
 1

 Multi-Modal Modeling, Analysis and Validation of Open Source Software
Requirements Processes

Walt Scacchi1, Chris Jensen1, John Noll1,2, and Margaret Elliott1

1Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

2Santa Clara University
Santa Clara, CA

Wscacchi@uci.edu

Abstract

Understanding the context, structure, activities, and content of software development processes
found in practice has been and remains a challenging problem. In the world of free/open source
software development, discovering and understanding what processes are used in particular
projects is important in determining how they are similar to or different from those advocated by
the software engineering community. Prior studies however have revealed that the requirements
processes in OSSD projects are different in a number of ways, including the general lack of
explicit software requirements specifications. In this paper, we describe how a variety of
modeling perspectives and techniques are used to elicit, analyze, and validate software
requirements processes found in OSSD projects, with examples drawn from studies of the
NetBeans.org project.

Keywords: software process, process modeling, software requirements, open source software
development, empirical studies of software engineering

1. Introduction
In the world of globally dispersed, free/open source software development (OSSD), discovering
and understanding what processes are used in particular projects is important in determining how
they are similar to or different from those advocated by the software engineering community. For
example, in our studies of software requirements engineering processes in OSSD projects across
domains like Internet infrastructure, astrophysics, networked computer games, and software
design systems [25,26], we generally find there are no explicit software requirements
specifications or documents. However, we readily find numerous examples of sustained
successful and apparently high-quality OSS systems being deployed on a world-wide basis.
Thus, the process of software requirements engineering in OSSD projects must be different that
the standard model of requirements elicitation, specification, modeling, analysis,
communication, and management [22]. But if the process is different, how is it different, or more
directly, how can we best observe and discover the context, structure, activities, and content
software requirements processes in OSSD projects? This is the question addressed here.

Our approach to answering this question uses multi-modal modeling of the observed processes,
artifacts, and other evidence composed as an ethnographic hypermedia that provides a set of
informal and formal models of the requirements processes we observe, codify, and document.
Why? First, our research question spans two realms of activity in software engineering, namely,

 2

software process modeling and software requirements engineering. So we will need to address
multiple perspectives or viewpoints, yet provide a traceable basis of evidence and analysis that
supports model validation. Second, given there are already thousands of self-declared OSSD
projects affiliated with OSS portals like SourceForge.net and Freshmeat.net, then our answer
will be constrained and limited in scope to the particular OSSD project(s) examined. Producing a
more generalized model of the OSS requirements process requires multiple, comparative project
case studies, so our approach should be compatible with such a goal [25]. Last, we want an
approach to process modeling that is open to independent analysis, validation, communication,
and evolution, yet be traceable to the source data materials that serve as evidence of the
discovered process in the OSSD projects examined [cf. 15].

Accordingly, to reveal how we use our proposed multi-model approach to model requirements
processes in OSSD projects, we first review related research to provide the foundational basis for
our approach. Second, we describe and provide examples of the modeling modes we use to elicit
and analyze the processes under study. Last, we examine what each modeling mode is good for,
and what kind of analysis and reasoning it supports.

2. Related Research and Approach
There is growing recognition that software requirements engineering can effectively incorporate
multi-viewpoint [7,16,22] and ethnographic techniques [22,31] for eliciting, analyzing, and
validating functional and non-functional software system product requirements. However, it
appears that many in the software engineering community treat the process of requirements
engineering as transparent and prescriptive, though perhaps difficult to practice successfully.
However, we do not know how large distributed OSSD projects perform their development
processes [cf. 3].

Initial studies of requirements development across multiple types of OSSD projects [25,26] find
that OSS product requirements are continuously emerging [8,9,30] and asserted after they have
been implemented, rather than relatively stable and elicited before being implemented. Similarly,
these findings reveal requirements practice centers about reading and writing many types of
communications and development artifacts as “informalisms” [25], as well as addressing new
kinds of non-functional requirements like project community development, freedom of
expression and choice, and ease of information space navigation. Elsewhere, there is widespread
recognition that OSSD projects differ from their traditional software engineering counterparts in
that OSSD projects do not in general operate under the constraints of budget, schedule, and
project management constraints. In addition, OSS developers are also end-users or
administrators of the software products they develop, rather than conventionally separated as
developers and/versus users. Consequently, it appears that OSSD projects create different types
of software requirements using a different kind of requirements engineering process, than
compared to what the software engineering community has addressed. Thus, there is a
fundamental need to discover and understand the process of requirements development in
different types of OSSD projects.

