
The Journal of Systems and Software 85 (2012) 1479–1494

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Understanding the role of licenses and evolution in open architecture software
ecosystems

Walt Scacchi, Thomas A. Alspaugh ∗

Institute for Software Research, University of California, Irvine, USA

a r t i c l e i n f o

Article history:
Received 30 April 2010
Received in revised form
21 December 2011
Accepted 19 March 2012
Available online 28 March 2012

Keywords:
Software architecture
Software ecosystems
Software licenses
Open source software
Software evolution

a b s t r a c t

The role of software ecosystems in the development and evolution of open architecture systems whose
components are subject to different licenses has received insufficient consideration. Such systems are
composed of components potentially under two or more licenses, open source or proprietary or both,
in an architecture in which evolution can occur by evolving existing components, replacing them, or
refactoring. The software licenses of the components both facilitate and constrain the system’s ecosystem
and its evolution, and the licenses’ rights and obligations are crucial in producing an acceptable system.
Consequently, software component licenses and the architectural composition of a system help to better
define the software ecosystem niche in which a given system lies. Understanding and describing software
ecosystem niches for open architecture systems is a key contribution of this work. An example open
architecture software system that articulates different niches is employed to this end. We examine how
the architecture and software component licenses of a composed system at design time, build time, and
run time help determine the system’s software ecosystem niche and provide insight and guidance for
identifying and selecting potential evolutionary paths of system, architecture, and niches.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A substantial number of development organizations are adopt-
ing a strategy in which a software-intensive system (one in which
software plays a crucial role) is developed with an open architec-
ture (OA) (Oreizy, 2000), whose components may be open source
software (OSS) or proprietary with open application programming
interfaces (APIs). Such systems evolve not only through the evolu-
tion of their individual components, but also through replacement
of one component by another, possibly from a different producer
or under a different license (Fig. 1). With this approach, another
organization often comes between software component produc-
ers and system consumers in order to compose and configure the
produced components into a configured system. These organiza-
tions take on the role of system architect or integrator, either
as independent software vendors, government contractors, sys-
tem integration consultants, or in-house system integrators. In
turn, such an integrator designs a system architecture that can
be composed of components largely produced elsewhere, inter-
connected through interfaces accommodating use of dynamic
links, intra- or inter-application scripts, communication protocols,

∗ Corresponding author.
E-mail addresses: wscacchi@ics.uci.edu (W. Scacchi),

thomas.alspaugh@acm.org (T.A. Alspaugh).

software buses, databases/repositories, plug-ins, libraries or soft-
ware shims as necessary to achieve the desired result.

An OA development process realizes or instantiates an ecosys-
tem in which the integrator is influenced from one direction by
the goals, interfaces, license choices, and release cycles of the soft-
ware component producers, and from another direction by the
needs of the system’s consumers. As a result the software com-
ponents are reused more widely, and the composed OA systems
can achieve reuse benefits such as reduced costs, increased reliabil-
ity, and potentially increased agility in evolving to meet changing
needs. However, an emerging challenge is to realize the benefits
of this approach when the individual components are heteroge-
neously licensed (Alspaugh et al., 2010; German and Hassan, 2009;
Scacchi and Alspaugh, 2008), each potentially with a different
license, rather than a single OSS license as in uniformly licensed
OSS projects or a single proprietary license as in proprietary devel-
opment.

This challenge is inevitably entwined with the software ecosys-
tems that arise for OA systems (Fig. 2). We find that an OA software
ecosystem involves organizations and individuals producing, com-
posing, and consuming components that articulate software supply
networks from producers to consumers, but also:

• the composition and configuration of the OA of the system(s) in
question,

• the open interfaces met by the components,

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.03.033

1480 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Initial
system

Component replaced by
newer version of same

component

Component replaced by
different component of

same sort

Connector replaced by
different sort of connector

Topological configuration
changed

Component license
replaced by newer

version or different license

Same component
accessed using different

interface

Evolved
system

Fig. 1. Paths of evolution for an OA system (Section 6).

Producer

Component
or

Application

License

Producer

Component
or

Application

License

...

...

...

...Consumer

Component
or

Application

Rights and
obligations

Consumer

Component
or

Application

Rights and
obligations

Independent
Software
Vendors

Government
Contractors

System
Integration
Consultants

OR OR
ARCHITECTURE

Integrators

In-House
System

Integrators
OR

Consumer
of

Software

Intermediary
in Network

Key

Producer of
Software

Unit of
Software

Its license

Fig. 2. Schema for OA software supply networks (notation follows Boucharas et al., 2009).

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1481

• the degree of coupling in the evolution of related components,
and

• the rights and obligations resulting from the software licenses
under which various components are released, that propagate
from producers to consumers.

These four items play a key role in defining the software ecosys-
tem niche for a specific configured system—the specific software
supply network that interconnects particular software producers
of specific components, integrators, the software system architec-
ture and its configured instantiation, and its consumers—as the
remainder of this paper will make clear.

In our previous work (Alspaugh et al., 2009a,b, 2011, 2010;
Scacchi and Alspaugh, 2008) we examined how software licenses
interact in significant ways through the software architecture of
the system. Our approach, implemented in an Eclipse-based soft-
ware architecture environment, automatically evaluates license
conflicts in a software architecture and calculates the virtual license
of rights and obligations for a composed system that result when
its constituent components are licensed heterogeneously. With it
architects directly examine the design decisions’ licensing con-
sequences: in the decision context, with enough information to
identify definite license conflicts rather than only potential license
conflicts, and early enough in the development process to make the
right decision rather than correct a wrong one. This work contrasts
with much practice and other research in which a configured sys-
tem is examined after the fact, and often with substantial manual
work by experts, to determine what licensing conflicts might exist
in it. Here we build on our previous work by extending its context
from software architecture to software ecosystems. The ecosystem
context allows architects and integrators to examine potential evo-
lution paths and the consequences of each one, with the ability to
steer that evolution by specific changes to the system architecture
and build- and run-time configuration.

The remainder of this paper is organized as follows. Section
2 motivates the work through a sequence of examples. Section 3
places this work in the context of related research. Section 4 dis-
cusses open architecture, and Section 5 discusses the ecosystems
that arise around open architecture systems. Section 6 addresses
evolution of software ecosystems. Section 7 discusses some impli-
cations that follow from this study, and Section 8 concludes the
paper. Background on kinds of software licenses is presented in
Appendix.

2. Motivating examples

2.1. Firefox: monolithically licensed

A few years ago, it was typical for a software system to be subject
to a single intellectual property (IP) or copyright license covering
the entire system, especially for proprietary software systems, but
even for open source software (OSS). An example is the globally
popular Firefox web browser, whose OSS is subject to the Mozilla
Public License (MPL) version 1.1 (OSI, 2011). More recently, the
Mozilla organization has updated its licensing strategy so that new
OSS it produces is “tri-licensed.” This allows a licensee the choice
to access, modify, and redistribute these systems under terms and
conditions specified in either MPL, the GNU Project’s General Pub-
lic License (GPL), or the Lesser General Public License (LGPL) (OSI,
2011), while Firefox as a software product is under MPL. Users
of Firefox and developers utilizing Firefox as a single component
of larger systems need not concern themselves with whether the
Mozilla organization has sufficient legal rights to all the Firefox
code; Mozilla has assumed that responsibility.

