplace ar-
rangements. Local circumstances include the incentives
and constraints for why people alter their software sys-
tems, and indicate when people act to maintain their. sys-
tems. The workplace specifies where maintenance work
is performed and the ways it is organized. How people
order and perform their maintenance work also entails who
does this work, and what kind of maintenance activity is
performed.
We present an empirical analysis of two cases of com-

parable software systems in similar organizations. The
case studies concern the evolution of text-processing sys-
tems in two academic computer science organizations,
CSD and CSRO.1 CSD [5], [6] is the computer science
department of a major university, and CSRO [17], [30],
[18] is the computer science research organization at-

'We use pseudonyms throughout.

0098-5589/87/0300-0311 $01.00 © 1987 IEEE

311,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

tached to another major university. Our choice to ex-
amine the evolution of similar software systems in similar
settings is an attempt to mitigate the influence of many
potentially confounding variables..
We use the CSD and CSRO cases to illustrate the kind

of analytical detail needed to understand why and how
software maintenance work is accomplished. These two
cases alone cannot represent how software maintenance
work is performed in every organization. However, our
research design (presented in Appendix) provides an an-
alytical framework for generalizing our findings and as-
sessing findings from related research. Subsequently, in-
sofar as any model or systematic account of software
maintenance work can be assessed in terms of our re-
search design, it should also be able to account for the
kind of activities and situations we describe.
The thrust of our analysis is to explicitly consider the

work situation in which a software system evolves. Rather
than examining maintenance work by focusing on the fea-
tures of the system itself, we explicitly consider the,co-
evolution of the participants' work tasks with their local
work arrangements.
We start our investigation in Section II by examining

what the people who use software systems do as their pri-
mary work: Their involvement in particular tasks typi-
cally matches either some current occupational or career
interest, or some circumstantial commitment which must
be met in order to pursue other work activities. Primary
work includes all the tasks for which a person is explicitly
responsible and rewarded. Ideally, these tasks are in line
with each person's interests in the organization (e.g., pro-
fessional advancement) and are tasks each person would
rather concentrate on if given full discretion. At CSD and
CSRO, most participants are computing specialists whose
primary work includes computer science research work.
Research publications and related technical documents are
an important, professionally recognized product of this
kind of work (cf. [19]). The use of a text-processing sys-
tem is central to the production of these reports.2
We examine how CSD and CSRO participants use the

text-processing systems to accomplish their primary work.
Each text-processing task at CSD and CSRO has some
relationship to tasks performed or controlled by other par-
ticipants. At any time, the successful coordination of these
interlocking tasks depends on a variety of social and tech-
nical arrangements. The work required to coordinate and
align these arrangements to accomplish the tasks at hand
is called articulation work [39], [10], [37], [9]. This is
the focus of our investigation in Section III. In particular,
we investigate the participants' activities when their pri-
mary work tasks get dis-articulated. In both settings, dif-
ferent kinds of re-articulation work emerge in response to
unexpected breakdowns in the organization of primary
work. Participants choose one of two alternatives. The
first is to take the system as a fait accompli and accom-

2In fact, regular use of most computing applications leads to the pro-
duction of reports, listings, and formatted displays of one kind or another.

modate the way they work to the way the system operates
within local computing arrangements. The other is to
make changes in the system as well as in the work ar-
rangements, i.e., negotiate the appropriate maintenance
alteration to be performed and who will carry out the
work. Consequently, how and why software maintenance
work is performed depends on how the related articula-
tion work is accomplished.
We develop'this conclusion in Section IV by examining

the similarities and differences between the two cases. The
evolutionary courses of the two systems diverge. At
CSRO, the text-processing system evolves into multiple
user-personalized configurations, and all maintenance
work on the system is performed by the users themselves
in a loosely coupled manner. At CSD, the text-processing
system evolves so that a dominant configuration emerges.
The original user/maintainer of this configuration devel-
ops a reputation of expertise, and maintenance work on
the system thereby becomes this person's primary work
through an opportune career option. For us, the diver-
gence between the two evolutionary courses indicates a
relationship of mutual influence between the circum-
stances of maintenance work, the participants' strategies
for prioritizing the demands of their work, and the incen-
tives for and constraints on these demands.

Last, in Section V, we discuss related research and then
conclude in Section VI with a summary of our findings
and their implications for understanding software main-
tenance work.

II. PRIMARY WORK
We first examine a primary work activity at CSD and

CSRO, the production of research publications. Next, we
survey the work arrangements which supported this activ-
ity. Then, we examine the text-processing tasks which
CSD and CSRO participants performed and coordinated
in carrying out this activity.

A. Primary Work at CSD and CSRO
Users of the text-processing systems at CSD and CSRO

were typical of those found in academic computer science
organizations: faculty, project managers, research asso-
ciates, graduate assistants, systems support staff, and ad-
ministrative and clerical staff. At the outset of each aca-
demic term, faculty, graduate students, and research
associates might join or leave. Systems support staff as
well as members of the managerial, administrative, and
clerical staff could, on the other hand, leave or join at any
time.
At CSD and CSRO, the process of producing a research

publication emerged from the shared construction of an
idea or alternate work arrangement (hereafter, concept)
deemed a departure from practices described in related
publications (cf. [19]). The concept would pass through
several stages of development. From stage to stage, it took
on forms such as conversational conjectures, informal de-
bates and clarifications, notes, memoranda, overhead pro-
jection transparencies, group presentations, preliminary

312

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

drafts, and polished technical reports. In addition, some
researchers constructed software systems and related doc-
umentation in pursuing their concept, often to a point
where their software development work would dominate
the effort they would commit to producing research pub-
lications.3 At any stage, any number of participants could
(un)knowingly collaborate in the process of constructing
the publication. Similarly, at any stage, the process could
be put off when unexpected circumstances arose that side-
tracked or derailed the participants' interest in the con-
cept.
The actual manner in which a concept was investigated

was bound to the career contingencies of the computing
participants involved. A junior researcher could adopt a
concept and work on it to solve a particular problem at
hand, often in connection with an ongoing project and a
senior researcher. For example, a graduate student de-
cided to develop a knowledge-based program explanation
system to further his interest in advancing knowledge-
based systems technology, as part of the reknown FOO
project. In such cases, the concept might evolve no far-
ther than an internal report, technical memoranda, or other
related artifacts (e.g., a concept demonstration system)
unless the researchers believed their research findings
were substantial enough to further develop, publish, and
circulate. What followed was an explicit collaboration and
commitment between the-researchers to "get the machine
out the door" (cf. [14]) by producing a professional-qual-
ity report that could be disseminated to colleagues.

Initial dissemination took place among local research
and discussion groups, where the potential publication was
circulated, critiqued, debated, and revised. Researchers
could utilize available networks (social, professional, and
electronic) to announce an emergent publication "in
press" or "in preparation," or otherwise bring the atten-
tion of prospective readers to the emergence of the pub-
lication. Public distribution occurred when the publica-
tion was circulated through the appropriate marketplace
of ideas as a technical report, an article in a professional
journal, or a monograph. This marketplace included other
academic organizations where participants strove to stay
abreast of research developments by colleagues pursuing
similar research and publications.
When a publication was distributed and cited in the pro-

fessional literature and among cohorts, the resulting rec-
ognition enabled new professional opportunities for the
publication's authors, and contributed to furthering their
reputations and that of their organization. These outcomes
carved out a rather pivotal role for the text-processing sys-
tems used at CSD and CSRO. These systems encom-
passed the computational resources used to produce inter-
mediate and final versions of emerging professional

3While participants at both CSRO and CSD might normally develop
software systems as part of their primary work, at the time of our studies,
researchers would more often receive professional rewards and promotions
based on the publication of their concepts, rather than on only their dem-
onstration of a concept by a software system.

publications. We describe them next as we review the
work arrangements in each setting.