We need an appropriate mix of concepts, techniques, and tools to discover and understand OSSD
processes. We and others have found that process ethnographies must be empirically grounded,
evidence-based, and subject to comparative, multi-perspective analysis [3,7,10,15,22,25,28].

 3

However, we also recognize that our effort to discover and understand OSSD processes should
reveal the experience of software development newcomers who want to join and figure out how
things get done in the project [27].

As participant observers in such a project, we find that it is common practice for newcomers to
navigate and browse the project’s Web site, development artifacts, and computer-mediated
communication systems (e.g., discussion forums, online chat, project Wikis), as well as to
download and try out the current software product release. Such traversal and engagement with
multiple types of hyperlinked information provide a basis for making modest contributions (e.g.,
bug reports) before more substantial contributions (code patches, new modules) are offered, with
the eventual possibility of proposing changing or sustaining the OSS system’s architecture.
These interactive experiences reflect a progressive validation of a participant’s understanding of
current OSSD process and product requirements [1,19]. Thus, we seek a process discovery and
modeling scheme that elicits, analyzes, and validates multi-mode, hypertext descriptions of a
OSSD project’s requirements process. Furthermore, these process descriptions we construct
should span informal through formal process models, and accommodate graphic, textual, and
computationally enactable process media. Finally, our results should be in a form open to
independent analysis, validation, extension, and redistribution by the project’s participants.

3. Multi-Mode Process Modeling, Analysis and Validation using Ethnographic Hypermedia
An ethnographic hypermedia [4] is a hypertext that supports comparative, cross-linked analysis
of multiple types of qualitative ethnographic data [cf. 28]. They are a kind of semantic hypertext
used in coding, modeling, documenting, and explaining patterns of social interaction data and
analysis arising in contemporary anthropological, sociological, and distributed cognition studies.
The media can include discourse records, indigenous texts, interview transcripts, graphic or
photographic images, audio/video recordings, and other related information artifacts. Ideally,
they also preserve the form and some of the context in which the data appear, which is important
for subsequent (re)analysis, documentation, explanation, and presentation.

Ethnographic studies of software development processes within Web-based OSSD projects are
the focus here. Ethnographic studies that observe and explain social action through online
participant observation and data collection have come to be called “virtual ethnography” [12].
Virtual ethnography techniques have been used to observe the work practices, compare the
artifacts produced, and discover the processes of OSSD projects found on and across the Web
[5,6,13,14,23,25,26,27]. In particular, an important source of data that is examined in such
studies of OSSD projects is the interrelated web of online documents and artifacts that embody
and characterize the medium and continuously emerging outcomes of OSSD work. These
documents and artifacts constitute a particular narrative/textual genre ecology [29] that situate
the work practices and characterize the problem solving media found within OSSD projects.

We have employed ethnographic hypermedia in our virtual ethnographic studies of OSSD
projects. What does this mean, and what challenges or opportunities for requirements elicitation,
analysis, and validation have emerged along the way? These questions are addressed below
through examples drawn from case studies of OSSD projects, such as the NetBeans.org project
[13,14], which is one of the largest OSSD projects we have studied.

 4

As noted, the OSSD projects we study are found on the Web. Web sites for these projects
consist of a network of hyperlinked documents or artifacts. Samples of sites we have studied
include NetBeans.org, Mozilla.org, pache.org, and GNUenterprise.org among dozens of others.
The artifacts we examine include Web pages, email discussion lists, bug reports, project to-do
 lists, source code files and directories, site maps, and more. These artifacts are an
important part of the data we collect, examine, study, code, and analyze in order to identify
OSSD work practices and development processes that arise in a given project.