2.2. Unity: heterogeneously licensed, closed architecture

These days, a growing segment of software systems are subject
to multiple licenses, some of which may indicate potentially con-
flicting terms and conditions in different licenses, rather than to
a single monolithic license. For example, the Unity game develop-
ment tool, produced by Unity Technologies, is subject to multiple
licenses (Unity Technologies, 2008). Its license agreement, from
which we quote below, comprises a proprietary license for the core
Unity software and presumably for the entire Unity system, plus at
least 15 distinct licenses for at least 26 externally produced com-
ponents, groups of components, and libraries, at least one of which
has been further extended by Unity:

1. The Mono Class Library, Novell, Inc., MIT license,
2. The Mono Runtime Libraries, Novell, Inc., LGPLv2 (updated),
3. Boo, Rodrigo B. Oliveira, BSD license variant,
4. UnityScript, Rodrigo B. Oliveira, BSD license variant,
5. PhysX physics library, Novell Inc., proprietary,
6. libvorbis, Xiph.org Foundation, BSD license variant,
7. libtheora, Xiph.org Foundation, BSD license,
8. zlib general purpose compression library, Jean-loup Gailly and

Mark Adler, inferred zlib/libpng license,
9. libpng PNG reference library, three individuals and Group 42 Inc.,

inferred zlib/libpng license,
10. jpeglib JPEG library, Thomas G. Lane, custom OSS license,
11. Twilight Prophecy SDK, Twilight 3D Finland Oy Ltd., inferred

zlib/libpng license,
12. dynamic bitset, Chuck Allison and Jeremy Siek, custom

OSS license,
13. The Mono C# Compiler and Tools, Novell, Inc., GPLv2 updated,
14. libcurl, Daniel Stenberg, MIT license derivative,
15. PostgreSQL Database Management System, University of

California and PostgreSQL Development Group, BSD license
derivative,

16. FreeType, The FreeType Project, FreeType License,
17. NVIDIA Cg compiler, NVIDIA Corp., GPLv2,
18. Scintilla and ScITE (source code editing), Neil Hodgson, Scintilla

License,
19. 7-Zip Command (source code editing), Igor Pavlov, LGPLv2

(updated),
20. AES code (encryption/authentication), Brian Gladman, BSD

license derivative,
21. FreeImage library, FreeImage project, FreeImage Public License,
22. Little CMS color management engine, Marti Maria Saguer,

MIT license,
23. paintlib, Ulrich von Zadow and others, paintlib license,
24. Ericsson Texture Compression, Ericsson, proprietary license,
25. Particle Trimmer, Emil Persson, custom OSS license,
26. MonoDevelop IDE, MonoDevelop project and Unity, MIT license.

The overall software product license grants the right to install
and use Unity but no rights to view or modify its source code (except
for those components that are open source) or its design artifacts.
Ordinarily the use of a properly licensed copy is unrestricted unless
the software is patented; it is not clear whether any of Unity is
patented or not, but as is often the case for proprietary licenses
the Unity license states that unlicensed use is prohibited. Parts
of the license explicitly give the user responsibility for obtaining
any licenses required for (presumably future) patents that the soft-
ware may infringe; trademarks are not mentioned except when
reserving rights to them. Furthermore, an external developer or
integrator has no access to Unity’s architecture, and so cannot tell
whether/how the separate license obligations for the externally
produced components propagate to the obligations for Unity as a
whole. However, the presence of a component with a reciprocal

1482 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Novell

Mono Class
Library

MIT

Roderigo B.
Oliviera

Mono
Runtime
Libraries

LGPLv2

Consumer

Unity 3D

Rights and
obligations

ARCHITECTURE
(closed)

Boo

BSD variant

UnityScript

BSD variant

PhysX library

Proprietary

Xiph.Org
Foundation

libvorbis

BSD variant

libtheora

BSD

...

...

Fig. 3. Ecosystem for Unity game development tool (partial).

license that can propagate obligations to other components (17:
NVIDIA Cg compiler, GPLv2) raises the necessity for Unity Technolo-
gies to have addressed these obligations architecturally in order
for an end user not to propagate them further if using Unity as a
component of a larger system.

The software ecosystem for Unity as a standalone software pack-
age is delimited by the diverse set of software components listed
above (Fig. 3). However the architecture that integrates and con-
figures these components is closed: the architecture has not been
made public, and much of the system is proprietary so that even
what could be inferred from the source code cannot be deter-
mined. Thus consumers cannot determine the manner in which
the different licenses associated with these components impose
obligations or provide rights to consumers, or on the other com-
ponents to which they are interconnected. Since there are several
interpretations of some important OSS license provisions, this may
be significant; did Unity Technologies firewall GPLv2’s propagat-
ing obligations with dynamic links (following one well-supported
interpretation of GPLv2) or more strongly with client-server con-
nections (following another well-supported but more cautious
interpretation)? A development organization with their own legal
interpretation of GPLv2 and considering using Unity as a critical
element of a composed system may need to know.

As a consequence, there are several important questions that
can’t be answered about this ecosystem, but that an open archi-
tecture ecosystem annotated with software licenses and connector
types can and should answer.

• What is Unity’s virtual license, the set of rights available for the
entire system and obligations demanded in exchange for those
rights (Alspaugh et al., 2009b)?

• What portions of Unity do the various listed licenses pertain
to, especially licenses such as the GNU General Public License
that can propagate obligations along architectural connections
to other components?

• What components of Unity can be evolved to later versions or
replaced by similar components, in order to evolve the system
toward more desirable functionality, desired software qualities,
or more advantageous ecosystem and system evolution possibil-
ities?

• For each component, how much of that component is being used
by Unity? In other words, what interface is Unity using the com-
ponent through? What other components support that interface,
and what shims are available or could be developed to bridge the
gap between that interface and the interfaces of other desirable
components and versions?

• How and to what extent is Unity vulnerable to:
– potential litigation for license violations for copyright or copy-

left infringements, or
– coercion due to dependence on specific development libraries

and development or configuration tools?

There are also questions that cannot be answered even for
an OA ecosystem, due to the differences between copyright
law, under which an author gains specific exclusive rights for
a specific term of years by the act of creation, and patent
law, under which other inventors may unpredictably be granted
new exclusive rights in the future over previously unencum-
bered parts of others’ software systems, and also with trademark
law, whose provisions are temporally dynamic and less uniform
internationally.

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1483

• How and to what extent is Unity vulnerable to threats of patent
infringement suits, whether for actual infringement, to force a
settlement to avoid a lengthy, expensive, and risky court battle,
or to persuade a system/platform vendor to engage in a cross-
licensing agreement along with payment of license fees?

• How and to what extent is Unity vulnerable to co-opting of
needed trademarks in some jurisdiction?

2.3. Google Chrome: heterogeneously licensed, open interfaces

The Google Chrome web browser represents yet another soft-
ware ecosystem whose boundaries are defined in part through
its use of externally licensed OSS components, that can be com-
pared to Firefox and Unity. The license for Google’s Chromium
project (Chromium, 2011), from whose code base the Google
Chrome browser is primarily built, comprises the BSD license for
the Chromium core developed specifically for Google Chrome, plus
27 external components and libraries (some used only for specific
platforms) under 14 distinct licenses:

1. bsdiff, BSD Protection License,
2. bspatch, BSD Protection License,
3. bzip2, BSD License,
4. dtoa, BSD License
5. ffmpeg, LGPL
6. HarfBuzz, MIT License,
7. hunspell, MPL 1.1 or GPL 2.0 or LGPL,
8. ICU, ICU License
9. JSCRE, BSD License,

10. libevent, BSD License,
11. libjpeg, libjpeg License,
12. libpng, libpng License,
13. libxml, MIT License,
14. libxslt, MIT License,
15. LZMA SDK, Special Exception License,
16. modp b64, BSD License,
17. Mozilla interface to Java Plugin APIs, MPL 1.1 or GPL 2.0 or LGPL,
18. npapi, MPL 1.1 or GPL 2.0 or LGPL,
19. nspr, MPL 1.1 or GPL 2.0 or LGPL,
20. nss, MPL 1.1 or GPL 2.0 or LGPL,
21. Pthreads for win32, LGPL 2.1,
22. Skia, Apache License 2.0,
23. sqlite, Public domain dedication,
24. V8 assembler, BSD License,
25. WebKit, BSD or LGPL 2 or LGPL 2.1,
26. WTL, Microsoft Public License (Ms-PL),
27. zlib, zlib License.

