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by Walt Scacchi

This paper describes an innovative
approach to the construction,
application and deployment of software
factories. Based on experience in
creating and evolving the System
Factory project at USC, we present a
new experimental project, whose
technological and organisational
objectives are wide-ranging. This effort
is called the Distributed System Factory
(DSF) project. The DSF project is
intended to provide a software
infrastructure suitable for engineering
large-scale software systems with
dispersed teams working over wide-area
networks. This software infrastructure
is the central focus of this paper. As
such, this paper describes the
information structures that can be used
to model and create the infrastructure,
as well as target software applications.
It also describes an electronic
market-place of logically centralised
software services which populate and
execute within this infrastructure.
Finally, it describes a brief view of how
the DSF project can grow to
accommodate academic and industrial
research groups.

1 Introduction

In general, our interest is in applying and deploying soft-
ware factories in industrial settings. In particular, our
approach is to apply and deploy software factories in large
and expanding academic settings, as a way to realise our
general interest. This is a report on the objectives and
status of development in the Distributed System Factory
(DSF) project. The aim of this DSF project is to create,
apply and deploy a software engineering infrastructure that
can support a distributed wide-area network of software
factories. Such an infrastructure is needed to support what
might be called as a national software engineering ‘collabo-
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ratory’ [1, 2]. This report focuses on the DSF software
infrastructure. It does so in order to emphasise that greater
opportunities for deploying and applying software factories
in industrial settings lie in establishing large-scale collabo-
rations between industrial and academic efforts.

1.1  Going beyond industrial software factories

In general terms, software factories in Europe, Japan and
the US face a common set of problems. These problems
include how to

e support the distributed engineering of software systems
across multiple organisation locations.

e support the concurrent engineering of large software
systems throughout their life-cycle.

e support rapid large-scale software R&D efforts.

e facilitate software technology transfer and transition.

e educate and train new software engineers.

e assess and evaluate current software development prac-
tices and new software technologies.

o demonstrate new software engineering technologies on
practical applications.

o make effective use of local-area and wide-area networks
of heterogeneous computer systems.

e create national or international markets for software
tools.

e integrate various internally and externally developed
software engineering tools, techniques and management
strategies to form coherent software engineering environ-
ments.

Clearly, these are all ‘big’ problems that do not have simple
well defined solutions. However, there are differences
between the various software factory projects, to the extent
that they either seek to find effective solutions to these
problems or view these problems as being separable versus
inter-related.

There are some substantial problems that cannot be
easily addressed by industrial software factory projects.
Principal among these are the dilemmas faced in conducting
large-scale experiments with new software engineering tech-
nologies or teamwork structures. These experiments require
the deployment and application of new technologies in real
full-scale development projects. Current industrial practice
in the US indicates that an effort of five-seven software
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engineers per year represents a $1 million cost to the host
organisation. Large-scale development projects often involve
project staffs of 10-100+ engineers, grouped into teams in
one/many location(s), who work on development projects
that take months to complete, and whose resultant prog-
rams are usually in the range of 25000 to 500000 source-
code statements. Therefore, there is a substantial problem in
the high cost and associated high risk of major economic
losses that can arise if the experimental technologies fail, or
if the project that employs them fails to yield a viable
product.

The ongoing presence of these costs and risks seem to
make such large-scale i situ experimentation with new
software technologies unlikely for most industrial organis-
ations. However, in our view, these same kinds of experi-
ments can be undertaken in academic settings on a large
scale without comparable high costs and risks. This has
been demonstrated most convincingly in the USC System
Factory project [3]. This project has, over the past ten
years, involved between 20-90 graduate computer science
students at a time in the engineering of large software
systems, with development schedules that typically span
4-12 months. In turn, this project has engineered software
tools and domain-specific applications whose size vary
between 5000 to over 100000 source-code statements. In
many cases, this software has been developed under con-
tract to, delivered to and applied by software technologists
in industrial organisations and government laboratories
[3].

Our experiences in the USC SF project indicates that aca-
demic groups can undertake large-scale experimentation
with new software engineering technologies and teamwork
structures that will not, in practice, be undertaken in indus-
trial settings. To us, this means that there is a potential to
realise substantial benefits when industrial organisations
collaborate with academic groups to conduct large-scale
software engineering experiments. Further, we believe that
it is possible for such collaborations between, and among,
academic and industrial organisations to occur on an even
larger scale, in forms similar to what we call a Distributed
System Factory, a network of system factory-like projects.
Accordingly, the DSF is conceived as an experiment in dis-
tributed large-scale software engineering and application.
This paper provides a description of the software infrastruc-
ture that we are developing which can support such large
collaborations.

1.2 Overview

In this paper, we provide a brief summary of the USC SF
project, and we describe our view of a DSF, in order to
substantiate the development objectives of the DSF instruc-
ture that we are now building. The software infrastructure
itself is described in terms of the technologies that we have
already prototyped, as well as the status of those now in
construction. We also present our view of the opportunities
and barriers that exist in the widespread deployment and
application of DSF-like projects.

2 The USC System Factory project

Started in 1981, the USC SF project has been one of the
pioneering efforts focused on conducting exploratory and
applied research of large software systems i situ.* As part
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of this project, we have undertaken a number of empirical
studies and surveys of software engineering practices in a
variety of industrial, commercial, government and academic
settings, including the USC SF project itself [4-9]. This
focus on the organisational and social dimensions (the
people side) of the software engineering process, together
with the technological side, has often given us unique
insights into what can be accomplished with advanced soft-
ware engineering processes, given limited resources and
other circumstantial constraints. However, our interests go
beyond this.

2.1 Organisational engineering in the USC System
Factory project

The USC SF project is also centrally focused on providing
software engineering education for a large number of grad-
uate students [10]. Over a period of ten years, we have had
more than 600 MSC and PhD computer science students
participate in the research, development and training activ-
ities that we regularly conduct. In our view, this is an essen-
tial component of the SF research effort, since the
educational experience provides hands-on involvement in
the specification, prototyping, design, implementation,
testing, demonstration, use and evolution of advanced soft-
ware engineering tools and techniques. Such involvement in
the technical decision-making and workgroup interactions
that these engineering processes entail generally gives these
people a clear understanding of what is possible, what prob-
lems arise, what trade-offs are made, and what actions
improve or degrade the quality of the software technologies
they produce. This form of involvement is significant in our
view for three reasons.

First, the active participation of our student developers
and users regularly leads to new insights about the soft-
ware engineering technology that we develop and use.
These insights, in turn, give rise to new versions of the
software components or integration mechanisms that we
subsequently develop. Making these insights available to
subsequent development efforts is realised through deliver-
able documents, which specifically address future enhance-
ments, and through the five-ten people who persist within
the USC SF project across multiple SF development cycles.
Thus, this represents an organisational mechanism that
supports the evolutionary growth of the SF instructure
through intra-organisational technology transfer and tran-
sition [3]. In turn, this same mechanism is also contrib-
uting to the development of the DSF infrastructure.