We create a hypermedia of these artifacts in ways that allow us to locate the originating source(s)
of data within the focal project’s Web site. This allows us to maintain links to the source data
materials that we observe as evidence of the process at hand, as well as to allow us to detect
when these data sources have been updated or removed. (We also archive a local copy of all such
data). However, we create codings, annotations, and assembled artifacts that embed hyperlinks to
these documents as part of our ethnographic hypermedia. As a result, multiple kinds of
ethnographic records are created including annotated artifacts, rich hypermedia pictures, and
ethnographic narratives. Juxtaposed about these records are other kinds of models including a
process meta-model, attributed directed graph model, process domain ontology, and a formal,
computationally enactable process model. Each is described next, and each is hyperlinked into
an overall ethnographic hypermedia that provides cross-cutting evidence for the observed OSS
requirements processes.

Annotated artifacts
Annotated artifacts represent original software development artifacts like (publicly available)
online chat transcripts that record the dialogue, discussions, and debate that emerge between
OSS developers. These artifacts record basic design rationale in an online conversation form.
The textual content of these artifacts can be tagged, analyzed, hyperlinked, and categorized
manually or automatically [24]. However, these conversational contents also reveal much about
how OSS developers interact at a distance to articulate, debate, and refine the continuously
emerging requirements for the software system they are developing. For example, Elliott and
Scacchi [5,6] provide conversational transcripts among developers engaged in a debate over
what the most important properties of software development tools and components to use when
building free software. They provide annotations that identify and bracket how ideological
beliefs, social values, and community building norms constrain and ultimately determine the
technical choices for what tools to use and what components to reuse when developing OSS.

Navigational rich pictures
Rich pictures [18] provide an informal graphical scheme for identifying and modeling
stakeholders, their concerns, objects and patterns of interaction. We extend this scheme to form
navigational rich pictures constructed as an Web-compatible hypertext image map that denotes
the overall context as the composition and relationships observed among the stakeholder-roles,
activities, tools, and document types (resources) found in a OSSD project. Figure 1 displays
such a rich picture constructed for NetBeans.org. Associated with each relationship is a
hyperlink to a use case [2] that we have constructed to denote an observable activity performed
by an actor-role using a tool that consumes or produces a document type. An example use case is
shown in Figure 2. Each other type of data also is hyperlinked to either a descriptive annotation
or to a Web site/page where further information on the object type can be found.

 5

Figure 1. A rich picture image map of the requirements and release process in the NetBeans.org
OSSD project.

 Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use case.

Test Builds
• The QA team tests the latest nightly builds

every Friday
• QA team executes a set of manual tests on

the builds as well as some sanity checks
• Test results are categorized as

– Bug Types
• User Constraint:

– The tests depend on the manual tests
specification

• System Constraint:
– Not all bugs may be identified

 6

Directed resource flow graph
A directed resource flow graph denotes a recurring workflow pattern that has been discovered in
an OSSD project. These workflows order the dependencies among the activities that actor-roles
perform on a recurring basis to the objects/resources within their project work. These resources
appear as or within Web pages on an OSSD project’s Web site. For example, in the
NetBeans.org project, we found that software product requirements are intertwined with
software build and release management. Thus, the “requirements and release process” entails
identifying and programming new/updated system functions or features in the course of
compiling, integrating, testing, and progressively releasing a stable composition of source code
files as an executable software build version for evaluation or use by other NetBeans.org
developers [5,6,23]. An example flow graph for this appears in Figure 3. The code files,
executable software, updated directories, and associated email postings announcing the
completion and posting the results of the testing are among the types of resources that are
involved. Last, the rendering of the flow graph can serve as an image map to the online (i.e., on
the NetBeans.org Web site) data sources from where they are observed.

Figure 3. An attributed directed graph of the resource flow for the NetBeans.org requirement and
release process. Boxes denote tasks/actions, ellipses denote resources/objects, dashed lines denote

resource flows, and solid lines and labels denote agent/stakeholder roles performing tasks that
transform input resources into output resources.