Two of the libraries (libpng and zlib) are also used by Unity
though possibly under different licenses, and one component
(LZMA) is part of a Unity component (7-Zip).

An examination of the component licenses shows that no
Chromium component is subject to a proprietary license (Ms-PL,
despite its name, is a permissive open source license) and every one
of the external Chromium components is available under a license
that does not propagate license obligations to other components.
Every component that is licensed under GPL, which can propagate
obligations to other components depending on the connectors and
architectural configuration around them, is also available under
a non-propagating license such as MPL. It is evident that Google
has chosen a policy of avoiding components licensed only under
GPL and similar reciprocal licenses, forgoing the much broader
selection of GPL-licensed components (approximately half of all
open-source software is licensed under GPLv2) in exchange for
not needing to consider architectural interactions among compo-
nents, or whether any subsequent development or integration of

Chromium can virally propagate GPLv2 obligations into other sys-
tems or applications.

It appears that all the external components have open inter-
faces (i.e. public and standardized), so that Chromium can evolve by
replacing components with others implementing the same inter-
faces, or shimmed to them, as long as the replacements are also
under non-propagating OSS licenses. However, Chromium’s over-
all architectural composition, its architectural design, is (to our
knowledge) not open and perhaps not even explicit.

2.4. Discussion

Firefox, Unity, and Google Chrome have illustrated three related
approaches to software licenses, software architecture, and soft-
ware ecosystems.

• Firefox is a monolithically licensed OSS system: all its code is
given to the project under contributor license agreements (Jensen
and Scacchi, 2011) that support releasing the entire project under
a single license. External components are kept at arm’s length,
architecturally speaking, as plug-ins subject to their own licenses,
with no license interaction with Firefox itself.

• Unity is a closed system with externally produced components,
some with open interfaces and OSS licenses and others with
proprietary licenses. The external components retain their own
licenses which are incorporated into the overall license for Unity
either by reference or by quoting the license text. Unity Tech-
nologies has likely followed an internal, manual process for
resolving potential license conflicts among components, so that
it can offer Unity to its consumers without causing the suppli-
ers of those components to object. Because Unity Technologies
does not release Unity overall as an OSS project, most of the
sublicensing provisions of the components’ licenses do not come
into play, simplifying Unity Technologies’ manual analysis for
license conflicts at the expense of preventing licensees from mod-
ifying Unity to meet their own needs more exactly. Some of the
components are OSS, and for one of them (26: MonoDevelop IDE)
Unity Technologies’ modifications are open as well, but Unity
users cannot modify components themselves and rebuild a more
capable version of Unity from them.

• Google Chrome is an OSS system incorporating externally pro-
duced components. However, it is not an OA system since it does
not appear to have a formally specified open architecture that
explicitly composes components interlinked through connectors
to derive or realize a buildable system configuration. Instead, as
in most OSS projects, its parent project Chromium relies on an
implicit architecture that cannot be completely identified and
may only be assessed by reading the source code and reviewing
online artifacts and developer interaction records (e.g. postings
to a bulletin board, reviewing bug reports, checking comments in
source compilation build scripts, or developer chat channels).

Because its architecture is implicit, the overall system license
for Chromium cannot be calculated automatically (Alspaugh
et al., 2009b, 2011) but is instead compiled manually. The several-
years-old date of 2008 for the Chromium license, and the project’s
discussion of the change from JSCRE to the V8 regular expression
engine (Chromium issues, 2009), for which the license was not
updated, support this inference.

In order to simplify the process for resolving potential license
conflicts, the Chromium project appears to have limited its
external components to those available under non-propagating,
non-reciprocal OSS licenses. The Chromium source is publicly
available for perusal and modification, but not under a single
monolithic license; each component is licensed under its own.
Users can modify and rebuild Chromium to suit their own needs,
as long as they meet the (separate) license obligations of all the

1484 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

components, and do not contravene Google trademark or brand-
ing restrictions.

In summary, none of these widely used systems provide enough
information to completely evaluate potential evolution paths, or to
automatically calculate overall IP rights and obligations. But this
information and IP stipulations are needed to fully articulate the
software supply networks that reveal which software ecosystem
instances (or niches) each system exists within. In order to explore
the issues raised by open architecture software ecosystems, it is
necessary to consider a system about which the necessary infor-
mation is available. We do not claim that only open architecture
systems are important or useful, but rather that only such systems
can take full advantage of the evolutionary and analytical oppor-
tunities OAs support. Because it is not possible, in general, to infer
a system’s software architecture after the fact, or to satisfactorily
impose an OA on a system developed without one, the system must
be designed from the beginning with an explicit architecture as a
first-class development architecture. Consequently, we present an
example system that utilizes a simple, archectypal open architec-
ture in Section 5. This system illustrates the issues that arise with
more complex systems like Unity and Google Chrome, as well as
additional possibilities not available without an OA, and does so
with greater brevity and clarity.

Subsequently, we see that software ecosystems can be under-
stood in part by examining relationships between architectural
composition of software components that are subject to different
licenses, and this necessitates access to the system’s architecture
composition. By examining the open architecture of a specific com-
posed software system, it becomes possible to explicitly identify
the software ecosystem niche in which the system is embedded.

3. Related research

3.1. Software ecosystems

The study of software ecosystems is emerging as an exciting
new area of systematic investigation and conceptual development
within software engineering. Understanding the many possible
roles that software ecosystems can play in shaping software engi-
neering practice is gaining more attention since the concept first
appeared (Messerschmitt and Szyperski, 2003). Bosch (2009) builds
a conceptual lineage from software product line (SPL) concepts and
practices (Bosch, 2000; Clements and Northrop, 2001) to software
ecosystems. SPLs focus on the centralized development of families
of related systems from reusable components hosted on a com-
mon platform with an intra-organizational base, with the resulting
systems either intended for in-house use or commercial deploy-
ments. Software ecosystems then are seen to extend this practice to
systems hosted on an inter-organizational base, which may resem-
ble development approaches conceived for virtual enterprises for
software development (Noll and Scacchi, 1999). Producers of com-
mercial software applications or packages thus need to adapt their
development strategy and business model to one focused on coor-
dinating and guiding decentralized software development of its
products and enhancements (e.g. plug-in components).

3.2. Relations among and within software ecosystems

Jansen et al. (2009a,b) observe that software ecosystems (a)
embed software supply networks that span multiple organizations,
and (b) are embedded within a network of intersecting or over-
lapping software ecosystems that span the world of software
engineering practice. Scacchi (2007) for example, identifies that
the world of OSS development is a loosely coupled collection of

software ecosystems different from those of commercial software
producers, and its supply networks are articulated within a net-
work of FOSS development projects. Networks of OSS ecosystems
have also begun to appear around very large OSS projects for Web
browsers, Web servers, word processors, and others, as well as
related application development environments like NetBeans and
Eclipse, and these networks have become part of global information
infrastructures (Jensen and Scacchi, 2005).