Secondly, the vast majority of the USC SF graduate stu-
dents take positions in industrial firms, where they will be
called on to provide comments or advice on what new soft-
ware technologies to use or acquire in order to support the
development of industrial software applications. The hands-
on involvement, participatory development and ‘knowledge
transfer’ that these students experience have been found, in
both the USC SF project and elsewhere, to be effective in the
transfer of advanced software technologies into industrial
practice. Similarly, this facilitates the organisation tran-
sitions that integrate new technologies into workplaces in

* Coincidentally, these are also among the actions now recom-
mended by the Computer Science and Technology Board in the US
for what modes of research in software engineering should be
pursued in the coming decade [2].
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ways that enhance working conditions, workgroup collabo-
ration and job satisfaction [3, 7, 9, 11-15].

Finally, the experiences and insights that we have gained
through the ongoing cyclic development and evolution of
the SF infrastructure have helped to motivate us to more
systematically codify our knowledge into more accessible
forms. For example, we have analysed and documented the
strategies that we find successful for managing both small
groups and large teams of software engineers [3, 8, 16]. In
recent years, we have also developed a process specification
language and environment to model, simulate and analyse
how people work with the various software tools and devel-
opment techniques that are part of the USC SF [17, 18].
This effort seeks to

[0 provide prescriptive software process support.

[0 model and formalise the empirically observable pro-
cesses [19, 20], including what happens when organis-
atonal software processes breakdown or fail.

[0 support the accommodations or negotiations that
people engage in to try to sort things out in response to
unexpected conditions or breakdowns [6, 18, 21].

[0 simulate and replay these models to help explore alter-
native conditions that might improve current practices [18,
21, 22].

2.2 Software engineering in the USC System Factory
project

Our concern with software engineering technology in the
USC SF project is focused on the development, use and evol-
ution of large software system tools, applications and
environments. Each USC SF development effort produces
inter-related multi-version documents that describe the life-
cycle (the requirements, functional specifications, designs,
test plans, implementations, deployment guides, user
manuals and maintenance guides) for the system being
developed. As such, we have found it more efficient for the
structure and, to some extent, the content of these docu-
ments to be standardised in order to facilitate parallel/multi-
person development, review and quality assurance.
However, the form and contents of these document stan-
dards has evolved over time to reflect emerging needs and
technological advances.

Software systems developed in the USC SF project are
documented using both fully structured descriptions (e.g.
functional specifications, designs and source code), whose
syntax and semantics can be formally defined and auto-
matically analysed, and weakly structured descriptions
(narrative requirements, user manuals and maintenance
guides), whose content can be text-processed and under-
stood by people but which may be ambiguous and incom-
plete. We have found that software hypertext mechanisms
are particularly well suited for organising, accessing, brows-
ing through and inspecting these kinds of online documents
[23, 24]. In addition, we have added automated mecha-
nisms to identify and trace relationships across multiple
semi-structured descriptions to varying degrees, in order to
configure, validate and maintain the consistency of inter-
related software descriptions as they evolve [25, 26].

Large software engineering projects in the USC SF
project produce encyclopaedic volumes of semi-structured
and inter-related descriptions. As such, the production of
system life-cycle documentation represents a substantial
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fraction of the system development effort. However, this is
often necessary, since the large scale of the system develop-
ment effort often implies that the system’s documentation
will be the focal medium for co-ordinating engineering tasks
and information flows among developers working at differ-
ent times and places. In general, software development
requires the substantial co-ordination of people (with differ-
ent skill levels), automated tools, multiple system descrip-
tions and other organisational resources. The USC SF
project is no different in this regard. Accordingly, our use of
electronic mail and bulletin boards to help co-ordinate devel-
opment activities is increasingly essential, but these tools
lack knowledge of the software development products, pro-
cesses, workplaces and their inter-relationships that are dis-
cussed when using these media. However, we have begun to
experiment with knowledge-based software technologies to
represent and manipulate this kind of knowledge [17, 18]].
Similarly, to increase the rate and quality of software
system production, we have been investigating other tech-
nologies, including rule-based message management
systems [27, 28], groupware technologies [29], and on-line
catalogues of reusable software components [23, 30, 31].

2.3 Forming a superset of the SF project: a network
of software factories

Given the ten years of research, development and education-
al accomplishments that we have achieved in the USC SF
project, we have become convinced that other academic and
industrial organisations can benefit in similar ways, by
putting system factory-like projects in motion. Having said
this, we are trying to help realise this objective by evolving
the USC SF infrastructure into one that can support and
integrate a wide-area network of system factory-like pro-
jects. This objective is in anticipation of advances in com-
munications networks that can be expected to provide
orders of magnitude greater bandwidth and throughput,
compared to what is widely available today. More impor-
tantly, we are interested in increasing the scale of partici-
pation in system factory-like experiments and therefore
hope to similarly increase the scale of the accomplishments
possible.

Thus, we now focus our attention on the requirements
and capabilities of the software infrastructure for a DSF
project that we have been developing since 1989.

3 The Distributed System Factory project

The principal requirement for the DSF project is to support
a software engineering process, where everything is poten-
tially distributed over a wide-area, through a loosely
coupled infrastructure of logically centralised services.t
Thus, this requires an explicit framework that models what
software entities can be distributed, as well as what services
process them. Further, a major requirement is that such a
software infrastructure must not be subject to global control
from a single administrative authority. Instead, our inten-
tion is that such an infrastructure must be loosely coupled,

1 Logically centralised indicates that computational services
appear to a user (or another program) as local, rather than distrib-
uted, across a wide-area network. Thus, particular implementa-
tions of logical service centralisation may involve accessing these
services through a database that maintains information about the
location, interfaces and access protocols to remote services.
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extensible and converge control on local authorities through
logically centralised servers. Thus, the requirement here is
that the DSF infrastructure should eventually be able to
operate like an open electronic market of software services,
rather than just a centrally controlled hierarchy [32].
Finally, the DSF project should provide opportunities for
large-scale collaboration between software engineering
researchers, educators and practitioners. In the following
Sections, we further describe these requirements.

3.1  Supporting distributed everything

What does it mean for a large-scale software engineering
process to be distributed over a wide-area setting? In our
view, there are two kinds of answers to this question:

e identifying what software objects and activities can be
distributed but still effectively accessed and used.

e identifying what mechanisms are needed to integrate
these distributed objects and activities into a logical, coher-
ent software process workspace.

The kinds of things that can be distributed in a DSF are
software objects, software tools, software process tasks, soft-
ware engineers, target software applications and other com-
ponents of the DSF infrastructure. Software objects are the
data entities and executable control routines that are
assembled into either external software engineering pro-
ducts or internal software environment mechanisms. Soft-
ware tools include compilers, testing systems, application
generators, language-directed editors etc. Software process
tasks include

O recurring development tasks, requirements analysis,
software specification and design, implementation etc.

[0 process improvement activities, measurement, model-
ling, simulation and evaluation.