B. The Work Arrangements and Text-Processing
Systems
We first examine the incentives which sustained the

participant's primary work at CSD and CSRO, then de-
scribe the computing infrastructure which both facilitated
and constrained accomplishment of this work.

Participants' Incentives: The focal incentives of most
participants at CSD and CSRO were shaped by shared
commitments to create and publish valuable research re-
sults. These commitments were renewed through the ac-
tions of individual researchers, collegial reference groups,
academic units/universities, professional associations, and
research funding agencies. Through carefully prepared
and revised publications of research results, participants
could:

* experience the self-satisfying accomplishment of a
job well done, a new entry in their curriculum vita,
and the pride in personally distributing copies to
friends and colleagues;

* increase their professional status and reputation when
recognized as making a significant contribution, and
in turn, increase their influence in their academic
community;

* establish or reinforce their identity with an invisible
college of scholarly cohorts via cocitation and joint
authorship;

* help gain promotion, salary increases, and a larger
share of resources allocated within their academic
unit, or job offers elsewhere;

* achieve widespread reproduction of the publication,
increase their professional visibility, make public
conference presentations, receive ceremonial awards
(for special accomplishments), and achieve biblio-
graphic archival -all through the sustaining publica-
tion activities of professional associations (e.g.,
ACM, IEEE); and

* establish and maintain a conduit for resources flow-
ing from funding agencies that in turn were acknowl-
edged for their support and stimulation of the work
leading to research publications.

Accordingly, participants regularly assessed which en-
semble of these outcomes motivated their effort to pro-
duce a research publication.

Computing Facilities: CSD's and CSRO's participants
used local computing resources in a manner commensur-
ate with their level of research funding and their position
in the organization. Not all users had computer terminals
and high-quality printers readily accessible, nor did they
all have the same allocation of system resources such as
computing cycles and on-line disk storage space.
At CSD, all participants had free use of local comput-

ing facilities managed by the department. There was a
terminal in an office for each faculty member and systems

313

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

programmer, and a shared terminal in each office for grad-
uate students or research associates. Additional comput-
ing resources were available elsewhere within the univer-
sity on a "pay as you go" basis to those who could afford
it (mostly faculty with research grants and their research
assistants). One such resource was a large time-shared
system dedicated to text-processing, which we call the
"pay" machine, in contrast to CSD's own "free" ma-
chine.
The communication facilities available to CSD partic-

ipants for automatically distributing their documents or
messages included three major electronic mail compo-
nents. ZIP, the local mail system and NZIP, which han-
dled nationwide network mail, were acquired from out-
side vendors. CEDEX, an integrated mail system, was
later developed locally by Dr. T., a junior faculty member
who wanted an integrated mail handling system. Because
he sent and received mail on both the local area and the
national computer network, he found separate mail bur-
densome and decided, after consulting with a few regular
users, to unify the functions of ZIP and NZIP into a single
software system.
At CSRO, computer terminals were provided by indi-

vidual research projects according to thier funding ar-
rangements; bigger projects had a larger staff and more
terminals than smaller projects. Users in small or un-
funded projects were often particularly pressed when
many users in the large projects were also computing. Use
of disk storage space and computing cycles on CSRO's
single time-sharing machine was regulated by an alloca-
tion scheme enforced by a dedicated MONITOR program
and an automatic file ARCHIVE facility.
Four other system components supported text-process-

ing tasks at CSRO. NETMAIL, an integrated mail han-
dling system, was acquired from another organization.
BB, a bulletin board facility used as a repository of proj-
ect communications and other public notices, was devel-
oped locally by users. The ARCHIVE utility was devel-
oped by local computer facility programmers to
automatically store unused computer files (e.g., old doc-
uments or source program codes). Last, the MONITOR
program was developed by the computer facility manager
as a means to keep users from exceeding their allocated
amounts of computer time or storage space and to invoke
ARCHIVE whenever these amounts were exceeded.
These computing arrangements formed the backbone of

the text-processing system in each setting. We now de-
scribe how the text-processing system components be-
came part of each setting's work arrangements to support
the participants' primary work, the production of research
publications.

The Text-Processing Systems: The text-processing sys-
tems used at CSD and CSRO were distinguished mainly
by the fact that they had evolved over different periods of
time. Both systems had originally been developed outside
of their setting of use. In both settings, the adoption of
text-processing system components, communication com-
ponents, and other supporting facilities was straightfor-

ward. Some parts came bundled with the computer system
(from the system's manufacturer), while other parts were
bought or brought in and adapted by eager users. At CSD,
the text-processing system had been acquired from out-
side for local use and maintenance only one year prior to
the time of study. In contrast, at the time of the study,
some components of the text-processing system used at
CSRO had a five-year history in the setting, during which
they had undergone substantial in-house redevelopment
for local use and maintenance.
The TEPS text-processing system we investigated at

CSD had two major components: a screen-oriented text-
editor (TEDS) and a text-formatter (TEFS). Both were
developed at another academic computer science organi-
zation and were user-modifiable in order to fit into differ-
ent patterns of use. TEDS was an extensible system, but
had many idiosyncratic features which made it complex
for some to learn. Installed on CSD's free machine in
March 1984, TEDS had since been revised to mitigate its
complexity. Nevertheless, CSD users still faced a tradeoff
between its extensibility and its idiosyncratic features.
TEFS was developed for computing users who produce
technical academic manuscripts. It was first developed in
1978, and began to reach a broader community of users
during 1979. By September 1984, TEFS was installed on
CSD's free machine. Participants who had to access the
pay machine primarily to use TEFS could then migrate to
the free machine, with the prospect of continuing their
established patterns of text-processing at a lower cost.
Within a year, many CSD participants were using TEDS
and TEFS on the free machine with sufficient frequency
as to often bog down system performance during office
hours.
The text-processing system components at CSRO were

operational and in routine use at the onset of our inquiry
in 1978. The most used components of the text-process-
ing system included screen-oriented text-editors and the
NEAT text-formatter. The text-processing components
formed an eclectic ensemble of user-specific configura-
tions developed locally in an ad hoc and fragmented man-
ner. When the main computer system was installed at
CSRO, it came with two line-oriented text-editors and one
text-formatter supplied by the vendor. Different users im-
ported screen-oriented text-editing, text-formatting, and
other text-processing programs from other compatible
computing facilities. The design history of these various
text-processing tools was fragmented and hard to recon-
struct. Also, there was no overall system design to coor-
dinate the use of different system components. Conse-
quently, the efforts to implement and modify the text-
processing system at CSRO followed an unplanned tra-
jectory based on individual participants' needs, interests,
and dispositions.
The researchers' primary work with these text-process-

ing systems at CSD and CSRO was typically organized
into sequences of small tasks or task chains involving the
computing resources available in the setting [30]. We ex-
amine task chains next.

314

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

C. Task Chains
A researcher's primary work with the text-processing

system did not always require using the text-formatter.
The text-editor alone would be used to produce docu-
ments intended for limited distribution within the working
group of the author(s). Such documents required no more
than an "acceptable" quality presentation. The text-for-
matter was usually used when it was necessary or desired
to produce a document with ''nice" quality presentation
intended for outside distribution. The chains of text-pro-
cessing tasks involved in a researcher's primary work mo-
bilized a number of other computing resources, such as
terminals, printers, and electronic mail systems. Depend-
ing on the current work arrangements, a text-processing
task chain could materialize in different forms [30]. The
following is an example of such a task chain:4

1) get access to a computer terminal;
2) gain access to the system;
3) create or alter text files with a text-editor;
4) format the text files;
5) obtain a formatted and printer-ready version of the

files and verify that formatting/type setting is as de-
sired;

6) gain access to a suitable printer and get the docu-
ment printed;

7) verify that the formatting obtained is as expected;
and

8) repeat any appropriate subchain until satisfaction or
bottleneck.