Boucharas et al. (2009) then draw attention to the need to more
systematically and formally model the contours of software sup-
ply networks, ecosystems, and networks of ecosystems. Such a
formal modeling base may then help in systematically reasoning
about what kinds of relationships or strategies may arise within a
software ecosystem. For example, Kuehnel (2008) examines how
Microsoft’s software ecosystem developed around operating sys-
tems (MS Windows) and key applications (e.g. MS Office) may
be transforming from “predator” to “prey” in its effort to control
the expansion of its markets to accommodate OSS (as the extant
prey) that eschew closed source software with proprietary software
licenses.

OSS ecosystems also exhibit strong relationships between the
ongoing evolution of OSS systems and their developer and user
communities, such that the success of one co-depends on the suc-
cess of the other (Scacchi, 2007). Ven and Mannaert discuss the
challenges independent software vendors face in combining OSS
and proprietary components, with emphasis on how OSS compo-
nents evolve and are maintained in this context (Ven and Mannaert,
2008).

3.3. Software ecosystems and software product lines

Along with other colleagues (Bosch and Bosch-Sijtsema, 2010;
Brown and Booch, 2002; van Gurp et al., 2010), Bosch also iden-
tifies alternative ways to connect reusable software components
through integration and tight coupling found in SPLs, or via loose
coupling using glue code, scripting or other late binding composi-
tion schemes in ecosystems or other decentralized enterprises (Noll
and Scacchi, 1999, 2001), as a key facet that can enable software
producers to build systems from diverse sources.

3.4. Building on related work

Our work in this area builds on these efforts in the following
ways. First, we share the view of a need for examining software
ecosystems, but we start from software system architectures that
can be formally modeled and analyzed with automated tool sup-
port (Bosch, 2000; Taylor et al., 2009). Explicit modeling of software
architectures enables the ability to view and analyze them at
design time, build time, or deployment/run time. Software archi-
tectures also serve as a mechanism for coordinating decentralized
software development across multi-site projects (Ovaska et al.,
2003). Similarly, explicit models allow for the specification of sys-
tem architectures using either proprietary software components
with open APIs, OSS components, or combinations thereof, thereby
realizing open architecture (OA) systems (Scacchi and Alspaugh,
2008). We then find value in attributing open architecture compo-
nents with their IP licenses (Alspaugh et al., 2009b), since software
licenses are an expression of contractual/social obligations that
software consumers must fulfill in order to realize the rights to
use the software in specified allowable manners, as determined by
the software’s producers.

4. Open architectures

Open architecture (OA) is a software design customization tech-
nique introduced by Oreizy (2000) that enables third parties to

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1485

modify a software system through its exposed architecture, evolv-
ing the system by replacing its components. Increasingly more
software-intensive systems are developed using an OA strategy,
not only with OSS components but also proprietary components
with open APIs (e.g. Unity Technologies, 2008). Using this approach
can lower development costs and increase reliability and function
(Scacchi and Alspaugh, 2008). Composing a system with hetero-
geneously licensed components, however, increases the likelihood
of conflicts, liabilities, and no-rights stemming from incompatible
licenses. Thus, in our work we define an OA system as a software
system consisting of explicitly interconnected components that are
either open source or proprietary with open APIs, whose overall sys-
tem rights at a minimum allow its use and redistribution, in full or
in part.

It may appear that using a system architecture that incorpo-
rate OSS components and uses open APIs will result in an OA
system. But not all such architectures will produce an OA, since
the (possibly empty) set of available license rights for an OA sys-
tem depends on: (a) how and why OSS and open APIs are located
within the system architecture, (b) how OSS and open APIs are
implemented, embedded, or interconnected, and (c) the degree to
which the licenses of different OSS components encumber all or
part of a software system’s architecture into which they are inte-
grated (Alspaugh and Antón, 2008; Scacchi and Alspaugh, 2008).
Thus, as noted earlier, neither Firefox, Unity, nor Google Chrome are
OA systems, even though all three are built with OSS components.
But how can we specify and design a system so that it does have
an OA?

The following kinds of software elements appearing in common
software architectures can affect whether the resulting systems are
open or closed (Bass et al., 2003).

Software source code components—These can be either (a)
standalone programs, (b) libraries, frameworks, or middleware, (c)
inter-application script code such as C shell scripts, or (d) intra-
application script code, as for creating Rich Internet Applications
using domain-specific languages such as XUL for the Firefox Web
browser (Feldt, 2007) or “mashups” (Nelson and Churchill, 2006).
Their source code is available and they can be rebuilt. Each may
have its own distinct license, though often script code that merely
connects programs and data flows has no explicit license unless the
code is substantial, reusable, or proprietary.

Executable components—These components are in binary
form, and the source code may not be open for access, review, mod-
ification, or possible redistribution (Rosen, 2005). If proprietary,
they often cannot be redistributed, and so such components will
be present in the design-, build-, and run-time architectures but
not in the distribution-time architecture.

Software services—An appropriate software service can replace
a source code or executable component.

Application programming interfaces/APIs—Availability of
externally visible and accessible APIs is the minimum requirement
for an “open system” (Meyers and Oberndorf, 2001). Open APIs are
not and cannot be licensed, but they can limit the propagation of
license obligations.

Software connectors—Software whose intended purpose is to
provide a standard or reusable way of communication through
common interfaces, e.g. High Level Architecture (Kuhl et al., 1999),
CORBA, MS.NET, Enterprise Java Beans, and GNU Lesser General
Public License (LGPL) libraries. Connectors can also limit the prop-
agation of license obligations.

Methods of composition—These include linking as part
of a configured subsystem, dynamic linking, and client-server
connections. Methods of composition affect license obligation
propagation, with different methods affecting different licenses.

Configured system or subsystem architectures—These are
software systems that are used as atomic components of a larger

system, and whose internal architecture may comprise compo-
nents with different licenses, affecting the overall system license.
To minimize license interaction, a configured system or sub-
architecture may be surrounded by what we term a license firewall,
namely a layer of dynamic links, client-server connections, license
shims, or other connectors that block the propagation of reciprocal
license obligations.

Each component selection implies acceptance of the license
obligations and rights that the producer seeks to transmits to the
components consumers. However in an OA design development,
component interconnections may be used to intentionally (or unin-
tentionally) propagate these obligations onto other components
whose licenses may conflict with them or fail to match (Alspaugh
et al., 2009b; German and Hassan, 2009); the system integrator
can decide to insert software shims using scripts, dynamic links
to remote services, data communication protocols, or libraries to
mitigate or firewall the extent to which a component’s license
obligations propagate. This style of build-time composition can be
used to accommodate a system’s consumers’ choice to select com-
ponents that either ensure or avoid certain licenses (for example
Firefox’s policy of only accepting source code that can be tri-
licensed, Section 2.1, or Google Chromium’s apparent policy of
excluding components governed by proprietary or strong-copyleft
licenses, Section 2.3), or that isolate the license obligations of cer-
tain desirable components. It also allows system integrators and
consumers to follow a “best of breed” policy in the selection of
system components. Finally, if no license conflicts exist in the sys-
tem, or if the integrator and system consumer are satisfied with
the component and license choices made, then the compositional
bindings may simply be set in the most efficient way available. This
realizes a policy for accepting only components and licenses whose
obligations and rights are acceptable to the system consumers.

5. Understanding open architecture software ecosystems

A software ecosystem constitutes a software supply network
that connects software producers to integrators to consumers,
through licensed components and composed systems. Fig. 4 illus-
trates a software ecosystem for an OA example system discused
below. By analogy to Hutchinson’s definition of a niche in a biolog-
ical ecosystems as “an n-dimensional hypervolume . . . every point
in which corresponds to a state of the environment which would
permit the species . . . to exist indefinitely” (Hutchinson, 1957), we
define software ecosystem niches below.