O process (and product) co-ordination activities, planning,
team-building, configuration management, review meetings
etc.

{0 technology transfer and transition activities between
software producers and consumers.

Software engineers are the people who perform various soft-
ware process tasks at different times and workspaces to
create, update or disseminate software products. Target
software applications are the packaged software products
that software engineers produce to operate sequentially,
concurrently or in parallel on distributed processors and
workplaces. Other DSF infrastructure components can
include a geographically dispersed network of host com-
puters, as well as office and computational workspaces that
can be accessed synchronously or asynchronously. But, if
any, or all, of these elements can be distributed, how can
they be co-ordinated and integrated ?

3.2 An electronic market of logically centralised
services

In the DSF, we assume there is no single global authority
that can choose the best or optimal set of software objects,
mechanisms or activities needed to most efficiently produce
high-quality software. Instead, our objective is to provide a
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series of interfaces and protocols that enable software
service mechanisms to be co-ordinated, selected, configured
or extended, as necessary. Thus, instead of a single global
authority, we seek to support an electronic market of soft-
ware services, where external developers can join and intro-
duce new or competing services, or where coalitions of
software technologists may form to develop highly special-
ised service mechanisms or package service mechanisms
that span multiple layers of the DSF infrastructure
described below.

What categories of software services do we expect to be
required by the DSF project? At a minimum, we expect that
the same categories of services being investigated by soft-
ware engineering environment researchers are required. To
us, these categories of software engineering environment
services include

e operating system and metwork encapsulation services,
which abstract the operations of the underlying hardware
and software platforms through sets of higher order inter-
faces.

e object management services, which provide for the
organisation, storage, retrieval and update of typed, attrib-
uted software objects created or manipulated by people or
programmed tools.

o collaboration services, which provide mechanisms for
allowing multiple users synchronous or asynchronous
access to software objects or lower level services.

® {tool integration services, which provide mechanisms for
rapidly configuring or integrating newly developed tools
into coherent software engineering environments that access
and manipulate underlying objects and services.

e fool services, which provide for different classes of pro-
cessing tasks that software environment users will employ.
o user interface services, which provide for the construc-
tion or use of consistent ‘look and feel’ user-system inter-
action, process window layout, command menu selection
and other direct manipulation display capabilities.

e re-engineering services, which provide mechanisms for
rapidly extracting, synthesising, encapsulating and extend-
ing the functional capabilities of externally developed soft-
ware systems, so that they can henceforth be supported
within the DSF infrastructure.

® quality assurance, configuration management, validation
and verification services, which are intended to assure that
newly engineered and evolving software applications, and
accompanying documentation, satisfy a formalised set of
practical quality or integrity constraints.

e software process modelling services, which provide
support for the capture, representation, query, simulation
and analysis of multi-agent software processes performed
within resource-limited organisational settings.

An electronic market represents a distributed network com-
puting environment, where clients can choose among many
service providers for the processing they require. This
implies that clients select and access alternative service pro-
viders through interfaces and protocols that are common
across servers or service brokers [33]. This also means that
the market for services can expand both horizontally, as
multiple servers emerge to compete to provide a given cate-
gory of service, as well as vertically, as servers emerge that
encapsulate or further stratify a set of distinct service cate-
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gories. We chose to model and construct the DSF infrastruc-
ture from software services that can be either directly
accessed as a separate service layer, or constructed from
provided mechanisms and underlying services. Note,
however, that an electronic market is not a software com-
ponents integration mechanism, as in Reference 34. Instead,
a market is a forum where software components or services
of all kinds can be made available for distribution,
exchange, acquisition, experimental use or evaluation. Thus,
in the DSF, it remains the responsibility of local develop-
ment groups to select and integrate software components or
services they believe are viable or significant contributions.

3.3  The layers of the DSF infrastructure

The DSF infrastructure represents a multi-layered open
system. This openness indicates that evolutionary changes§
can occur at any layer which, in turn, can propagate new
services or service failures to adjacent layers. As such, this
openness implies that DSF integration is a process that
coincides with evolutionary changes. Thus, the more
diverse and heterogeneous the DSF becomes, the more
extensive the integration work that is allowed or required.
However, this process allows opportunities for both horizon-
tal and vertical integration and encapsulation of inter-
related servers as a basis for constructing highly specialised
(horizontal) services or (vertical) environments. This means
that different software infrastructure developers can focus
their development activities on the construction of robust
single-layer services (e.g. user interface services), or on the
packaging of multi-layer services into a package-of-services
environment (e.g. an environment that provides collabo-
rative multi-user tool interface and integration services).

Based on our experience in the USC SF, these layers must
span from the operating system (OS) and network level to
up through the relationships between the developers and
end-users of an application. In this way, we can see how the
DSF infrastructure interlinks technology and people. At
present, the number of infrastructure layers that we work
with is eight, including

O OS and network interface; provides access to OS-
managed entities such as files, processes, streams, queues,
pipes, sockets, utilities, daemons, command shells, memory
buffers and device drivers, through local or remote system
calls embedded in software objects.

O control and data objects; provide access to entities that
either (for control) manipulate OS entities and data objects,
or (for data) present the type, attributes, attributes values
and realisation contents for software objects manipulated by
tool subsystems. In addition, control objects are data objects
that can be executed through the OS and network interface.

[0 subsystem services; provide a medium through which
software tools or application programs access and manipu-
late underlying objects that users select through the user
interface.

0 wuser interface; provides the displays and command

§Such as reuse, functional enhancements, bug/anomaly
resolutions, performance improvements, interface or internal repre-
sentation restructuring or platform migrations on the technology
layers; staff turnover, budget cuts or schedule changes etc. on the
topmost people layers.
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menus which invoke designated tools on selected objects
that may conform to some software process task.

O software process tasks; provides a medium for
specifying the possible sets of actions that proceed or follow
a displayed event or command selection through the user
interface.

O software engineering agents and resources; provides a
medium for specifying what roles different people or intelli-
gent mechanisms can play in order to perform a software
process task with available resources, and how they might
work together.

O Software engineering teamwork; provides a medium for
planning and co-ordinating how different agents might
work together when either software process tasks succeed
or breakdown (and require some remedy); or relationships
between software application producers and consumers
change or shift.

O software producer—consumer relations; provides a
notation for specifying how software developers, users and
maintainers can be inter-related in order to facilitate effec-
tive software technology development, transfer, transition
and routine use.

4 Information structures for modelling the
DSF infrastructure

Below is a brief description of the information structures
that we have developed for modelling and creating a
working DSF infrastructure that accommodates both local-
area and wide-area network services. In our view, each of
these classes of structures is necessary. Similarly, these
structures must be extensible and evolvable, since time and
experience (both ours and yours) will support the wisdom of
our current judgements. These structures include software
objects, compositions of software objects, software engineer-
ing processes and software engineering settings. We will
describe each in turn, as well as their constituent substruc-
tures. Overall, our objective is to create and maintain these
information structures for software engineering as a
directed graph, which we will refer to as a software hyper-
text [17, 23].