 7

Process domain ontology
A process ontology represents the underlying process meta-model [17,20] that defines the
semantics and syntax of the process modeling constructs we use to model discovered processes.
It provides the base object classes for constructing the requirements process (domain)
taxonomies of the object classes for all of the resource and relation types found in the rich
picture and directed resource flow graph. However, each discovered process is specific to an
OSSD project, and knowledge about this domain is also needed to help contextualize the
possible meanings of the processes being modeled. This means that a process domain entails
objects, resources or relations that may or may not be have been previously observed and
modeled, so that it may be necessary to extend to process modeling constructs to accommodate
new types of objects, resources, and relations, as well as the attributes and (instance) values that
characterize them, and attached methods that operationalize them.

We use an ontology modeling and editing tool, Protégé-2000 [21] to maintain and update our
domain ontology for OSS requirements processes. Using Protégé-2000, we can also visualize the
structure of dependencies and relations [11] among the objects or resources in a semantic web
manner. An example view can be seen in Figure 4. Furthermore, we can create translators that
can transform syntactic form of the modeling representations into XML forms or SQL schema
definitions, which enables further process modeling and tool integration options [cf. 14].

Figure 4. A view of the process domain ontology for the NetBeans.org software requirements and

release process.

 8

Formal process model and its enactment
A formal process model denotes a syntactically precise and semantically typed specification of
the resource objects, flow dependencies, actor-roles, and associated tools that specifies an
enactable (via interactive process-guided user navigation) hypertext representation we call an
organizational process hypertext [20]. This semantic hypertext, and its supporting run-time
environment, enables the ability to walkthrough or simulate enactment of the modeled OSSD
process as a process-guided, navigational traversal across a set of process linked Web pages. The
semantic hypertext is automatically rendered through compilation of the process models that are
output from the ontology editor in a process modeling language called PML [20]. A PML-based
model specification enables automated consistency checking at compile-time, and detection of
inconsistencies at compile-time or run-time. An example of an excerpt from such a model is
shown in Figure 5. The compiled version of the PML produced a non-linear sequence of process-
linked Web pages, each one of which corresponds to one step in the modeled process. An
example showing the result of enacting a process (action) step specified at the bottom of Figure 5
appears in Figure 6.

...
sequence Test {
 action Execute automatic test scripts {
 requires { Test scripts, release binaries }
 provides { Test results }
 tool { Automated test suite (xtest, others) }
 agent { Sun ONE Studio QA team }
 script { /* Executed off-site */ } }
action Execute manual test scripts {
 requires { Release binaries }
 provides { Test results }
 tool { NetBeans IDE }
 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
 script { /* Executed off-site */ } }
iteration Update Issuezilla {
 action Report issues to Issuezilla {
 requires { Test results }
 provides { Issuezilla entry }
 tool { Web browser }
 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio developers }
 script {

Navigate to Issuezilla

Query Issuezilla

Enter issue } }
...

Figure 5. An excerpt of the formal model of the Netbeans.org requirements and release process
coded in PML.

Ethnographic hypermedia narrative
An ethnographic narrative denotes the final view ethnographic hypermedia. This is an analytical
research narrative that is structured as a document that is (ideally) suitable for dissemination and
publication in Web-based and printed forms. It is a composite derived from selections of the
preceding representations in the form of a narrative with embedded hyperlinked objects, and
hyperlinks to related materials. It embodies and explains the work practices, development
processes, resource types and relations, and overall project context as a narrative, hyperlinked
ethnographic account that discovered at play within a given OSSD project, such as we

 9

documented for the NetBeans requirements and release process [23]. In printed form, the
narratives we have produced so far are somewhere between 1/4 to 1/15 the number of pages
compared to the overall set of project-specific data (documents) at the first two levels of
hyperlink connectivity; said differently, if the ethnographic report is 30 or so printed pages (i.e.,
suitable for journal publication), the underlying ethnographic hypermedia will correspond to a
hypermedia equivalent to 120-450 printed pages.

Figure 6. A screenshot displaying the result of the PML-based re-enactment of one step (“Action
Report issues to Issuezilla—Query Issuezilla”) in the NetBeans,org requirements and release

process.