5.1. Software ecosystem niches

A software ecosystem niche articulates a specific software supply
network that interconnects particular software producers of spe-
cific components, integrators, and consumers. The niche defined by
a software system may lie within an existing single ecosystem, or
it may span a network of several software producer ecosystems.

Firstly, a composed software system architecture largely
determines the system’s software ecosystem niche, since the archi-
tecture identifies the components, their licenses and producers, and
thus the network of software ecosystems in which it participates.
Such a niche also transmits license-borne obligations and access
and usage rights passed from the participating software component
producers, through integrators, on to system consumers. Thus, sys-
tem architects or component integrators help determine in which
software ecosystem niche a given instance architecture for the sys-
tem participates.

Secondly, system integrators can update or modify system
architectural choices not only at design time, but also at build time,
when components are joined together into an executable, or at run

1486 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Fig. 4. Ecosystem for three possible instantiations of a single design architecture.

time, when bindings to remote executable services are instanti-
ated, thus shifting the instantiated system to a related but distinct
niche.

As a software system evolves over time, as its components
are updated or changed or their architectural interconnections
are refactored, it is desirable to determine whether and how the
system’s ecosystem niche may have changed and how it can be
advantageously steered for the future. Such a change implies at
minimum that the software supply network may have been recon-
figured, and thus obligations and rights passed from producers and
integrators to system consumers may have also changed in some
way. A system may evolve because its consumers want to migrate to
alternatives from different component producers, or choose com-
ponents whose licenses are now more desirable. Software system
consumers may want to direct their system integrators to compose
the system’s architecture so as to move into or away from cer-
tain niches. Thus, understanding how software ecosystem niches
emerge is a useful concept that links software engineering con-
cerns for software architecture, system integration/composition,
and software evolution to organizational and supply network rela-
tionships between software component producers, integrators and
system consumers. It also helps articulate how the obligations and
rights provided by producers are propagated/constrained by inte-
grators onto system consumers as the system is developed and
evolves.

5.2. An example system

To help explain how OA systems articulate software ecosystem
niches, we provide a software architecture example system for use

in this paper. This OA system utilizes a simple architectural design
that composes a web browser, word processor, calendaring, and
email applications, onto a host platform operating system, possibly
with remote services for some components, designed and inte-
grated by some organization and distributed to its consumers, some
of whome may in turn integrate it into a larger system The same
issues arise as if it utilized a graphics library, encryption module,
typesetting engine, and thread management component instead, or
with 400 components rather than 4, but this architecture illustrates
the issues more simply and has the advantage of applying to many
existing systems, including systems built by the authors. With these
architectural elements, we can create an design-time or reference
architecture for a system that conforms to the software supply
network shown in Fig. 4. This design-time architecture appears in
Fig. 5; note that it only specifies components by type rather than

Web Browser
User Interface

Email & Calendar
User Interface

Word Processor
User Interface

Connector 1

Web App Server

Network Protocol

Connector 2

Email & Calendar

Operating System

Web Browser
Intra-Application Scripting

Connector 3

Email Server

Word Processor

Inter-Application Scripting

Network Protocol

API 1 API 2 API 3

Fig. 5. A design-time architecture.

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1487

Firefox User
Interface

Gnome Evolution
User Interface

AbiWord User
Interface

Window Manager

Apache HTTP

HTTP

Window Manager

Gnome Evolution

RH/Fedora Linux

Firefox
JavaScript scripts

Window Manager

XMail

AbiWord

cshell scripts

IMAP/POP/SMTP

Unix System Calls Unix System Calls Unix System Calls

Fig. 6. A build-time architecture.

by producer, meaning the choice of producer component remains
unbound at this point.

Then in Fig. 6, we create a build-time rendering of this archi-
tectural design by selecting specific components from designated
software producers. The gray boxes correspond to components and
connectors not visible in the run-time instantiation of the system
in Fig. 7.

Figs. 7–9 display alternative run-time instantiations of the
design-time architecture of Fig. 5. The architectural run-time
instance in Fig. 7 corresponds to the software ecosystem niche
shown in Fig. 10; Fig. 8 corresponds to the niche in Fig. 11; and
Fig. 9 designates yet another niche different from the previous two.
The run-time instantiations are then distributed to the consumers
of the system.

This system’s ecosystem is complex in important ways:

• Alternatives exist for each component that bring into play diverse
possibilities for licenses, evolution paths, system capabilities,
requirements, and ecosystems, such as MS Word (proprietary),
AbiWord (OSS), or Google Docs (remote service) for the word
processor.

• Some component choices co-evolve with coordination among sup-
pliers (such as Mozilla and Gnome components) while others do
not (Section 6).

• The system in its current open architecture is independent of any
one supplier. Such ecosystems are more revealing and offer more
evolution paths for study (and use) than a system in an ecosystem
dominated by a single vendor such as Microsoft, Oracle, or SAP.
Single-vendor-dominated ecosystems may be larger, but are less
diverse and thus less interesting and offer fewer choices with
significant ecosystem impact.

• The system is independent of any one platform; for example, it
could be evolved by component replacement to run on a mobile
device as discussed in Section 7, moving it into a much different
niche.

The system can be instantiated with components all governed by
the same license (as in Fig. 10), resulting in a monolithically licensed
system like Firefox; and it can be instantiated with diversely
licensed components (as in Fig. 11), resulting in a heterogeneously
licensed system like Unity and Google Chrome. Unlike those three,
however, it also is an OA system and so its virtual license can be
calculated and its software ecosystem niche can be directly stud-
ied and evolved toward a more desirable one. Because it is OA, it
offeres more choices of components and configurations, and thus
more possible niches, along with more ways to move among and
take advantage of them; all that Firefox, Unity, and Google Chrome
offer as expository examples, plus more.

The insights provided by the example system allow one, we
believe, to anticipate or even predict the kinds of issues that will
arise when new platforms emerge.

The four primary components collectively represent more than
a million lines of code. Each component, and its subcomponents
recursively down to the smallest, is a composition of other more
primitive components that may be independently developed or
developed as part of this system, and may be added to the ecosys-
tem relationships in order to consider its effect on supply chains
and evolution. An individual component such as Firefox constitutes
a micro-platform itself on which Ajax, Rich Internet Applications,
or other scripted functionality (e.g. invoking an embedded link
to a YouTube Video player) can run internally, constituting an
embedded ecosystem. Equivalent components from different OSS
or proprietary software producers can be identified, where each
alternative is subject to a different type of software license. For
example, for Web browsers, we consider the Firefox browser from
the Mozilla Foundation, which comes with a choice of OSS license
(MPL, GPL, or LGPL), and the Opera browser from Opera Software,
which comes with a proprietary software end-user license agree-
ment (EULA). Similarly, for word processor, we consider the OSS
AbiWord application (GPL) and Web-based Google Docs service
(proprietary Terms of Service).

The OA we describe covers a number of systems we have
identified, built, and deployed in a university research laboratory,
and as far as can be externally determined also many distinct
systems integrated by organizations and distributed internally
or to a customer base. We have also developed OA systems
with more complex architectures that incorporate components
for content management systems (Drupal), wikis (MediaWiki),
blogs (B2evolution), teleconferencing and media servers (Flash
media server, Red5 media server), chat (BlaB! Lite), Web spiders
and search engines (Nutch, Lucene, Sphider), relational database
management systems (MySQL), and others. Furthermore, the OSS
application stacks and infrastructure (platform) stacks found at
BitNami.org/stacks (accessed 29 April 2010) could also be incorpo-
rated in OA systems, as could their proprietary counterparts. Even
these more complex OAs still reflect the core architectural con-
cepts and constructs, software ecosystem relationships, challenges,
and solutions that we present more accessibly in our example
system.