4.1 Basic software objects (BSO)

BSOs denote semi-structured object descriptions of various
length and substructure [23, 28]. Semi-structured means
that object descriptions are structured to some degree. All
objects are typed and possess descriptive attributes, which
characterise the form, contents, purpose and network iden-
tity of the object [23, 35]. The range of possible values
these attributes take on may be either completely defined
(e.g. by formal language specification, type declaration or
enumeration) or weakly defined (an alpha-numeric string).
However, the presence and formalisation of these attribute
definitions determines the degree to which the descriptions
can be parsed, analysed and interpreted by processing
mechanisms such as language-directed editors, rule-based
interpreters, specification and design analysers, or compilers
to determine their consistency and completeness [3, 23].
BSOs and object compositions provide a common, typed
substrate for representing and managing software data
objects in ways that facilitate OS and subsystem integra-
tion.
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4.1.1 System libraries and communication protocols: the
base-level software objects represent procedural code that
provides an interface to the underlying operating system
entities and a wide-area network. Typically, these are func-
tion or procedure libraries that are externally managed and
maintained. A common example is the X-Window system
libraries that are publicly available, regularly updated and
ultimately maintained at MIT. However, we have also devel-
oped a collection of low-level utility routines, which provide
different kinds of access to OS or network-managed
resources, such as interprocess communication sockets or
network file servers. With these mechanisms, facilities such
as distributed OS command language shells [36], gateways
to remote repositories [35] and synchronous multi-user
display interfaces can be provided. Further, use of these
mechanisms in systems-level programs is often structured
into protocols of operations for transparent access to local
or remote objects [35]. Such transparency provides a
common view (a client-server protocol) across multiple
object bases, which may be heterogenous. For example, the
following set of entities and operations are part of what we
refer to as a ‘distributed hypertext protocol’, which provides
a transport layer and service-level interface to local or
remote software objects in a way that hides the details of
their physical implementation [35].

e Entities:
O objects are either atomic or composed -entities with
characterising attributes and contents, such as remote
source code files and databases.
[0 contents are part of a designated object with a con-
crete realisation, such as the source code within a source-
code file object.
O attributes are unary relations that indicate the type
or value for a set of properties attached to an object, such
as its author, date or creation, object identifier, revision
timestamp etc.
[0 links are binary relations that indicate the source
and target object(s) associated through some user-defined
mapping.

o Operations:
[0 get retrieves a designated entity from local or remote
servers.
[0 delete removes the instance of a designated entity.
O add creates an instance of a designated entity.
[0 wupdate deletes an old instance, then adds a new
instance of a designated entity as an atomic event.
[0 st retrieves a (sub)set of the attributes of the desig-
nated entity from its servers.
[0 find searches for a set of objects that matches a pre-
dicate.

4.1.2 Relations: relations represent links within or
between software objects. For example, keywords and anno-
tations are special kinds of relations that are supported with
processing mechanisms embedded in our software hyper-
text server [23]. Keywords support tracing the occurrence
of index terms across software documents. Annotations rep-
resent hierarchically linked narratives that further describe
a designated word, phrase or object to indicate its meaning,
explanation of its use or decisions pertaining to its defini-
tion and purpose. Users can also define semantic relations
which, in turn, can be static or operational. Static relations
denote a simple logical relation between linked software
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objects, whereas operational relations invoke a user-defined
function or process when linked items are visited or modi-
fied.* Overal], relations can be stored and managed by
either an object-oriented or relational database management
system (dbms), if the dbms mediates access and updates to
the object spacet [23, 25]. In this way, linked software
objects can be indexed, browsed through and relationally
queried through the mechanisms of the dbms, including
query processors, report generators, pattern matchers and
fourth-generation languages. This also allows for the rela-
tion (link) servers to exist separately from the BSO servers,
thus accommodating more distribution and server heter-
ogeneity [35].

4.1.3 Software product components and tools: BSOs may
also represent large-grain software entities. Such objects
may take the form of complete executable programs or
common documentation unit (e.g. the man page on UNIX).
What makes such objects basic is that they are treated as
atomic either by a user or by some other program. Tools
such as a C+ + source-code compiler and debugger may
each represent composite programs, but if their parts are
inaccessible to users or other tools, these executable prog-
rams can be treated as non-decomposable software objects.
Thus, the granularity or size of a software objects does not
necessarily determine its atomicity.

4.2 Software object compositions

These are networks or graphs of BSOs and other (nested)
compositions that denote some user-defined association(s)
{37]. For example, transient documents can be composed
for printing only the sections or subsections of an article
modified by an author since the last revision. In multi-
authored documents, such as large software systems, this is
a particularly useful feature that facilitates parallel develop-
ment activities and project status monitoring. Similarly,
hierarchical compositions allow software descriptions
throughout the life-cycle process to be managed, viewed or
evolved in ways that maintain and assure their correctness,
or keep track of their inconsistencies [26].

There are three forms of compositions that we have
found useful in the USC SF project: linked paths, deliver-
able software products and project partitions.

4.2.1 Linked paths: linked paths typically represent an
aggregate linear sequence of BSOs that a user finds conveys
useful information as a linked set. The linearity denotes that
the sequence of BSOs should be viewed (on-line or off-line)
in the order composed. There are no restrictions as to what
objects can be included in a linked path, other than that
they be accessible. For example, a source-code file could be
linked to its originating requirements, its design and a col-
lection of mail messages among its developers, which
discuss the relative merits of alternative implementation
strategies. In practice, we find that linked paths are fre-

* For example, gsort() IS_A sort-function, where IS_A denotes a
static subclass relationship, and gsort.c COMPILES_INTO gsort.o
represents an operational relation that invokes the C compiler
whenever gsortc is modified, in order to automatically derive
gsort.o.

t This allows the software object repository to be treated as a
‘storage manager’ or ‘object server’, and thus does not assume that
the software objects must be stored physically within the dbms,
nor at only a single network site.
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quently used during exploratory development activities
[37] and that most linked paths tend to include only a
small number of objects.

4.2.2 Deliverable software products: deliverable products
represent aggregations of BSOs and/or hierarchical com-
positions of BSOs [23]. For example, a BSO might be used
to denote each section, subsection or paragraph within the
requirements analysis document for a project. More gener-
ally, deliverable products can be used to define the structure
of software system information as a collection of life-cycle
document structures that can be standardised, shared and
reused across many project teams [23]. This stan-
dardisation can therefore support parallel authorship of
multiple software documents when the inter-relationships
between documents are made explicit a priori. This arrange-
ment thus creates an opportunity for improving the co-
ordination and productivity of the system development
effort [37].