4. Discussion
We have learned a number of things based on applying our approach to requirements processes
in different OSSD projects. First, no single mode of process description adequately subsumes the
others, so there is no best process description scheme. Instead, different informal and formal
descriptions respectively account for the shortcomings in the other, as do textual, graphic, and
computationally enactable process representations. Second, incremental and progressive
elicitation, analysis, and validation occur in the course of developing multi-mode requirements
process models. Third, multi-mode process models are well-suited for discovery and
understanding of complex software processes found in OSSD projects. However, it may not be a
suitable approach for other software projects that do not organize, discuss, and perform software
development activities in an online, persistent, open, free, and publicly accessible manner.
Fourth, multi-mode process modeling has the potential to be applicable to the discovery and

 10

modeling of software product requirements, although the motivation for investing such effort
may not be clear or easily justified. Process discovery is a different kind of problem than product
development, so different kinds of approaches are likely to be most effective.

Last, we observed that the software product requirements in OSSD projects are continually
emerging and evolving. Thus, it seems likely that the requirements process in such projects is
also continuously. Thus, supporting the evolution of multi-mode models of OSS requirements
processes will require either automated techniques for process discovery and multi-mode update
propagation techniques, or else the participation of the project community to treat these models
as open source software process models, that can be continuously elicited, analyzed, and
validated along with other OSSD project assets, as suggested in Figure 7, which are concepts we
are currently investigating. However, it seems fair to note that ethnographic accounts are situated
in time, and are not intended for evolution.

Figure 7. Getting captured and analyzed process models out for validation and possible evolution
by NetBeans.org project participants.

 11

5. Conclusion
Ethnographic hypermedia are an important type of semantic hypertext that are well-suited to
support the navigation, elicitation, modeling, analysis and report writing found in ethnographic
studies of OSSD processes. We have described our approach to developing and using
ethnographic hypermedia in support of our studies of requirements processes in OSSD projects
like NetBeans.org, where multiple modes of informal to formal representations are involved. We
find that this hypermedia is well-suited for supporting qualitative research methods that
associated different type of project data, with process descriptions rendered in graphic, textual
and computationally enactable descriptions. We provided examples of the various kinds of
hypertext-based process descriptions and linkages that we constructed in moving from abstract,
informal representations of the data through a series of ever more formalized process models
resulting from our studies.

6. Acknowledgements
The research described in this report is supported by grants #0083075, #0205679, #0205724, and
#0350754 from the National Science Foundation. No endorsement implied. Mark Ackerman at
University of Michigan, Ann Arbor; Les Gasser at University of Illinois, Urbana-Champaign;
and others at ISR are collaborators on the research described in this paper.

7. References
1. Bolchini, D. and Paolini, P., Goal-Driven Requirements Analysis for Hypermedia-Intensive
Web Applications, Requirements Engineering, 9, 85-103, 2004.

2. Cockburn, A., Writing Effective Use Cases, Addison-Wesley, New York, 2001.

3. Curtis, B., Krasner, H., and Iscoe, N., A Field Study of the Software Design Process for Large
Systems, Communications ACM, 31(11), 1268-1287, 1998.

4. Dicks, B. and Mason, B., Hypermedia and Ethnography: Reflections on the Construction of a
Research Approach, Sociological Research Online, 3(3), 1998. www.socresonline.org.uk

5. Elliott, M. and Scacchi, W., Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration, Proc. ACM Int. Conf. Supporting Group Work,
21-30, Sanibel Island, FL, November 2003.

6. Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software Development, Idea
Group Publishing, Hershey, PA, 152-172, 2004.

7. Finkelstein, A.C.W., Gabbay, D., Hunter, A., Nuseibeh, B., Inconsistency Handling in Multi-
perspective Specifications, IEEE Trans. Software Engineering, 20(8), 569-578, 1994.

8. Gans, G., Jarke, M., Kethers, S., and Lakemeyer, G., Continuous Requirements Management
for Organisation Networks: A (Dis)Trust-Based Approach, Requirements Engineering, 8, 4-22,
2003.