Users of the text-processing systems at CSD and CSRO
usually expected to perform and complete these tasks
without any problem. However, should a system bug or
any other interruption5 arise in the current work arrange-
ments, each user was responsible for bringing about what-
ever actions were necessary to carry out her/his task chain
to completion. The more familiar the path down a task
chain and the fewer the interruptions which dis-articulated
the task chain, the less the amount of articulation work a
user had to commit to doing in order to produce a docu-
ment in the desired form. We examine this articulation
work in the next section.

III. ARTICULATION WORK
In a routine excursion down a document-preparation

task chain, users knew the various system operations and
other actions to be performed. Otherwise, when unfore-
seen problems disarticulated the task chain, users con-
sulted system documentation or other system users for co-
operation in completing the task chain. We examine first

40ther examples of text-processing task chains can be found in [10],
[18], [301.

5Such interruptions included running out of printer paper, jamming of
the printer and consequent destruction of the current document copy, ac-
cidental deletion of the current document file, errant editor keystrokes that
deleted emerging text, retrieving files that were automatically archived,
encountering a high level of demand for shared computing resources, printer
hardware failure, or an operating system crash.

how the successful completion of a primary work task
chain gave rise to articulation activities and then examine
the different forms of these articulation activities.

A. Task Chain Breakdowns Spawn Articulation Work
Completing a primary work task chain successfully is

inherently nontrivial. Even though the task chain may be
readily described and understood at some appropriate level
of abstraction (e.g., our earlier description of a text-pro-
cessing task chain), it is more accurately an emergent pro-
cess. It is enacted somewhat differently in each particular
work instance as the involved participant(s) may see fit to
respond to contingencies in work arrangements [10].
At CSD and CSRO, whenever the excursion down a

-text-processing task chain became problematic-such as
when the commitments of resources (including people) to
some task chain were not met, when interruptions or bot-
tlenecks were encountered-some articulation work had
to be performed before the task chain could be resumed
(either where it was stopped or as befitted the work ar-
rangements resulting from the interruption). As the user
of the text-processing system or the cooperative partici-
pants acted to-resume the task chain, further problems
could arise, leading to the emergence of more articulation
work.
To understand the consequences of this emergent pro-

cess for the eventual completion of a text-processing task
chain and the subsequent effect on the user's primary
work, let us consider a typical scenario of breakdown of
a task chain and consequent emergence of articulation
work at CSD. This scenario is summarized in Fig. 1,
where the annotations in italics (corresponding to the
underlined parts of the description) represent examples of
articulation work.

Typically, a user's first response to a bottleneck was to
try to accommodate to the new situation by initiating a
quick remedial action. However, this response was not
always successful. The user would then seek appropriate
help from other nearby participants (e.g., another re-
searcher, a member of the clerical staff, a member of the
official maintenance staff). Getting help, however, re-
quired some negotiating since most participants were
preoccupied with their own tasks. In the unfortunate cir-
cumstance where the user ended up being left to her own
means, she would attempt to work around the difficulty.
When this was not possible or not successful, the user
would try some other means to work toward a solution by
a reasonable deadline. In turn, this often resulted in post-
poning completion of the current task chain and switching
to another, depending on the user's schedule and dispo-
sitions. Working around the problem often required fur-
ther unexpected accommodation activities and sometimes
even gave rise to some other (sub-)task chain. Moreover,
getting someone to devote what could amount to a sub-
stantial effort to obtain a solution by a particular deadline
required negotiation. If none of the above alternatives
could be achieved, the user's last resort was to completely
restructure the task chain-if possible, so as to bypass the

315

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

Example: The printer paper box is empty on the evening before the research report must be submitted to meet a publication
deadline.

Can I do something quickly about the bottleneck?
If so then do it and resume the (sub)task chain;

(load more printer paper, then print the report)
if not can I get immediate help from someone who knows what to do?

(find someone who knows how to load more printer paper)
if so then do it and resume the (sub)task chain;

(print the report)
if not can I afford to postpone work on this task chain?

(can the report be delivered late without much hassle)
if not then immediately attempt a work-around

(the report must be sent out the next day by Express mail; so find another printer, move the document
files to a backup system, or move to a typewriter)
and resume the task chain;

if so can I get someone else to work on it by a reasonable deadline?
(ask a graduate student to retrieve and load printer paper, and then make sure the printer is operating
correctly)

if so then postpone the rest of the task chain until the fix is made and switch to an alternate task chain;
(e.g., update a bibliography file)

if not can I fix it myself by some reasonable deadline?
(procure enough printer paper and install it right away)

if so then postpone the rest of the task chain until the fix is made;
if not attempt to restructure the task chain

(send a letter explaining the delay)
and propose to routiniz& the handling of the interruption via a software enhancement.
(modify the system to keep track of the number ofpages printed since previous refill, and to notify users
when queued paper is running low.)

Fig. 1. A summary description of articulation activities emerging from a
resource bottleneck in a task chain.

interruption and render it ineffectual. Then, if office sup-
port or maintenance support was available, the user would
try to negotiate with the support participant(s) an appro-
priate enhancement to the text-processing system itself or
the work arrangements in the setting, depending on the
nature of the bottleneck in the text-processing task chain.
The foregoing scenario highlights the nature of articu-

lation work and its relationship to maintenance work at
CSD and CSRO. It illustrates the cooperative activities
necessary to deal with unforeseen problems in a person's
primary work task chain, i.e., to re-articulate the report
production task chain. In particular, it underscores the ac-
commodations and negotiations inherent in bringing about
commitments to accomplish maintenance activities in a
setting. At CSD and CSRO, we found these two basic
types of articulation activities:

1) Accommodationactivities,wherebyparticipantsread-
ily attempt to adapt their patterns of work to the con-
straints imposed by the current behavior of the text-pro-
cessing system and other resources involved in the task
chain;

2) Negotiation ofmaintenance activities, whereby par-
ticipants seek to alter the text-processing system and other
resources involved in the task chain to perform according
to their expectations or desires.
We next describe each of these two types of articulation

activities in turn.6

6These two types of articulation activities can also be viewed as special
kinds offitting work, whereby participants seek to establish a good fit be-
tween their patterns of work and the work arrangements in the setting [30],
[10].