4.2.3 Partitions for projects and teams: partitions provide
a structuring mechanism whereby collections of deliverable
products can be composed, standardised and shared by
classes of users in different development efforts. For
example, in the USC SF project, partitions can be organised
by work group, team or project site [3]. Partitions represent
contexts [38] for structuring access to a hypertext of soft-
ware objects. Thus, individual product or BSO instances
can be stored in a single partition but accessed from multi-
ple partitions. In this way, people working within a parti-
tion may browse through, link or compose across multiple
partitions. This supports the assignment of standard
BSO/product-processing mechanisms to designated types of
software objects [17, 23]. Similarly, it helps to minimise
getting lost in a software information hyperspace, since a
user always works within a known context with defined
deliverable products and BSOs.

4.24 Software engineering processes: the preceding infor-
mation structures are used to describe the organisation of
software objects as product components that emerge during
the software life-cycle. However, it is often the case that the
software life-cycle process (the sequence of tasks and associ-
ated processing mechanisms that create and manipulate
software objects) is itself subject to alternative definitions
and task compositions. Thus, the tasks which software
engineers perform should also be developed, documented,
organised, updated and processed in ways analogous to
other software objects.

The information structures for specifying software engin-
eering tasks need to describe the sequences of processing
mechanism invocations that simplify the routine manipula-
tion and interchange of software documents. Consider
source-code program documents, for example. Here, the pro-
cessing mechanisms for manipulating source-code descrip-
tions include editors, compilers, debuggers, program linkers
and loaders, as well as formatters for displaying highlighted
(‘pretty-printed’) program listings. The task of developing a
working program usually requires the use of each of these
mechanisms. The sequence of their invocation is mostly
non-deterministic and non-procedural, but it is easily
tracked by individual software engineers for small prog-
rams. However, if the programs being developed are large
and built by teams developing multi-version program com-
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ponents according to an elaborate life-cycle engineering
methodology [3, 23], the program writing task becomes
complex and costly, if not well co-ordinated. The description
of software object/document processing tasks can be
decomposed at many levels of detail and inter-relationship.
For example, there must be support for specifying ‘the task
of task specification’. This meta-task description is needed
for organising tasks, specifying their components and inter-
relationships and assigning them to appropriate partitions.
Meta-task descriptions must be maintained, since the
content and structure of task descriptions may evolve in
open system workplaces in unexpected ways [6, 21, 39-41].
Similarly, there are at least two classes of tasks for which
many subtypes can be identified. These are the manage-
ment tasks of project administrators and the engineering
tasks of technical project staff. Management tasks focus on
activities such as decomposing system development projects
into subsystems; assigning staff and processing mecha-
nisms; scheduling and budgeting subsystem description
development; monitoring project progress and productivity;
acquiring and maintaining an adequate supply of staff and
computing resources; assuring the quality of the integrated
and validated final product document assembly; and
redoing any of these when things break down, go wrong, or
when external conditions dictate [16]. Engineering tasks
are performed by individual or small groups of engineers
who create, manipulate and interchange component docu-
ments assigned to them among other things [6, 16]. These
tasks include analysing system requirements, developing
system functional specifications and designs, program
development and test, maintaining existing systems, and so
on.

Software project management and engineering tasks are
inter-related in many ways. For example, in order to
confirm that a system is fully operational and ready for
delivery, the tasks of assuring that all the right versions of
all of the right system components were selected, composed
in the right order, and then appropriately tested, must all be
successfully performed. Each of these subtasks, in turn,
requires management subtasking. For example, each of
these subtasks assumes that the required source code prog-
rams were developed and run through the assigned set of
source-code processing mechanisms. However, they also
assume the existence of either an automated processing
mechanism or manual administrative mechanism to check
that the components fit together in a consistent and com-
plete manner. When the number of components is in the
hundreds or thousands, each existing in one or more ver-
sions, each potentially fitting into many alternative configu-
rations and each having one or more sets of data for testing,
a combinatorial explosion of alternatives must be engi-
neered, configured and managed. The complexity of the
emerging system begs for co-ordination and automation
rules that simplify and maintain a closed system descrip-
tion, whose consistency and completeness can be directly
assessed. However, the complexity of system artifacts
requires that the successful performance of the management
and engineering tasks must be interdependent 6, 16, 4042,

All tasks, regardless of level of description, describe a
potentially non-linear sequence of actions§ These actions

§ Non-linear sequence indicates a partial ordering of non-
deterministic or potentially iterative incremental actions. In other
places, these action sequences are called task chains [6, 18, 40, 42]
or plans [43].
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affect some concrete or abstract transformation of a soft-
ware BSO, product or partition. For example, in the task of
implementing a software system design as a program, the
creation of a successfully compilable program component is
a necessary action. Other actions in the sequence include

o understanding the software design.
o developing a program implementation strategy.

e establishing which processing mechanisms are avail-
able.

e debugging anomalous program behaviour etc.

In addition, each task or action can be guarded with pre- or
postconditions that must be satisfied before forward
progress can continue. Further, the actual action sequence
traversed by a user can be recorded in a history script for
subsequent analysis, replay or reuse [18].

In turn, all actions can be further decomposed into primi-
tve actions. These represent commands issued in dialogues
between an individual developer and the current tool or pro-
cessing mechanism in use. For example, understanding the
software design can entail

[0 browsing through a design document.

0 following embedded cross-reference relations.

[0 asking the design dictionary for information about a
particular software object.

O ﬁadng design details back to the originating system
requirements.

O searching for an existing program component which
performs a similarly designed computation etc.

As before, the sequences of primitive actions are also non-
linear [17].

Overall, primitive actions, actions, tasks and meta-tasks
must be carefully aligned and performed when a system of
software life-cycle documents are produced. This can
become an emerging open-ended activity that we seek to
structure, control and close, so that we can assure its consis-
tency and completeness. As such, these software process
descriptions at varying levels of detail cannot be guaranteed
a priori to be consistent, complete or correct under all pos-
sible performance circumstances. Hence, the need arises for
viewing the creation, manipulation and evolution of soft-
ware process task descriptions as structured information
that should be managed as a domain-specific software
object hypertext [17, 24]. To this end, we have developed a
knowledge-based software process language and support
environment for developing formal models of software tasks
structures and their relationships to other development
objects [17, 18].

4.25 Software engineering settings: a DSF development
effort will include people with different skills, processing
mechanisms and various shares of organisational resources
in dispersed locations. Thus, this information should also be
described and linked into the software object hypertext. We
will limit our focus here to the project participants.

People in software engineering projects are typically
divided in terms of management, engineering, customer,
and maintenance skills. Further decompositions (or sub-
types) of each can be identified.
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For management skills, we sometimes see specialists for
process management, quality assurance, scheduling and
budgeting, and configuration management. On small pro-
jects, these skills might be possessed and put into practice
by a single person. However, on large projects divided into
many subsystems and small group teams, these manage-
ment skills will often be distributed among many people.
Similarly, on the engineering side, there may be specialists
for each software life-cycle activity or a subset of life-cycle
activities. For example, the principal software engineer and
a small group of trusted senior engineers may be primarily
responsible for defining an overall software application
architecture and major subsystems, as well as specifying
their operational requirements. These specialists, however,
will usually not be given the additional responsibilities of
performing the detailed design and implementation of
source code modules.* Similarly, the majority of system pro-
grammers may not have the skills for producing a viable
set of system requirements or overall design.