The software ecosystem niches for the example system, or
indeed any system, depend on which component implementa-
tions are used and the architecture in which they are combined
and instantiated, as does the overall rights and obligations for the
instantiated system. In addition, we build on previous work on het-
erogeneously licensed systems (Alspaugh et al., 2010; German and
Hassan, 2009; Scacchi and Alspaugh, 2008) by examining how OA
development affects and is affected by software ecosystems, and
the role of component licenses in shaping OA software ecosystem
niches.

Consequently, we focus our attention to understand the ecosys-
tem niche of an open architecture software system:

• It must rest on a license structure of rights and obligations, focus-
ing on obligations that are enactable and testable (Alspaugh et al.,
2009b, 2010).1

• It must take account of the distinctions between the design-time,
build-time, and distribution-time architectures (Section 4) and
the rights and obligations that come into play for each of them.

1 For example, many OSS licenses include an obligation to make a component’s
modified code public, and whether a specific version of the code is public at a spec-
ified Web address is both enactable (it can be put into practice) and testable. In
contrast, the General Public License (GPL) v.3 provision “No covered work shall be
deemed part of an effective technological measure under any applicable law fulfill-
ing obligations under article 11 of the WIPO copyright treaty” is not enactable in
any obvious way, nor is it testable—how can one verify what others deem?

1488 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Fig. 7. An instantiation at run time (Firefox, AbiWord, Gnome Evolution, Fedora) of the build-time architecture of Fig. 6 that determines the ecosystem niche of Fig. 10.

Fig. 8. A second instantiation at run time (Firefox, Google Docs and Calendar, Fedora) determining the ecosystem niche of Fig. 11.

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1489

Fig. 9. A third instantiation at run-time (Opera, Google Docs, Gnome Evolution, Fedora) determining yet another niche conforming to the software supply network of Fig. 4.

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Fig. 10. The ecosystem niche for one instance architecture.

1490 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Firefox

MPL|GPL|LGPL

Opera

Opera EULA

Design-time
architecture:

Browser,
WP,

calendar

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

GPL,
Google ToS

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL, Google
ToS, MS EULA

OR OR

AbiWord

GPL

Google
Docs

Google ToS

Google
Calendar

Google ToS

Gnome
Evolution

GPL

Fedora

GPL

Windows

MS Eula

OSX

Apple
License

...

...

Instance
architecture:

Opera,
 Google Docs,

Evolution,
OSX

Opera EULA,
Google ToS,

Apple License

OR OR ...

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

Fig. 11. The ecosystem niche for a second instance architecture.

• It must distinguish the architectural constructs significant for
software licenses, and embody their effects on rights and obli-
gations (Section 4).

• It must define the system’s license architecture, the abstraction
of its software architecture annotated with licenses, connector
types, etc. that determines the system’s virtual license (overall
rights and obligations) and from which the virtual license can be
calculated (Alspaugh et al., 2009b, 2011).

• It must account for alternative ways in which software systems,
components, and licenses can evolve (Section 6).

• It must provide an automated environment for creating and man-
aging license architectures. We have developed a prototype that
manages the license architecture as a view of the system archi-
tecture (Alspaugh et al., 2009b, 2011).

6. Architecture, license, and ecosystem evolution

An OA system can evolve by a number of distinct mechanisms,
some of which are common to all systems but others of which are
a result of heterogeneous component licenses in a single system.
For the application of these mechanisms to systems rather than
ecosystems, see our previous work (Alspaugh et al., 2009a,b, 2011,
2010; Scacchi and Alspaugh, 2008).

By component evolution— One or more components can
evolve, altering the overall system’s characteristics (for example,
upgrading and replacing the Firefox Web browser from version 3.5
to 3.6). Such minor versions changes generally have no effect on
system architecture.

By component replacement— One or more components may
be replaced by others with modestly different functionality but

similar interface, or with a different interface and the addition of
shim code to make it match (for example, replacing the AbiWord
word processor with either Open Office Writer or MS Word).
However, changes in the format or structure of component APIs
may necessitate build-time and run-time updates to component
connectors. Fig. 12 shows some possible alternative system com-
positions that result from replacing components by others of the
same type but with a different license.

By architecture evolution— The OA can evolve by changing con-
nectors between components rearranging connectors in a different
configuration, or changing the interface through which a connector
accesses a component, altering the system characteristics. Revising
or refactoring the configuration in which a component is connected
can change how its license affects the rights and obligations for the
overall system. An example is the replacement of word process-
ing, calendaring, email components, and connectors to them with
Web-browser-based services such as Google Docs, Google Calen-
dar, and Google Mail. The replacement would eliminate the legacy
components and relocate the desired application functionality to
operate remotely from within the Web browser component, result-
ing in what might be considered a simpler and easier-to-maintain
system architecture, but one that is less open and now subject to
a proprietary Terms of Service license. System consumer prefer-
ences for kinds of licenses and the consequences of subsequent
participation in a different ecosystem niche may thus medi-
ate whether such an alternative system architecture is desirable
or not.

By component license evolution— The license under which a
component is available may change, as for example when the
license for the Mozilla core components was changed from the

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1491

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL, GPL,
GPL, GPL

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Fedora

LGPL,
Google ToS,
Google ToS,

GPL

Instance
architecture:

Opera,
 Google Docs,
Google Cal.,

Fedora

Opera EULA,
Google ToS,
Google ToS,

GPL

Instance
architecture:

Opera,
AbiWord,
Evolution,

Fedora

Opera EULA,
GPL, GPL, GPL

Instance
architecture:

Firefox,
Google Cal.,
Google Docs,

Windows

MPL,
Google ToS,
Google ToS,

MS EULA

Fig. 12. Possible evolutionary paths among a few instance architectures; some paths are impractical due to the changes in license obligations.

Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-
License; or the component may be made available under a new
version of the same license, as for example when the GNU General
Public License (GPL) version 3 was released. The three architec-
tures in Fig. 12 that incorporate the Firefox Web browser show how
its tri-license creates new evolutionary paths by offering different
licensing options. These options and paths were not available pre-
viously with earlier versions of this component offered under only
one or two license alternatives.

In response to different desired rights or acceptable
obligations— The OA system’s integrator or consumers may
desire additional license rights (for example the right to sublicense
in addition to the right to distribute), or no longer desire specific
rights; or the set of license obligations they find acceptable may
change. In either case the OA system evolves, whether by changing
components, evolving the architecture, or other means, to provide
the desired rights within the scope of the acceptable obligations.
For example, they may no longer be willing or able to provide
the source code for components within the reciprocality scope of
a GPL-licensed module. Fig. 13 shows an array of choices among
types of licenses for different types of components that appear in
the OA example system. Each choice determines the obligations
that component producers can demand of their consumers in
exchange for the access/usage rights they offer.