B. Accommodation Work
Accommodation work emerged when users faced con-

tingencies in their primary work, and responded by doing
their work in a way compatible with these contingencies.
Researchers at CSD and CSRO considered the production
of professional documents an important goal. They sought
efficient resources arrangements and effective patterns of
work to achieve this goal. Therefore, they eagerly adopted
text-processing software tools and resources that could re-
duce their work. They also preferred to adapt and reshape
the way they did their work rather than invest more time,
skill, and effort to correct system flaws such as design
errors and maintenance inadequacies. Similarly, as shown
in the example of the previous section, users accommo-
dated resource contingencies by restructuring their pat-
terns of work.
New CSD and CSRO participants did a good amount of

accommodation work when they arrived. They had to ad-
just their prior patterns of work to fit the local computing
arrangements and leam to utilize the available resources
as they prepared their reports. Yet there often was no sin-
gle source of information or documentation which de-
scribed the use of these systems in a manner adapted to
their level of knowledge. Thus they learned to work with
these facilities and to (re)structure their work patterns by
interactive use (exploration) of the system, or through in-
teraction and negotiation with other computer users.
Both experienced and new users saw their accommo-

dation work as a component of their productivity. Their
concern for productivity was reflected in the strategy that
guided their accommodation work: they naturally sought
to minimize their effort at restructuring their patterns of

316

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

work while maximizing the contribution of this restruc-
turing to their primary work activities and purposes.
Accommodation Work at CSD: A common accommo-

dation activity at CSD, which entailed a minimal restruc-
turing of work patterns, was to copy a configuration from
an experienced user, especially if it seemed to take care
of "just about everything you would want to do for the
moment" as one user put it.
Some users went a long way in restructuring their pat-

terns of work. As they became more knowledgeable about
the work arrangements, in particular about system limi-
tations and resource constraints, they created their own
TEFS configurations. Some participants did so because
they believed this would also result in less articulation
work thereafter. Others did so to simply avoid the hassle
of learning many features that may turn out to be of little
use. Still other users engaged in extensive accommoda-
tion work in response to compelling institutional con-
straints, such as the constraint to format their publications
according to a particular journal's guidelines. For exam-
ple, a junior faculty member, Dr. T., brought in files of
his unfinished dissertation when he joined CSD. He had
to reformat this document with TEFS in order to take ad-
vantage of the facility, but needed at the same time to
create his own document configuration tailored to the dis-
sertation publication format appropriate to his university
of origin.
As newcomers established or restructured their work

patterns to take advantage of TEPS, they typically in-
vested as little time as possible in learning useful TEPS
features. Instead, they would usually ask an experienced
user, but preferably a user who had been at CSD only a
short time. This kind of experienced user usually could
relate to the new participant's frustrations with more sym-
pathy than an "older" user. More often than not, she/he
knew a sufficient yet not overwhelming number of useful
features.
Accommodation Work at CSRO: An accommodation

activity common to most users was simply to chart out
the location of system deficiencies (including "traps,"
"mazes," and "black holes") as they discovered them
and to structure the content of text-processing tasks so as
to avoid the charted features.7
CSRO participants who were more knowledgeable

about system limitations and resource constraints (re)-
structured their patterns of work by developing their own
combinations of NEAT macro routines. After that, they
often believed the additional work of maintaining their
individual configuration was worth the savings in articu-
lation work avoided. Some participants also developed
their own NEAT configurations to satisfy specific for-
matting needs by using suitable versions of appropriate
programs.
Newcomers at CSRO and other new users of NEAT

7The development of such accommodation experience and skill is co-
incidentally a strategy often practiced by users of computer games such as
Adventure, Zork, and other fantasy exploration games.

often preferred to treat NEAT as a black box and rely on
the help of experienced users to manage, minimize, or
avoid NEAT hassles. As one particpant remarked,
"NEAT can be nice. But there are a lot of idiosyncracies
that are a pain . . . As I use it more, I run into more of
them. If you want to do something exotic, you have to
find somebody who knows it. For example, there are some
hassles to using special characters. You have to know how
to use them. They're not in the manual." This know-how
was available only from experienced users.
CSRO participants also engaged in cooperative accom-

modation activities when dealing with other resources in-
volved in text-processing task chains. For example, un-
expected bugs transpired at some point in the behavior of
the NETMAIL system. Many of its regular users tried to
figure out what had gone wrong with it. Eventually, their
cooperation led to a common diagnosis of the problem.
However, rather than relying on expectedly lengthy ne-
gotiations with the computer facility maintainers and de-
laying the use of the facility until maintenance work could
be performed, users chose instead to continue to use it as
it was and accommodated themselves to its erratic, mys-
terious, and sometimes frustrating performance.
Among the variety of accommodation activities at CSD

and CSRO, the most common sought to avoid, circum-
vent, or undo adverse system effects due to bugs and idio-
syncracies in the text-processing system. However, users
might eventually believe they simply could not get satis-
faction from the system as it was. They would then ne-
gotiate system repairs and enhancements. This was a more
resource-consuming kind of articulation work, as we show
next.

C. Negotiation of Maintenance Work
Use of the text-processing system at CSD and CSRO

generated maintenance activities both on the text-process-
ing system itself and on the other computing facilities in-
volved in a document production task chain. We describe
in turn the two kinds of maintenance and related negoti-
ations in each setting in turn.
Maintenance Work at CSD: At CSD, maintenance

work on the text-processing system itself was performed
by one of the researchers, Dr. T. As we saw in looking
at participants' accommodation activities, many users
started off with TEPS by adopting and adapting another
user's configuration as a way of creating their own. These
users subsequently maintained these configurations pri-
vately and separately from other users. This meant they
would spend time and effort on activities that would dis-
tract or contribute little to the production of their research
publications.
As an illustration, Dr. T. needed to handle the work-

in-progress he had brought in from the computer science
department from which he was trying to graduate.8 How-

8He would eventually spend more than one year revising fhis dissertation
without completing any other research publications in the interim.

317

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

ever, his documents were formatted in macro-routines that
did not work on the CSD system, and he did not know
how to use either TEDS or TEFS. With the encourage-
ment of two senior colleagues who were enthusiastic users
of TEFS on the pay machine, he decided to "bring up"
TEFS on the free machine and use it to reformat his doc-
uments. He spent much of his time during the Summer of
1984 in reading the manual "from beginning to end." He
then realized that he needed to increase the character set
supplied by the vendor and that the only way to do so was
to augment the TEFS database. He thus had to read the
manual for database administrators. Before long, he had
learned just about everything there was to learn concern-
ing TEFS. Literally, he had made himself the "resident
expert" in TEFS, and had come to be perceived, for all
practical purposes, as its de facto maintainer. Later, he
also came to be considered the expert maintainer of TEDS,
the text-editing component of TEPS, through what he saw
as his other "contribution to the (research) lab" at CSD.
He had developed CEDEX, the integrated mail handling
system, by extending TEDS to unify the functions of ZIP
and NZIP, respectively, the local mail system and the na-
tional network mail system.
As a result of his work, Dr. T.'s expertise in system

maintenance was often taken as evidence of official re-
sponsibility for enhancement activities. Nevertheless Dr.
T. did not consider himself totally bound to maintaining
the text-processing system. In the face of too many users'
requests for fixes or enhancements, he pinpointed the fact
that "most of the work is actually done by a few people."
As he put it, "now, I would still give away the knowl-
sedge ... but after all, this is not what I am getting paid
to do." He had to balance competing career demands and
current work contingencies-i.e., teaching and research
(his official primary work) versus maintenance activities.
However, he was ready for the right opportunity to en-
gage in a radical enhancement to TEDS, including a com-
plete redesign, which he saw as the prime modification to
TEPS really worth making. In the meantime, in negoti-
ating other user requests for a modification, he considered
whether there was a general need for the modification,
how easily it could be accomplished and, often above all,
"how people asked."
Meanwhile, work on the local computing facilities at

CSD was the primary work of a resident systems pro-
grammer. His primary work included making sure that the
facilities were always operational by maintaining the ma-
chine, its peripherals, the operating system, and other
computing equipment such as personal workstations. In
addition, he was officially in charge of maintaining the
mail system. He maintained CEDEX (the TEDS-based
component of the mail system) in consultation with Dr.
T. The systems programmer's decisions on fixes and en-
hancements were "not based on a vote by the user com-
munity" and not very likely to be influenced by negoti-
ating. He would typically make an enhancement on his
own initiative, most likely' "when it is easy to do, for
even the enhancement aspect of maintenance work is often

nuisance work." He would then make the enhancement
available to the participants who could, at their discre-
tion, either exploit it or do without it. Rarely, he would
make an enhancement in response to users' demands, also
depending, in his words, on "how people ask and how
easy it is to do."
As a rule, neither the resident systems programmer nor

Dr. T. would implement a proposed enhancement if it
were not intended to compensate for a flaw in the system.
Flaws in the system included things such as unintended
side effects of a TEDS command or unforeseen conse-
quences of a previous enhancement decision. Both main-
tainers accorded the lowest priority to flaws which were
more readily controllable by the users. The examples of
such flaws they cited included patterns of use which did
not accommodate the way the system actually worked and
proposed enhancements which corresponded to a system
"behavior which the user could achieve by some work-
around." From the perspective of both maintainers, mak-
ing enhancements selectively helped prevent the system
from going beyond the bounds of manageable complex-
ity.