However, there are also other people whose participation
and skills can affect a software engineering project. These
are the end-users and clients, who define the system’s
general requirements, and the system’s maintenance staff. If
the customers have experience in specifying or using
diverse software applications, their skills in specifying
system requirements will be different from someone acqur-
ing or using an unfamiliar application technology. These
latter type of customers may, as a result of their inexperi-
ence or uncertain knowledge of the new technology, end up
frequently changing the specification of their requirements.
However, it is widely recognised that changing system
requirements is one of the most frequent causes of projects
being late, over budget, or otherwise a technical failure or
maintenance nightmare[14]. This brings us to another class
of project participants, software system maintenance staff.

For a large system, maintenance activites go on for years.
Maintenance tasks (adding functional enhancements, resolv-
ing anomalies, tuning system performance, migrating the
system to other environments) are divided among staff,
according to subsystem responsibilities. Software main-
tenance staff for large systems are generally not the same
people who originally developed the system. As such, their
knowledge of the system’s operational behaviour, function
and structure must be derived from either the existing soft-
ware object descriptions, informal conversations with others
or direct experience. One frequent problem here is that the
existing descriptions (source code versus system designer)
are typically inconsistent, incomplete or otherwise inade-
quate [6]. Thus, software maintenance staff are often at a
disadvantage in keeping operational systems viable, unless
there are automated maintenance support systems to assist
them [25, 44], or the available software object descriptions
were engineered and maintained throughout the project up
to this point. As a result, the success of the maintenance
staff's tasks depends on their ability to accommodate or
negotiate alternative definitions of their tasks or work
arrangements, as well as understanding how new require-
ments can be met by modifying the existing systems [6,
25].

As such, we can identify four classes of participants for

* One possible exception to this might arise for modules desig-
nated as critical to overall system performance or integration. In
most projects, however, this may be uncommon.
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software engineering projects; managers, engineers, cus-
tomers and maintenance staff, which can be further decom-
posed into task specialists that are inter-related and
interdependent. However, what is critical is the linking of
tasks to skills and other resources, rather than the number
or names of the participant classes. The task-skill com-
binations are constrained by the limits of the organisational
resources and automated processing mechanisms allocated
to their interlinked project partitions. Thus, the structure,
content and flow of project participants’ task organisation
should be described and managed as evolving software
object descriptions [17, 18, 24].

Lastly, we should also delineate the configuration of tools
and organisational resources, as well as their relations to
other setting, process and software object description struc-
tures. Accordingly, these descriptive configurations should
also be represented within the software hypertext, as sug-
gested elsewhere [3, 17].

5 The software services infrastructure

We now describe the collection of software processing
servers which service the information structures that rep-
resent and model the DSF infrastructure.

5.1 A distributed object management server

Given the preceding model for software information in the
DSF infrastructure, we need basic services for accessing,
storing, sharing and updating this information across multi-
ple networked sites. At present, these services are realised
by what we call the distributed object management server
(DOMS).

The requirements satisfied by DOMS are manifold. It pro-
vides a richer set of persistent object services than available
from a local-area network file server. It provides services for
both individual objects and object sets/databases, which are

‘treated as concurrently accessible composite objects. It pro-

vides for extensibility through user-defined object types. It
provides a means for locating objects distributed over a
wide-area network through query mechanisms in ways
transparent to a user. Thus, object databases can contain or
compose distributed objects. It also supports operations
such as read, write, copy, name, find etc. much like a
network file system. It provides object-oriented database
functionality, together with a persistent programming lan-
guage. However, it also provides a library of DOMS func-
tons that can be either extended and linked into an
application system, or integrated with other mechanisms in
the DSF infrastructure through the DHT protocol [35].
Given this, DOMS can be configured as a single, logically
centralised repository that integrates a heterogeneous collec-
tion of object servers and link servers.

All objects within DOMS have a unique identity, type,
behaviour defined by attached methods and complex state.
Object types can be determined at runtime, so that control
objects can be directly executed or treated as data. In turn,
control objects can also access and manipulate DOMS, as
well as its objects. Objects can include other objects. Thus,
object methods and attribute values may also be objects.
Object behaviour can be inherited through a conventional
inheritance mechanism. Behaviour methods are polymor-
phic, so that the same message sent to different object types
may invoke different methods. The object state (which may
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represent a snapshot of an object’s current attribute values)
is encapsulated and accessible only through the object’s
methods.

5.2 Groupware support through collaboration servers

As noted earlier, teams of engineers work in parallel or con-
currently to develop, inspect, assure and manage multi-
version software products, their configurations and their
component objects. These software objects then become
medium for co-ordinating process tasks and information
flows across organisational time and space. Conventional
email and bulletin boards provide general-purpose asyn-
chronous communication services. However, these conven-
tional communications services can only provide ad hoc

.support as engineering teamwork becomes more dispersed.

‘What we need are communication services that can support
synchronous and asynchronous process tasks and tool invo-
cations by multiple users. We therefore refer to functional
mechanisms that provide these ‘groupware’ services [29] as
collaboration servers.

The collaboration servers we provide as part of the DSF
infrastructure represent a muiti-level interaction protocol.
However, we distinguish between synchronous and asyn-
chronous collaboration services. For synchronous collabo-
ration, we focus on providing concurrent multi-user
interfaces to software tools or applications. For asynchro-
nous collaboration, we focus on task mail-message manage-
ment.

The architectural layers for synchronous collaboration
span from the OS network layer up through the user inter-
face application layer. Synchronous collaborations across
distributed sites entail a virtual network of user communica-
tions, object manipulations and tool/application command
invocations. The virtual network circumscribes a group of
users who seek to collaborate through shared objects and
processes over a wide-area network in real-time. Thus, this
virtual network mechanism is not merely a shared window
system, but instead it represents a set of service layers on
which various low-level processes, objects, user sessions,
tools or applications can be shared over a network. This
requires a set of functions that set up the necessary inter-
processor communication sockets over the network. This
service layer, in turn, manages the virtual network topology
through functions that create, remove, join and exit virtual
collaboration networks (and sub-networks), and multi-cast
messages. The next layer up provides functions for syn-
chronisation of data shared in a collaboration session (e.g.
text buffer, fine-grain locking/unlocking for concurrent user
access). On top of this, resides what we call the Co-X layer,
which inherits the capabilities for X-Window widgets [45]
utilised by tools or applications, and adds methods and
structures that extend the X client-server protocol to work
with the underlying virtual network and data synchro-
nisation services. Finally, the tool/application layer rep-
resents the subsystems that offer users collaborative access,
such as co-texteditors, real-time conference systems, voting
systems and shared drawing tools. Our experience with the
development of co-tools such as these indicates that many
existing tools that are already compatible with X widgets
(e.g. xedit, vi, emacs) can be ‘co-ised’ through rather modest
source-code alterations (changing less than 20 lines of code
in some cases). Clearly, the realtime synchronous per-
formance of the virtual network depends on a moderately