 12

9. Gasser, L., Scacchi, W., Penne, B., and Sandusky, R., Understanding Continuous Design in
OSS Projects, Proc. 16th. Int. Conf. Software & Systems Engineering and their Applications,
Paris, December 2003.

10. Glaser, B. and Strauss, A., The Discovery of Grounded Theory: Strategies for Qualitative
Research, Aldine Publishing Co., Chicago, Il, 1967.

11. Grinter, R.E., Recomposition: Coordinating a Web of Software Dependencies, Computer
Supported Cooperative Work, 12(3), 297-327, 2003.

12. Hine, C., Virtual Ethnography, Sage Publications, Newbury Park, CA, 2000.

13. Jensen, C. and Scacchi, W., Collaboration, Leadership, Control, and Conflict Management in
the NetBeans.Org Community, Proc. 5th Open Source Software Engineering Workshop,
Edinburgh, May 2004a.

14. Jensen, C. and Scacchi, W., Process Modeling Across the Web Information Infrastructure,
Proc. 5th Software Process Simulation and Modeling Workshop, Edinburgh, Scotland, May
2004b.

15. Kitchenham, B.A., Dyba, T., and Jorgensen, M., Evidence-based Software Engineering,
Proc. 26th Int. Conf. Software Engineering, 273-281, Edinburgh, Scotland, IEEE Computer
Society, 2004.

16. Leite, J.C.S.P. and Freeman, P.A., Requirements Validation through Viewpoint Resolution,
IEEE Trans. Software Engineering, 17(12), 1253-1269, 1991.

17. Mi, P. and Scacchi, W., A Meta-Model for Formulating Knowledge-Based Models of
Software Development, Decision Support Systems, 17(4), 313-330, 1996.

18. Monk, A. and Howard, S., The Rich Picture: A Tool for Reasoning about Work Context,
Interactions, March-April 1998.

19. Narayanan, N.H. and Hegarty, M., Multimedia Design for Communication of Dynamic
Information, Int. J. Human-Computer Studies, 57, 279-315, 2002.

20. Noll, J. and Scacchi, W., Specifying Process-Oriented Hypertext for Organizational
Computing, J. Network & Computer Applications, 24(1), 39-61, 2001.

21. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., and Musen, M.A.,
Creating Semantic Web Contents with Protégé-2000, IEEE Intelligent Systems, 16(2), 60-71,
March/April 2001.

22. Nuseibeh, B. and Easterbrook, S., Requirements Engineering: A Roadmap, in Finkelstein, A.
(ed.), The Future of Software Engineering, ACM and IEEE Computer Society Press, 2000.

 13

23. Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. A First Look at the NetBeans
Requirements and Release Process, http://www.ics.uci.edu/cjensen/papers/FirstLook
NetBeans/, February 2004 (Original May 2002).

24. Rao, R., From Unstructured Data to Actionable Intelligence, IT Pro, 29-35, November 2003.

25. Scacchi, W., Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings—Software, 149(1), 24-39, February 2002.

26. Scacchi, W., Free/Open Source Software Development Practices in the Computer Game
Community, IEEE Software, 21(1), 59-67, Jan. 2004a.

27. Scacchi, W., Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes, in S.T. Acuña and N. Juristo (eds.), Peopleware and the Software
Process, World Scientific Press, to appear, 2004b.

28. Seaman, C.B., Qualitative Methods in Empirical Studies of Software Engineering, IEEE
Trans. Software Engineering, 25(4), 557-572, 1999.

29. Spinuzzi, C. and Zachry, M., Genre Ecologies: An Open System Approach to Understanding
and Constructing Documentation, ACM J. Computer Documentation, 24(3), 169-181, August
2000.

30. Truex, D., Baskerville, R., and Klein, H., Growing Systems in an Emergent Organization,
Communications ACM, 42(8), 117-123, 1999.

31. Viller, S. and Sommerville, I., Ethnographically Informed Analysis for Software Engineers,
Int. J. Human-Computer Studies, 53, 169-196, 2000.