Eventually, Dr. T. was asked by the senior researchers
at CSD to become the main person responsible for the
maintenance of the TEPS and all other research support
systems at CSD. As he was increasingly spending more
of his time and effort in modifying systems that helped
him and others produce their research publications, this
change of position from faculty to research staff was
agreed to after he received assurances from the senior re-
searchers as to CSD's long-tenn commitment to his new
position.
Maintenance Work at CSRO: In contrast to CSD,

maintenance activities on the text-processing system at
CSRO were distributed across the user community. Main-
tenance work on NEAT, the dominant text-formatter, was
performed solely by the users themselves, with no one in
particular having the official responsibility for maintain-
ing the whole system. According to one participant, "ac-
tually, it's not maintained at all." Different users indi-
cated that no one at CSRO really knew everything about
how the original program worked. Nearly all users re-
ported that NEAT was rife with bugs. Some readily
pointed out what they considered to be system design
flaws: system bugs, missing features, irrelevant system
features, awkward stylistic conventions, and poor system
performance characteristics. Some of the system flaws
may have resulted from the method of implementation
(e.g., insufficient testing) by the system builders. Bugs
and idiosyncracies were not fixed, but the system was
somehow being used. Most bugs were found through test-
ing with real data. Users attempted an action they be-
lieved to be correct, as indicated by someone else or by
the system documentation, and found that' some unex-
pected system behavior resulted. The documentation for
NEAT was roughly five years old and not updated to re-
flect maintenance alterations. This led to some problems
for users who acquired an intermediate version of the

318-

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

NEAT program that had been altered without the docu-
mentation being changed accordingly.
What resulted from the fact that no one was explicitly

assigned to maintain NEAT was that many different sets
of NEAT macros were implemented by capable users to
get around the bugs they encountered. The resulting rou-
tines also had to be maintained. Furthermore, some users
were willing to enhance versions of certain programs to
satisfy their specific needs. These routines were likely to
conform to the particular needs of some, but not all, users.
Multiple versions of the NEAT text-formatting system
were in use, and their users became system maintainers
in order to keep their running version up to date with their
patterns of use. In addition, many of the added NEAT
macro routines were incompatible or redundant. This gave
rise to new system maintenance demands, such as the up-
keep of NEAT bug-avoidance macro libraries. Yet, most
users felt that the more time and other resources they could
avoid spending on support activities, the better. They saw
maintenance activities as only a necessary burden, distin-
guished from "real" computing work, i.e., system use or
development.
Maintenance work on the local computing facilities at

CSRO was the primary work of a specific support group.
The group's official responsibility included maintenance
work on the resources supporting test-processing task
chains-e.g., machine and operating system, terminals,
printers, mail system (NETMAIL), bulletin board (BB),
file archiving facility (ARCHIVE), and computer use
monitoring system (MONITOR). But the members of this
group did not assume responsibility for maintaining
NEAT, nor were they involved in acquiring or developing
it.

D. Articulation Work Can Become Primary Work
At both CSRO and CSD, we observed that recurring

accommodation and negotiation activities could lead to
these activities becoming a regular part of someone's pri-
mary work. At both CSRO and CSD, a number of users
(although not a majority) developed software systems in
pursuing the development of their research concepts. For
these people, software development work was a form of
their primary work, much like their production of re-
search publications. This was no surprise, for in academic
computer science organizations such as CSRO and CSD,
many of the research publications produced emerged as a
result of the development of a software system concept
that in turn would be documented in related research pub-
lications. However, not all software development work
was done to develop research concepts suitable for pub-
lication.
At CSRO, a number of junior researchers developed

NEAT macro routines to better customize the text pro-
cessing system to fit both their style of work and the idio-
syncracies of this system. In turn, these software routines
were usually undocumented, but normally within the im-
mediate comprehension of their user-developers. Accord-
ingly, the circumstances at CSRO were such that devel-

oping and maintaining one's own NEAT macro routines
became an infrequent, but otherwise regular part of the
work researchers would perform in developing their con-
cepts. But no publication we examined mentioned the de-
velopment of NEAT macros as an essential part of their
research concept. Thus, the development of NEAT mac-
ros represented a necessary but undocumented part of
these researchers' primary work.
At CSD, the circumstances were different. Here we ob-

served that the primary work of Dr. T. grew from his ef-
forts to produce a publishable form of his research results
(his dissertation). In order to produce this publication, he
had to both modify his source documents and TEPS so
that he could format his publication according to another
institution's guidelines. He acquired extensive knowledge
of TEPS, as well as other electronic mail system com-
ponents. As it seemed that he was predisposed to modi-
fying these software systems as a major part of his work,
then work on these publication support systems was a nat-
ural extension to this line of work. When senior research-
ers recognized Dr. T.'s expertise with TEPS, his dispo-
sition towards spending more effort in modifying software
systems over the development of research, publications,
and their need to find someone to maintain the system that
supported their primary work, they acted to create a new
research staff position that Dr. T. would then occupy. This
action reinforced Dr. T.'s preference to develop software
over publications, and reduced the senior researchers ef-
fort to continually negotiate and accommodate to quirks
and features of TEPS. Thus, in this regard, what started
as accommodation work for Dr. T. eventually became a
regular part of his primary work, via an opportunity to
change his job position at CSD.

IV. DIsCUSSION
Given the data and analysis for the two cases, we return

to our focal interests: understanding the ways local cir-
cumstances in the workplace affect how people perform
software maintenance work, and the ways maintenance
work affects workplace arrangements. We see that local
circumstances include the professional incentives that en-
courage people to recognize opportunities to fulfill occu-
pational or career goals. Maintenance work is performed
when bugs are encountered, resource bottlenecks arise,
task chains break down, new functionality is desired, re-
lated computing innovations are adopted, or personal cus-
tomizations are sought. The workplace can be described
in terms of kinds of problems solved and computing ap-
plications used to accomplish primary work, as well as
the task chains through which this work is performed.
How people perform maintenance work can be character-
ized according to how they undertake 1) accommodation
activities to live with the system as it is, and 2) negotia-
tions with others to alter the system. Last, who performs
what maintenance tasks can depend not only on a job title,
but also on users' desire to be compatible with other sys-
tems to which they are bound through technological, or-
ganizational, and professional constraints.