363



high network bandwidth, such as is now available for most
local-area networks, for emerging metropolitan-area net-
works and for proposed high-speed wide-area networks. t

Things are much simpler for the asynchronous collabo-
ration server. Simply put, this server extends conventional
email services to handle typed and attributed objects as
mail messages. This means that rule-based mail filters can
be constructed that can automatically send and receive mail
to and from local/remote users {46]. In turn, these mes-
sages can transmit or trigger executable control objects on
the message receiver’s end. This enables, for example,
process task-specific communications to be sent from a
user-defined object to remote users, whose eventual reply
will be linked to the originating object, deliverable product
or partition. In this way, mail messages can be sent and
received in the process-task contexts where they emerge,
rather than being localised to decoupled access facilities of
conventional email systems. This asynchronous collabo-
ration mechanism was previously demonstrated in the USC
SF with the ISHYS hypertext environment [17]. Thus,
using both the synchronous and asynchronous communica-
tions mechanisms, we find that we can support the shifting,
collaborative work structures that emerge during sustained
software engineering efforts [8].

5.3 Tool configuration mechanisms

Many software engineering tools are developed in isolation
from other tools. Thus, constructing an integrated software
engineering environment from these tools is often problem-
atic. Although it is possible to consider building such tools
and environments together from the bottom-up, such a
strategy imposes a major software development effort, as
well as a potential deprivation of access to otherwise useful
software engineering aids. Similarly, when possible, we
would also like to avoid making extensive modifications to
already useful tools in order to incorporate them into an
environment. As such, we seek a set of mechanisms that
can provide support for integrating both loosely coupled
and tightly coupled tool sets [34] and user interfaces into
coherent software environments. Further, we want these
mechanisms to be configured through declarative specifi-
cations to enable rapid (re)configuration of an environment.
Our first effort along these lines led to an extension of
our software hypertext environment [23]. This extension
incorporated a module-interface language specification [25]
and associated interpreter to provide the desired environ-
ment integration mechanism. In this way, a collection of
environment modules (i.e. tools or shell scripts) could be
specified, configured and made executable on hypertext-
managed software objects through interactive mechanisms.
This environment specification is, of course, another user-
defined object type which, in turn, is created, stored, acces-
sed and updated within the software hypertext object base.
The interpreter is designed to evaluate this specification
whenever a user moves from one partition to another. Thus,
this made it possible to be able to construct software tool
environments that could be customised to different user
roles or access patterns. Based on our success with the ease
of use of this specification-driven environment configurator,

+ USC is currently connected through a cluster of LANS, as well as
to ten or so remote sites through a 1.5 Mb metropolitan area
network. These are the facilities we used for our experimentation
with the collaboration servers.
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we next extended the specification language to accommo-
date user interface modules, which can be used to rapidly
configure different types of tool/process task invocation
windows and command menus. Accordingly, this facilitates
the rapid configuration of domain-specific software hyper-
text environments [24]. Thus, we now make regular use of
these tool configuration mechanisms as part of our environ-
ment integration services.

54 Programmable graph editors, browsers and user
interfaces

Graph-based models of information represented in object
management systems are gaining more attention for use in
software engineering environments. In turn, many software
engineering environments use graph editors to manipulate
different types of information. For example, Software
through Pictures is now a widely recognised commercial
software development environment, which makes extensive
use of a variety of graph editors as its user interface to
underlying software objects and databases. We have devel-
oped a programmable tree/graph editor (TGE), which is
used to rapidly construct graph editors that can be com-
bined with other tools as part of an integrated software
engineering environment [47]. TGE represents a set of
three base editors, undirected graph, directed graph and tree
editors. Application- or domain-specific tree/graph editors
can then be constructed through specialisation of the object
classes that are incorporated into the base editors. In simple
terms, this means that all base editor functions for node/-
edge selection, node relocation, edge redirection, storage
operations, panning, zooming, cut-and-paste etc. are inherit-
able and can be further specialised in an application editor.
Similarly, the base TGE graphic entities, such as graph
nodes, edges and user command menus, together with their
display attributes and layout algorithms, can also be
inherited, specialised and bound to designated software
objects types or instances within a TGE application editor.
This supports the rapid construction of editors for object
hierarchies, data-flow diagrams, graphic database schemata,
hypertext webs, animated finite-state machines, PERT
charts etc. TGE can also be used for rapid prototyping of
multi-view user interfaces [47]. Figs. 1-3 provide views of
the process model class hierarchy editor (Fig. 1), the data-
base schema editor (Fig. 2) and the software system con-
figuration design editor (Fig. 3), all of which are based on
TGE.

5.5 Re-engineering software for integration

Software tools and applications to be incorporated into the
DSF infrastructure can be expected to come from a variety
of organisations, with varying degrees of engineered soft-
ware development descriptions. Thus, a fundamental
problem to be addressed is how to simplify the integration
of software systems that have been, or will be, developed
without explicit conformance to DSF information structures
model. As such, we are providing a set of software re-
engineering mechanisms, whose purpose is to assist with
the conversion and/or integration of these externally devel-
oped software systems into forms compatible with the DSF
infrastructure. However, we assume that these external soft-
ware systems are available in source-code form, in a high-
level language (such as C, FORTRAN, Pascal, Ada) and can
be executed on a UNIX OS processor.
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Fig.1 A process model class hierarchy editor

5.5.1 Re-engineered infegration: this Section describes
what our objective is in re-engineering a software system to
become compatible with the DSF infrastructure. We have
been exploring the potential of our tool configuration
mechanisms described above as a central component of this
service.

In our view, this form of re-engineering entails a multi-
stage integration process, which roughly corresponds to the
steps that can be taken to couple external software sub-
systems to their adjacent layers in the infrastructure. The
first stage represents what we call ‘user interface facade
integration’. At this stage, the requirement is to get the
external subsystem connected to the system libraries and
user interface command menus, so that the subsystem can
be invoked separately from an existing user interface. This
means that its OS command invocation can be encapsulated
and attached to a Ul command menu item, its inputs pro-
vided manually by the user and its output displays be made
compatible with the existing window system.§ The second
stage is to integrate recurring user inputs into nested
command or object selection menus. The third stage is to
integrate the subsystem’s inputs and outputs that can
persist in the underlying object storage manager. In prac-
tice, this often means that the storage manager must either
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intercept file system calls, provide a file system-like inter-
face or require that the subsystem source code is converted
to employ the storage manager in place of the file system.
Call interception and conversion are complicated, messy and
expensive, and should therefore be avoided when possible.
Instead, we provide a file system-like interface at this stage,
so that the subsystem still acts as if it was interacting with
a file system. The fourth stage is to supplant the sub-
system’s file system model, with a more object-based model
that reflects the object management and access conventions
used elsewhere in the DSF infrastructure. As before, the
idea is to avoid modifications to the subsystem source code,
and instead extend the user’s view of the subsystem’s file/-
object space. This may require static, dynamic and behav-
ioural analyses of the source code, in order to extract and
synthesise module resource interfaces and interconnections
information that facilitates the automatic restructuring of
the source code {48]. However, there is still opportunity for
substantial improvement, through the introduction of new

§ For subsystems that use conventional terminal displays, this is
trivial when using Xterm windows, whereas if the subsystem uti-
lises a graphic display buffer, conversion to X Window protocols
is necessary [45].
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tools and methods that can more readily facilitate the rapid
integration of externally developed, non-conforming prog-
rams. Nonetheless, this multi-stage process allows the
utility and value of integrating an externally developed sub-
system into the DSF infrastructure to be assessed in an
incremental/stage-by-stage manner.