The interdependence of producers, integrators, and consumers
results in a co-evolution of software systems and social networks
within an OA ecosystem (Scacchi, 2007). Closely coupled compo-
nents from different producers must evolve in parallel in order
for each to provide its services, as evolution in one will typically
require a matching evolution in the other. Producers may manage
their evolution with a loose coordination among releases, as for
example is done between the Gnome and Mozilla organizations.
Each release of a producer component creates a tension through
the ecosystem relationships with consumers and their releases of
OA systems using those components, as integrators accommodate
the choices of available, supported components with their own
goals and needs. As discussed in our previous work (Alspaugh et al.,
2009b), license rights and obligations are manifested at each com-
ponent interface then mediated through the OA of the system to
entail the rights and corresponding obligations for the system as

a whole. As a result, integrators must frequently re-evaluate the
OA system rights and obligations. In contrast to homogeneously
licensed systems, license change across versions is a characteristic
of OA ecosystems, and architects of OA systems require tool support
for managing the ongoing licensing changes.

7. Discussion

At least two topics merit discussion following from our
approach to understanding of software ecosystems and ecosystem
niches for OA systems: first, how might our results shed light
on software systems whose architectures articulate a software
product line; and second, what insights might we gain based on the
results presented here on possible software license architectures
for mobile computing ecosystems. Each is addressed in turn.

Software product lines (SPLs) rely on the development and use
of explicit software architectures (Bosch, 2000; Clements and
Northrop, 2001). However, the architecture of an SPL or software
ecosystem does not necessarily require an OA—there is no need for
it to be open. Thus, we are interested in discussing what happens
when SPLs may conform to an OA, and to an OA that may be subject
to heterogeneously licensed SPL components. Three considerations
come to mind:

1. If the SPL is subject to a single homogeneous software license,
which may often be the case when a single vendor or govern-
ment contractor has developed the SPL, then the license may
act to reinforce a vendor lock-in situation with its customers.
One of the motivating factors for OA is the desire to avoid
such lock-in, whether or not the SPL components have open or
standards-compliant APIs. However, a single license simplifies
determination of the software ecosystem in which these system
is located.

2. If an OA system employs a reference architecture, then such a
reference or design-time architecture effectively defines an SPL
consisting of possible different system instantiations composed
from similar components from different producers (e.g. different
but equivalent Web browsers, word processors, calendaring
and email applications). This can be seen in the design-time

1492 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Service

Weakly
Reciprocal

or Academic

Proprietary

Strongly
Reciprocal

Opera
(Opera EULA)

Google Docs
(Google ToS)

Google Calendar
(Google ToS)

FreeBSD
(BSD variant)

Fedora
(GPL)

Gnome Evolution
(GPL)

Calendar,
 email

AbiWord
(GPL)

OpenOffice
(LGPL)

Firefox
(MPL or
LGPL or
 GPL)

Word
processorBrowser

Windows
(MS EULA)

WordPerfect
(Corel License)

Platform

Fig. 13. Some architecture choices and their license categories.

architecture depicted in Fig. 5, the build-time architecture in
Fig. 6, and the instantiated run-time architectures in Figs. 7–9.

3. If the SPL is based on an OA that integrates software components
from multiple producers or OSS components that are subject
to different heterogeneous licenses, then we have the situation
analogous to what we have presented in this paper, but now
in the form of virtual SPLs from a virtual software production
enterprise (Noll and Scacchi, 1999) that spans multiple inde-
pendent OSS projects and software production enterprises;
virtual in the sense that both the enterprise and the SPL are
emergent phenomena rather than intended and embodied by
existing organizations and business plans. SPL concepts are
thus compatible with OA systems that are composed from
heterogeneously licensed components, and do not impact the
formation or evolution of the software ecosystem niches where
such systems may reside.

Our approach for using open software system architectures and
component licenses as a lens that focuses attention to certain kinds
of relationships within and across software supply networks, soft-
ware ecosystems, and networks of software ecosystems has yet
to be applied to systems on mobile computing platforms. Bosch
(2009) notes this is a neglected area of study, but one that may
offer interesting opportunities for research and software prod-
uct development. Thus, what happens when we consider Apple
iPhone/iPad OS, Google Android OS phones, Nokia Symbian OS
phones, Microsoft Windows 7 OS phones, Intel MeeGo/Tizen OS
netbooks, or Nintendo DS portable game consoles as possible plat-
forms for OA system design and deployment?

First, all of these devices are just personal computers with oper-
ating systems, albeit in small, mobile, and wireless form factors.
They represent a mix of mostly proprietary operating system plat-
forms, though some employ Linux-based or other OSS alternative
operating systems.

Second, Mobile OS platforms owners (Apple, Nokia, Google,
Microsoft) are all acting to control the software ecosystems for
consumers of their devices through establishment of logically
centralized (but possibly physically decentralized) application dis-
tribution repositories or online stores, where the mobile device
must invoke a networked link to the repository to acquire (for fee or
for free) and install apps. Apple has had the greatest success in this
strategy and dominates the global mobile application market and
mobile computing software ecosystems. But overall, OA systems
are not necessarily excluded from these markets or consumers.

Third, given our design-time architecture of the example sys-
tem shown in Fig. 5, is it possible to identify a build-time version

that could produce a run-time version that could be deployed on
most or all of these mobile devices? One such build-time architec-
ture would compose an Opera Web browser, with Web services for
word processing, calendaring and email, that could be hosted on
either proprietary or OSS mobile operating systems. This alterna-
tive arises since Opera Software has produced run-time versions
of its proprietary Web browser for these mobile operating sys-
tems, for accessing the Web via a wireless/cellular phone network
connection. Similarly, in Fig. 12 the instance architecture on the
right could evolve to operate on a mobile platform like an Android-
based mobile device or Symbian-based cell phone. So it appears
that mobile computing devices do not pose any unusual challenges
for our approach in terms of understanding their software ecosys-
tems or the ecosystem niches for OA systems that could be hosted
on such devices.

8. Conclusion

The role of software ecosystems in the development and evo-
lution of heterogeneously licensed open architecture systems has
received insufficient consideration. Such systems are composed of
components potentially under two or more licenses, open source
software or proprietary or both, in an architecture in which evo-
lution can occur by evolving existing components, replacing them,
or refactoring. The software licenses of the components both facil-
itate and constrain in which ecosystems a composed system may
lie. In addition, the obligations and rights carried by the licenses
are transmitted from the software component producers to sys-
tem consumers through the architectural choices made by system
integrators. Thus software component licenses help determine the
contours of the software supply network and software ecosystem
niche that emerge for a given implementation of a composed sys-
tem architecture. Accordingly, we described examples for systems
whose host software platform span the range of personal computer
operating systems, Web services, and mobile computing devices.

Consequently, software component licenses and the architec-
tural composition of a system determine the software ecosystem
niche in which a system resides. Understanding and describing
software ecosystem niches is a key contribution of this work. An
example system of an open architecture software system that artic-
ulates different software supply networks as ecosystem niches was
employed to this end. We examined how the architecture and soft-
ware component licenses of a composed system at design time,
build time, and run time helps determine the system’s software
ecosystem niche, and provides insight for identifying potential
evolutionary paths of software system, architecture, and niches.

W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494 1493

Similarly, we detailed the ways in which a composed system can
evolve over time, and how a software system’s evolution can
change or shift the software ecosystem niche in which the sys-
tem resides and thus producer–consumers relationships. Then we
described how virtual software product lines can exist through
the association between open architectures, software component
licenses, and software ecosystems.

Finally, in previous work (Alspaugh et al., 2010, 2009b,c) we
identified structures for modeling software licenses and the license
architecture of a system, and automated support for calculating
its rights and obligations. Such capabilities are needed in order
to manage and track an OA system’s evolution in the context of
its ecosystem niche. We have outlined an approach for achieving
these structures and support and sketched how they further the
goal of reusing and exchanging alternative software components
and software architectural compositions. More work remains to be
done, but we believe this approach transforms a vexing problem
of stating in detail how study of software ecosystems can be tied
to core issues in software engineering like software architecture,
product lines, component-based reuse, license management, and
evolution, into a manageable one for which workable solutions can
be obtained.