319

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

Participants' incentives evolve in response to con-
straints and opportunities in their computing workplace.
The strong emphasis on publishing in academic organi-
zations affects the patterns of use of the text-processing
system and the participants' efforts at balancing primary
work and articulation work. As we saw at both CSRO and
CSD, participants naturally evolve accommodation pat-
terns in response to the day-to-day contingencies which
affect their primary work task chains. However, partici-
pants sometimes develop patterns of accommodation in a
dedicated fashion, such as in the form of a new concept
for text-processing system development or modification,
in connection with the timely recognition of a pivotal ca-
reer constraint or opportunity. In contrast to day-to-day
accommodation patterns, these latter accommodation pat-
terns can have a substantial impact on the coevolution of
the text-processing system, its embedding work arrange-
ments, and its users' patterns of work.
At CSRO, day-to-day accommodation patterns became

commonplace, so that maintenance work on the text-pro-
cessing system by users became an infrequent form of
their primary work. Indeed, since members of the CSRO
user community were not restricted to using only a single
version of the numerous individual subsystems available,
all these subsystems had to be'maintained. The necessary
maintenance activities were thus distributed across the
user community throughout the organization.

In contrast, at CSD, the evolution of the text-process-
ing system was intimately tied to accommodation activi-
ties that subsequently turned into maintenance'activities
for one particular user, Dr. T. His text-processing system
configuration emerged as the TEPS system. Maintenance
work on TEPS afforded him a reputation of expertise and
eventually became part of his primary work. Dr. T.'s ac-
commodation work on TEFS and his emergence as a de
facto system maintainer resulted largely from interactions
between his career constraints, his perspectives on career
opportunities at CSD, and circumstantial computing work
arrangements. This is shown by the chronology of his ac-
tivities:

1) respond to a career constraint-the necessity to re-
format his dissertation work-in-progress files with a
special TEFS configuration-by investing a substantial
amount of time in articulation work to learn TEFS;

2) become knowledgeabl-e enough about TEFS to be
considered a de facto resident expert;

3) perceive the necessity for an integrated mail han-
dling system supported by TEDS and combining the fea-
tures of ZIP, the local mail system, and NZIP, the system
which separately handles network mail;

4) again, invest time in articulation work and produce
CEDEX; in the process become very knowledgeable about
TEDS, and be considered, as in the case of TEFS, a
foremost authority;

5) balance productive effort between his de facto main-
tenance of TEPS and his primary activities as researcher
in ways that often favor the former, fostering a new spe-
cialization; and

6) accept the offer of a new position at CSD as research
staff, and thereby enable his primary commitment to fur-
ther develop and maintain CSD's research support sys-
tems.
The dynamics of Dr. T.'s commitment to articulation

work on TEPS, together with his career constraints and
opportunities, created a major shift in the distribution of
articulation efforts. His commitment to and routinization
of maintenance work on TEPS encouraged other partici-
pants to adopt his text-processing system configuration as
the common system. As a result, these participants were
freed from the burden of doing' maintenance work as a
notable portion of their articulation work and from deal-
ing with the attendant delays.

Thus, the negotiations and accommodation activities
that participants employ to balance their primary and ar-
ticulation work are mutually bound to how they evolve
the systems they use. These activities are also mutually
bound to the evolution of work arrangements and the pat-
terns of work.
The participant's proportion of primary work output to

articulation work input diminishes when a novel bottle-
neck in a task chain induces substantial articulation ef-
forts. Eventually, either the bottleneck goes away or the
necessary articulation work gets routinized and the partic-
ipant's proportion of primary work output to articulation
work input increases-at least until other kinds of bottle-
necks arise in the task chain. However, in connection with
the responses of some participants to career contingencies
and patterns of system use in the setting, articulation work
may also give rise to new primary work along with a cen-
tralized organizational unit officially responsible for per-
forming it.

Last, the ratio of primary work to articulation work with
a given software system can be viewed as an indicator-of
how well the system fits into circumstances in the work-
place. When primary work dominates, the fit is appropri-
ate, whereas, when articulation work dominates, the fit is
poor. Thus, over the lifetime of a system, a high rate of
articulation work points to not only a poorly fit system,
but also a loss of productive work effort.

V. RELATED WORK
In many ways, our analysis of software maintenance is

a departure from established practice. In this regard, our
research can be compared to both the approach and results
of other studies. For example, the collection of papers
appearing in the last two workshops on software mainte-
nance [35], [36] address the applicability and appropri-
ateness of various software tools, techniques, and empir-
ical measures. By and- large, these studies focus on
attributes of the software being maintained, but not on
who, how, why and when they are maintained. Nonethe-
less, these technologies can assist in reducing certain
forms of articulation work. For example, tools for main-
taining software system configurations and controlling the
proliferation of system versions (e.g., [26]) could be em-
ployed at CSRO to reduce duplicated maintenance efforts.

320

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

However, no technology can completely eliminate or sup-
plant the practical utility of software system articulation
work. Instead, each new tool or technique is packaged in
such a way that its users must accommodate and negotiate
its fit into routine work arrangements.
Belady and Lehman [4], [20] derived through a series

of studies a number of laws and dynamics of program ev-
olution from measures of software alterations. Their pro-
vocative insights are primarily grounded in attributes of
programs and in idealized models of the software devel-
opment process they conjecture [21]. However, their re-
sults give only modest insight into how software mainte-
nance activities vary with the type of organizational
setting, the type of application in use, local computing
resource availability, incentives and constraints that mo-
tivate participants to maintain their systems in idiosyn-
cratic ways, and so forth.

Other studies of software maintenance substantiate the
preponderance of the maintenance of existing systems
over the development of new systems. Lientz and Swan-
son [40], [25], [231, [24], [22] document how different
kinds of maintenance activities correlate with various or-
ganizational attributes and how user requests for system
enhancements dominate maintenance activities. But their
analyses rely upon data collected primarily from the DP
managers' vantage point, and thus provide a restricted
view of maintenance. However, in recent reports they
recommend that attention be focused on users and their
work environment to better understand the dynamics of
software maintenance [24], [22].

Rockart and Flannery's [29] studies of end-user com-
puting in large organizational settings find that certain
maintenance tasks are frequently performed by functional
support personnel in user departments (e.g., Dr. T. at
CSD). But their reports do not account for the kinds of
computing applications end-users employ to accomplish
their routine (primary) work tasks or how these users con-
vince, or otherwise negotiate with, the functional support
personnel to get maintenance activities accomplished.

Last, as we found in this and related studies, software
maintenance activities add to, or redistribute access to,
the available supply of computing resources that systems
users can mobilize to accomplish their primary work.
Maintenance work of the kinds we describe is central to
the ongoing use and innovation of local computing ar-
rangements, and it has been observed across many types
of organizations and computing applications studied [15],
[17], [30], [18], [32]. This leads us to observe that soft-
ware maintenance work is both a cause and consequence
of how systems and work arrangements coevolve.e

VI. CONCLUSIONS
Software maintenance is a complex and poorly under-

stood phenomenon. Our interest is to better understand
how local circumstances in the workplace affect the ways
in which software maintenance work is performed. We
presented a study of the maintenance of two comparable
software systems in two similar organizations. We ana-

lyzed the evolution of a software system, its users' pri-
mary and articulation work activities, and the work ar-
rangements in which the software system is embedded as
three processes that are mutually dependent.
We found there exists a duality between what people

want to use their system for versus what they have to do
to get their work products out the door. This is what we
distinguished as primary work and articulation work. On
the one hand, articulation work emerges naturally from
bottlenecks in the task chains people follow to accomplish
their primary work. On the other -hand, the accommoda-
tion activities and negotiations employed by system users
and maintainers determine the successful completion of
their primary work. The pivotal role of articulation work
is, not surprisingly, implicit in the traditional distinction
[28] between productive maintenance activities and
"wheel-spinning" maintenance activities. The latter's toll
increases with the lack of forethought for a software sys-
tem's maintenance as well as the accommodation efforts
imposed by unfamiliarity with the system. But it also in-
creases with the articulation efforts imposed by changing
circumstances in the workplace.