5.6 Correctness-assuring engineering environments

In our view, a software application system is correct if all of
its life-cycle products are consistent, complete and traceable.
Clearly, we mean to imply this is a restricted notion of cor-
rectness; one that simply indicates- the degree- of confor-
mance to a set of quality assurance attributes and
documentation integrity constraints. Nonetheless, we have
demonstrated how to provide software life-cycle engineering
environments that can assure this form of correctness, as
well as incrementally track inconsistencies, incompleteness
and traceability gaps [26]. Simply put, we have developed
a software object model that provides all basic and compos-
ite software objects with resource interfaces reminiscent of
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module interconnections languages [25, 44, 48]. These
resource interface attributes specify what types of entities
can be imported or exported by each software product
object. Such a scheme can be shown to be viable with any
multi-stage software life-cycle methodology. Further, we
show that it is relatively straightforward to construct soft-
ware life-cycle engineering environments that process this
object model, if certain classes of tools (e.g. language-
directed editors), integrity constraint checking mechanisms
(relational database predicates) and an object management
server of the type already described can be provided [26].
Thus, at present, we are developing a new version of such
an environment that incorporates collaborative multi-user
language-directed editors, an enhanced integrity attribute
set to handle multi-version objects and DOMS in order to
make such a service environment accessible over a wide-
area network.

5.7 A software-process modelling framework

Modelling the process of software engineering represents a
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promising approach to understanding and supporting the
development of large-scale software systems. Accordingly, a
software process model is a prescriptive representation of
software development tasks in terms of their possible orders
of execution and resource utilisation. In turn, constructing
such models requires a software process meta-model formal-
ism, which provides the necessary constructs to create
various types of software process models. We have devel-
oped such a meta-model, which utilises a knowledge repre-
sentation language and supporting environment, as others
have done [20, 49], to specify, query, simulate and analyse
software processes of interest [18].

Our approach employs a software process meta-model,
derived from empirical studies of computing and software
development work in different organisational settings [4, 6,
8, 14, 21, 40, 42]. It directly incorporates the kinds of infor-
mation structures, presented earlier, to model software
engineering processes and settings. This encourages us to
model large team-based development efforts as multi-agent
software processes in an open systems manner [41, 50].
This ability to model and simulate software processes as

Software Engineering Journal September 1991

open systems is essential, since it allows process conflict to
emerge through multi-agent interaction which, in turn, must
be resolved locally (e.g. through agent-agent negotiations
[6, 8, 21, 51], rather than through some automated global
control mechanism. This provides us with the ability to
model the kinds of things that people do in enacting differ-
ent software processes. It also allows us to construct both
prescriptive software process models and their descriptive
realisations as a way of maintaining a project-oriented
process knowledge base. Further, this process modelling
framework allows us to more directly model and simulate
not only routine and broken software development pro-
cesses [6, 8, 21], but also the empirically observed pro-
cesses of software technology transfer and transition
reported elsewhere [7]. Thus, our reliance on empirically
grounded models of open multi-agent software processes is
a departure from previous efforts, as well as, we believe, an
indication of future directions for software process model-
ling.

We have constructed a prototype knowledge-based
environment for modelling, querying and simulating soft-
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ware engineering processes occurring in complex organis-
ational settings. Overall, we cannot do any justice to
presenting the details of this environment here and must
instead refer interested readers to a companion paper [18].
However, it is our intention that such an environment is
employed to model and simulate the emerging teamwork
structures and organisational settings that participate in the
DSF project, so that we might better be able to understand
how the DSF project works, how things break down, how
they are repaired or replanned, and how new software ser-
vices migrate and evolve,

6 The DSF project: an opportunity for
academic-industrial co-operation

Given the software infrastructure we have described, we
anticipate that a DSF project can take on both academic and
industrial participants. However, each poses different prob-
lems and opportunities.

We expect that it is possible for multiple academic organ-
isations to form loosely coupled DSF projects. A DSF infra-
structure might quickly be deployed and applied among a
collegial group of academic researchers and their graduate
students if it was made available on a little or no direct-cost
basis. This is often the tradition for academic software
research technologies. However, software technology trans-
fer within and across academic organisations clearly
involves more than this [7, 10].

Although we are optimistic about the possible outcomes
of academic-only DSF projects, we are much more reserved
with our outlook for industry-only DSF consortium projects.
Rather than examining such matters here, we will instead
recommend to those interested that they examine the deal-
ings, workings and track records of various industry-only
consortia that have been established in recent years [52].

Not surprisingly, an academic-industrial grouping is the
best participant mix. Academic research groups may
already be prepared to collaborate and participate in a DSF
project. Similarly, industrial organisations may seek to join
academic DSF projects as they become more viable. Further,
industrial participation may also bring additional resources
to further underwrite and stabilise the DSF infrastructure,
in order to both ensure its continuing operation and to use
this ‘external knowledge factory’ as an emerging industrial
resource and testbed. Such movement may then become
self-reinforcing as other academic and industrial groups
seek to become participants. This reinforcement might then
be rechannelled, so that DSF projects which become too
large will be internally segmented into smaller, more
specialised niche projects that nonetheless can share similar
infrastructures. The emergence and growth of VLSI chip
design and fabrication technology is a suggested analogy
here.

7 Conclusion

Clearly, the DSF project and its software infrastructure are
ambitious undertakings. However, our view is that such an
effort is both technologically feasible and socially desirable.
As such, we can, in a sense, initially fail in our effort but
succeed nonetheless, since the DSF project is an experiment
conceived to be participatory, open-ended, evolutionary and
technologically interesting. A decade of experience in the
USC System Factory project has convinced us that such an
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undertaking is possible and can be made to work in an
incremental bootstrapping manner. As noted throughout
this paper, it is not our intention to be in control of such a
wide-area project. Instead, we see our technological and
organisational efforts as a possible starting point or model
for national and international projects with similar collabo-
ration goals and technological objectives. Thus, if the Dis-
tributed System Factory concept is viable, it should be able
to succeed with or without us. Obviously, our interest is
nevertheless to participate, to encourage others to partici-
pate and to provide an emerging wide-area software infra-
structure that can help make it succeed. As such, this paper
outlines the software infrastructure that can support the
DSF concept and provides references to related work that
further describes some of the technologies we are
developing to this end.
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