Finally, this work poses a number of interesting ques-
tions that require further investigation. For example, to
what extent are the patterns of software maintenance work
described in the cases similar to or distinct from those
patterns in other kinds of settings with different software
systems? To answer such a question implies a need to ex-
amine the primary and articulation work activities of sys-
tem users, their incentives, computing facilities, and soft-
ware systems used. In turn, this question further suggests
that comparative studies of different kinds of software
maintenance work are in order. Also, the kinds of ques-
tions we asked-who, what, where, when, why and how-
suggest that a simple comprehensive framework for un-
derstanding software maintenance work can be developed
and serve as a guide for analyzing how well different soft-
ware tools fit into local circumstances in the workplace.

APPENDIX

RESEARCH DESIGN

The CSRO and CSD case studies were conducted from
1978 to 1984. They are parts of a larger ongoing study of
the process of innovation in computing, the routine use of
computing systems, and the evolution of software systems
in complex organizational settings [17], [30], [18], [31],
[34].
Comparative case studies provide a useful way to study

poorly understood phenomena [8]. Our research design
for developing an understanding of software maintenance
follows the methods of case study research. This entails
the systematic collection of data about individual cases
and the analysis of data to produce generalizable findings
[30]. We use empirical data and seek to develop findings
based on different levels of analysis to establish a
grounded theory [12], [38] of software maintenance.
Our research design incorporates four elements of sci-

321

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

entific inquiry: a mode of analysis, terms of analysis, a

unit of analysis, and levels of analysis. The mode ofanal-
ysis is the basic framework used to develop theoretical
accounts of the phenomena under investigation. Our basic
framework is the set of motivating questions presented in
the introduction to this paper. The terms of analysis re-

flect the perspective and terminology used for character-
izing the phenomena under investigation. Our vocabulary
is derived from current research in the social analysis of
computing and other forms of technical work [16], [15],
[17], [30], [18], [32], [10], [37], [11], [19].
The unit of analysis is the subject of investigation used

as the basis for theory development. It is the focal element
in an individual case study and provides the dimensions
of the problem space under; investigation suitable for com-
parative analysis. The dimensions we use are type of or-

ganizations (academic computer science), computing ap-

plication (automated text-processing), regular work
activities (producing documents), computing system in use

or contention (text-processing system), relevant system

life cycle activities (use and maintenance) and incentives
and constraints on resource use. In this paper, the focus
of our analysis is the work involved in using and main-
taining text-processing systems, at both CSRO and CSD.
The fact that both computing applications are text-pro-

cessing applications and both CSRO and CSD are aca-

demic computer science organizations reflects the level of
our analysis. The level of analysis varies with the dimen-
sions across which the unit of analysis is examined and
generalizations of findings are attempted. The unit of
analysis (an individual case) stands at the base level of
analysis and generalizability. Many choices are possible
for the higher levels of comparison and generalizability:
cases within the same organization, cases across organi-
zations (our choice here), and cases within and across or-

ganizations [30], [8]. In this paper, we examine the main-
tenance of two computing applications of the same kind
(text-processing) in two organizations of the same kind
(academic computer science). Further generalization re-

quires, for instance, comparison with similar case studies
of different types of applications in different types of or-

ganizations [30]), [8].
The mode, terms, unit, and levels of analysis chosen

provide a framework for the collection and analysis of
individual cases selected for comparison and the ongoing
synchronization of the comparative analysis. This helps
us maintain awareness of where the analysis may lead,
how it is pursued, and what is being analyzed, as well as

what is being neglected.
In collecting and analyzing data, we focus on the inter-

actional nature of work in settings involving computing:
how people interact with each other, their computing sys-

tems and their work arrangements [17], [30], [18], [10].
In the CSRO and CSD cases, we seek to understand how
people in a work setting attempt to resolve unforeseen
problems with software system use, such as anomalies in
system behavior and other alterations in their computing
work arrangements.

The data employed are collected through a sequence of
structured interviews with local participants, by first-hand
observation of people's activities in the work setting and
by participant-observation. The grounded theory ap-
proach emphasizes collecting information prior to evalu-
ating it, so that no particular theory is singled out to be
espoused or discredited [12], [38]. This implies that in-
terviews be started with general questions so as not to
preclude any possible outcomes, then continued with more
and more focused questions as warranted by the answers
obtained.
The interviews we conduct are both structured and

open-ended. They are structured by a set of common
questions asked of all informants as well as a set of ques-
tions specific to each informant. They are open-ended in
the sense that these questions are framed so as to elicit
descriptive answers. Analysis of these descriptive an-
swers may then lead to further interviews with specific
follow-up questions.
At CSRO and CSD, the 50 or so interviews we con-

ducted lasted from as little as 30 minutes to more than 3
hours, with an average of about 50 minutes. Topics cov-
ered by the general questions we asked each informant
included: 1) how long they had been in the setting; 2)
their occupational or professional interests and the nature
of their work; 3) which systems they used, for what ac-
tivities they used them and how they used them; 4) what
could go wrong in using these systems to do their work
and how they dealt with such contingencies; 5) which
changes in the work arrangements had an impact on the
way they used the systems to do their work; 6) whether
they had any experiences of the ways in which changes
actually occurred in the setting; 7) whether and why they
would want any changes implemented and how they would
go about having them implemented. Naturally, this pro-
vides us a wealth of data about many situations which are
described in this paper and elsewhere [17], [30], [18],
[5], [6].

Informants in each setting were selected because of their
role with respect to the systems studied (e.g., users,
maintainers, developers), their position in the organiza-
tional hierarchy (e.g., managerial staff, faculty, admin-
istrative staff), or a referral by another informant.
At CSRO, interviews were conducted with project

managers, research faculty, administrative and clerical
staff, research associates, research staff programmers,
computer facility programmers, the computer facility
manager, and graduate assistants. At CSD, interviews
were conducted with faculty, administrative, and clerical
staff, the systems programmer, and graduate assistants.

Additional data were obtained throughout the study by
on-the-spot conversations with participants whenever they
happened to encounter problems of system use in the pres-
ence of the observer. Moreover, our observation activities
included hands-on use of the systems described, review
of software system documentation and research publica-
tions of all kinds, administrative memoranda, and bulle-
tin-board and other public electronic mail messages.

322

BENDIFALLAH AND SCACCHI: UNDERSTANDING SOFTWARE MAINTENANCE WORK

ACKNOWLEDGMENT

Helpful comments on an earlier draft were generously
provided by D. Estrin, L. Gasser, E. Gerson, S. L. Star
and A. Strauss. The referees also suggested importaint
clarifications in our presentation.

REFERENCES

[1] R. S. Arnold and D. A. Parker, "The dimensions of healthy main-
tenance," in Proc. 6th Int. Conf Software Eng., pp. 10-27, Sept.
1982.

[2] R. Balzer, T. E. Cheatham, and C. Green, "Software technology in
the 1990's: Using a new paradigm," Computer (Special Issue on The
DoD STARS Program), vol. 16, no. 11, pp. 39-45, Nov. 1983.

[3] V. R. Basili and A. J. Turner, "Iterative enhancement: A practical
technique for software development," IEEE Trans. Software Eng.,
vol. SE-1, Dec. 1975.

[4] L. A. Belady and M. M. Lehman, "A model of large program de-
velopment," IBM Syst. J., vol. 15, no. 3, pp. 225-252, 1976.

[5] S. Bendifallah, "Management of computing: A case study," in Case
Studies in the Management of Computing, W. Scacchi, Ed., Dep.
Comput. Sci., Univ. Southern California, Los Angeles, Tech. Rep.,
1983.

[6] S. Bendifallah and W. Scacchi, "Software evolution and articulation
work: A comparative case study," in Proc. Int. Workshop Develop-
ment and Use of Computer-Based Systems and Tools, Aarhus, Den-
mark, Aug. 1985, pp. 59-82.

[7] B. Boehm, "Software engineering," IEEE Trans. Comput., vol.
C-25, pp. 1226-1241, Dec. 1976.

[8] F. van der Bosh, J. R. Ellis, P. Freeman, L. Johnson, C. L. McClure,
D. Robinson, W. Scacchi, B. Scheff, A. von Staa, and L. L. Tripp,
"Evaluation of software development life cycle: Methodology imple-
mentation," ACM SIGSOFT Software Eng. Notes, vol. 7, no. 1, pp.
45-60, Jan. 1982.

[9] J. H. Fujimura, "The construction of doable problems in cancer re-

search," Social Studies of Sci., to be published.
[10] L. Gasser, "The social dynamics of routine computer use in complex

organizations," Ph.D. dissertation, Dep. Inform. Comput. Sci., Univ.
California, Irvine, 1984.

[11] E. M. Gerson and S. L. Star, "Analyzing due process in the work-
place," ACM Trans. Office Inform Syst., vol. 4, no. 3, pp. 257-270,
1986.

[12] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strat-
egies for Qualitative Research. Chicago, IL: Aldine, 1967.

[13] R. L. Glass and R. A. Noiseux, Software Maintenance Guidebook.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[14] T. Kidder, The Soul ofa New Machine. New York: Avon, 1982.
[15] R. Kling, "Social analyses of computing: Theoretical perspectives in

recent empirical research," ACM Comput. Surveys, vol. 12, no. 1,
pp. 61-103, Mar. 1980.

[16] R. Kling and E. M. Gerson, "Patterns of segmentation and intersec-
tion in the computing world," Symbolic Interaction, vol. 1, no. 2,
pp. 24-43, 1978.

[17] R. Kling and W. Scacchi, "Computing as social action: The social
dynamics of computing in complex organizations," Advances in
Computers, vol. 19, pp. 249-327, 1980.

[18] -, "The web of computing: Computer technology as social orga-
nization," Advances in Computers, vol. 21, pp. 1-90, 1982.

[19] B. Latour and S. Woolgar, Laboratory Life. Beverly Hills, CA:
Sage, 1979.

[20] M. M. Lehman, "Programs, life cycles, and laws of software evo-

lution," Proc. IEEE, vol. 68, pp. 1060-1076, Sept. 1980. *
[21] -, "Program evolution," Inform. Processing Management (Spe-

cial Issue on Empirical Foundations ofInformation and Software Sci-
ence), vol. 20, no. 1-2, pp. 19-36, 1984.

[22] B. P. Lientz, "Issues in software maintenance," ACM Comput. Sur-
veys, vol. 15, no. 3, pp. 271-278, Sept. 1983.

[23] B. P. Lientz and E. B. Swanson, Software Maintenance Management.
Reading, MA: Addison-Wesley, 1980.

[24] -, "Problems in application software maintenance," Commun.
ACM, vol. 24, no. 11, pp. 763-769, 1981.

[25] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristics
of application software maintenance," Commun. ACM, vol. 21, no.

6, pp. 466-471, June 1978.
[26] K. Narayanaswamy and W. Scacchi, "An environment for the de-

velopment and use of large software systems," in Proc. Softfair 11,
San Francisco, CA, Dec. 1985, pp. 14-25.

[27] G. Parikh, "The world of software maintenance," in Techniques of
Program and System Maintenance, G. Parikh, Ed. Cambridge, MA:
Winthrop, 1982, pp. 9-13.

[28] R. S. Pressman, Software Engineering-A Practitioner's Approach.
New York: McGraw-Hill, 1982.

[29] J. F. Rockart and L. S. Flannery, "The management of end user com-
puting," Commun. ACM, vol. 26, no. 10, pp. 775-784, Oct. 1983.

[301 W. Scacchi, "The process of innovation in computing: A study of the
social dynamics of computing," Ph.D. dissertation, Dep. Inform.
Comput. Sci., Univ. California, Irvine, 1981.

[31] W. Scacchi, Ed., "Case studies in the management of computing,"
Dep. Comput. Sci., Univ. Southern California, Los Angeles, 1983.

[32] -, "Managing software engineering projects: A social analysis,"
IEEE Trans. Software Eng., vol. SE-10, pp. 49-59, Jan. 1984.

[33] -, "A software engineering environment for the system factory
project," in Proc. 19th Hawaii Int. Conf. Syst. Sci., Software, vol.
IIA, 1986, pp. 822-831.

[34] W. Scacchi, S. Bendifallah, P. Garg, A. Jazzar, J. Macias, et al.,
"Modeling the software process: A knowledge-based approach,"
Dep. Comput. Sci., Univ. Southern California, Los Angeles, 1986.

[35] R. S. Arnold, Ed., Rec. Software Maintenance Workshop. Wash-
ington, DC: IEEE Computer Society Press, 1983.

[36] Proc. Conf. Software Maintenance. Washington, DC: IEEE Com-
puter Society Press, 1985.

[37] A. Strauss, "Work and the division of labor," Sociological Quart.,
vol. 26, no. 1, pp. 1-19, 1985.

[38] A. Strauss, Qualitative Analysis. New York: Cambridge University
Press, 1987.

[39] A. Strauss, S. Fagerhaugh, B. Suzcek, and C. Weiner. The Social
Organization ofMedical Work. Chicago, IL: University of Chicago
Press, 1985.

[40] E. B. Swanson, "The dimensions of maintenance," in Proc. 2nd Int.
Conf. Software Eng., 1976, pp. 492-497.

[41] W. K. Wiener-Ehrlich, J. R. Hamrick, and V. F. Rupolo, "Modeling
software behavior in terms of a formal life cycle curve: Implications
for software maintenance," IEEE Trans. Software Eng., vol. SE-10,
pp. 376-383, July 1984.

Salah Bendifallah received the Engineer diploma
in engineering economy/informatics from the
Polytechnic School of Algiers, University of Al-
giers, Algeria, in 1974; the M.S. degree in indus-
trial engineering from Stanford University, Stan-
ford, CA, in 1979; and the M.S. degree in
engineering/computer methodology from the Uni-
versity of California, Los Angeles, in 1982.

He is completing work toward the Ph.D. de-
gree in computer science at the University of
Southern California, Los Angeles. His major re-

search interests are in knowledge-based modeling and simulation of the
software process, knowledge-based software engineering, and social anal-
ysis of software engineering work.

Mr. Bendifallah is a student member of the American Association for
Artificial Intelligence, the Association for Computing Machinery, the So-
ciety for Computer Simulation, and the Society for General Systems Re-
search.

Walt Scacchi (S'77-M'80) received the B.A. de-
gree in mathematics, the B.S. degree in computer
science in 1974, and the Ph.D. degree in com-
puter science from the University of California at'

He is an Assistant Professor of Computer Sci-
ence and Communications at the University of
Southern California, Los Angeles. Since 1981, he
has directed the System Factory Project at USC.
His research interests include large-scale software
engineering, knowledge-based systems, and so-

cial and organizational analysis of computing.
Dr. Scacchi is a member of the Association for Computing Machinery,

the American Association for Artificial Intelligence, and the Society for
the History of Technology (SHOT).

323