Acknowledgments

This research is supported by grants #0534771 and #0808783
from the U.S. National Science Foundation, and grants #N00244-
10-1-0038 and #N00244-12-1-0004 from the Acquisition Research
Program at the Naval Postgraduate School. No review, approval, or
endorsement is implied.

Appendix: Kinds of software licenses

Traditional proprietary licenses allow a company to retain con-
trol of software it produces, and restrict the access and rights that
outsiders can have. OSS licenses, on the other hand, are designed to
encourage sharing and reuse of software, and grant access and as
many rights as possible. OSS licenses are classified as permissive or
reciprocal. Permissive OSS licenses such as the Berkeley Software
Distribution (BSD) license, the Massachusetts Institute of Technol-
ogy license, the Apache Software License, and the Artistic License,
grant nearly all rights to components and their source code and
impose few obligations. Anyone can use the software, create deriva-
tive works from it, or include it in proprietary projects. Typical
permissive obligations are simply to not remove the copyright and
license notices.

Reciprocal OSS licenses take a more active stance towards
sharing and reusing software by imposing the obligation that recip-
rocally licensed software not be combined (for various definitions
of “combined”) with any software that is not in turn also released
under the reciprocal license. Those for which most or all ways of
combining software propagate reciprocal obligations are termed
strongly reciprocal. Examples are GPL and the Affero GPL (AGPL). The
distinctive purpose of GPL is to increase the commons of OSS, by
requiring software incorporating GPL’d components to be released
only under GPL (for various definitions of “incorporating”). AGPL
additionally prevents software components licensed under it from
being integrated into an OA system as a remote server, or from being
wrapped with shims to inhibit its ability to propagate the GPL obli-
gations and rights. The purpose of these licenses is to ensure that
software so licensed will maintain (and can propagate) the free-
dom to access, study, modify, and redistribute the software source
code, which permissive licenses do not. This in turn assures the
access, use, and reusability of the source code for other software
producers and system integrators. Those licenses for which only

certain ways of combining software propagate reciprocal obliga-
tions are termed weakly reciprocal. Examples are the Lesser GPL
(LGPL), Mozilla Public License (MPL), and Common Public License.
The goals of reciprocal licensing are to increase the domain of OSS
by encouraging developers to bring more components under its
aegis, and to prevent improvements to OSS components from van-
ishing behind proprietary licenses.

Most license provisions have focused on copyright issues and
the rights to reproduce, prepare derivative works. and distribute
copies that are governed by copyright law. Newer licenses often
cover patent issues as well and the rights to make, use, sell or offer
for sale, and import that are governed by patent law. These licenses
either grant a restricted patent license or explicitly exclude the
granting of patent rights. However, some important licenses are
constructed so that some or all rights under the license terminate
if the licensee institutes patent infringement suits related to the
licensed software (specifics vary by license), for example Apache
2.0 and MPL 1.1. Proprietary licenses often place limits on the use of
the licensed software as part of the contractual obligations imposed
by the license, whether the software is patented or not.

Both proprietary and OSS licenses typically disclaim liability,
assert no warranty is implied, and (for reasons based in trademark
law and beyond the scope of this work) obligate licensees to not
use the licensor’s name or trademarks.

The Open Source Initiative (OSI) maintains a widely respected
definition of “open source” and gives its approval to licenses that
meet it (OSI, 2011). OSI maintains and publishes a repository of
approximately 70 approved OSS licenses which tend to vary in
the terms and conditions of their declared obligations and rights.
However, all these licenses tend to cluster into either a strongly
reciprocal, weakly reciprocal, or permissive license type.

Common practice has been for an OSS project to choose a sin-
gle license under which all its products are released, and to require
developers to contribute their work only under conditions compat-
ible with that license. For example, the Apache Contributor License
Agreement grants enough of each author’s rights to the Apache
Software Foundation for the foundation to license the resulting
systems under the Apache Software License (Jensen and Scacchi,
2011). This sort of rights regime, in which the rights to a system’s
components are homogeneously granted and the system has a sin-
gle well-defined OSS license, was the norm in the early days of OSS
and continues to be practiced.

HLS designers have developed a number heuristics to guide
architectural design while avoiding some license conflicts. First, it
may be possible to use a reciprocally licensed component through
a license firewall that limits the scope of reciprocal obligations.
Rather than connecting conflicting components directly through
static or other build-time links, the connection is made through
a dynamic link, client-server protocol, license shim (such as an
LGPL connector), or run-time plug-ins. A second approach used
by a number of large organizations is simply to avoid using
any components with reciprocal licenses. A third approach is to
meet the license obligations (if that is possible) by for example
retaining copyright and license notices in the source and pub-
lishing the source code. However, even using design heuristics
such as these (and there are many), keeping track of license
rights and obligations across components that are interconnected
in complex OAs quickly becomes too cumbersome. Automated
support is needed to manage the multi-component, multi-license
complexity.

References

Alspaugh, T.A., Antón, A.I., 2008. Scenario support for effective requirements. Infor-
mation and Software Technology 50 (3), 198–220.

1494 W. Scacchi, T.A. Alspaugh / The Journal of Systems and Software 85 (2012) 1479–1494

Alspaugh, T.A., Asuncion, H.U., Scacchi, W., 2009a. Analyzing software licenses in
open architecture software systems. In: 2nd International Workshop on Emerg-
ing Trends in FLOSS Research and Development (FLOSS), pp. 1–4.

Alspaugh, T.A., Asuncion, H.U., Scacchi, W., 2009b. Intellectual property rights
requirements for heterogeneously-licensed systems. In: 17th IEEE International
Requirements Engineering Conference (RE’09), pp. 24–33.

Alspaugh, T.A., Asuncion, H.U., Scacchi, W., 2009c. The role of software licenses in
open architecture ecosystems. In: First International Workshop on Software
Ecosystems (IWSECO-2009), pp. 4–18.

Alspaugh, T.A., Asuncion, H.U., Scacchi, W., 2011. Presenting software license con-
flicts through argumentation. In: 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pp. 509–514.

Alspaugh, T.A., Scacchi, W., Asuncion, H.U., 2010. Software licenses in context: the
challenge of heterogeneously-licensed systems. Journal of the Association for
Information Systems 11 (11), 730–755.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. Addison-
Wesley Longman.

Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley.

Bosch, J., 2009. From software product lines to software ecosystems. In: 13th Inter-
national Software Product Line Conference (SPLC’09), pp. 111–119.

Bosch, J., Bosch-Sijtsema, P., 2010. From integration to composition: on the impact of
software product lines, global development and ecosystems. Journal of Systems
and Software 83 (1), 67–76.

Boucharas, V., Jansen, S., Brinkkemper, S., 2009. Formalizing software ecosystem
modeling. In: First International Workshop on Open Component Ecosystems
(IWOCE’09), pp. 41–50.

Brown, A.W., Booch, G., 2002. Reusing open-source software and practices: the
impact of open-source on commercial vendors. In: Software Reuse: Methods,
Techniques, and Tools (ICSR-7), pp. 381–428.

Chromium, 2011. Chromium terms and conditions. http://code.google.com/
chromium/terms.html.

Chromium issues, 2009. Issue 10638: remove JSCRE from about:credits.
https://code.google.com/p/chromium/issues/detail?id=10638.

Clements, P., Northrop, L., 2001. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional.

Feldt, K., 2007. Programming Firefox: Building Rich Internet Applications with XUL.
O’Reilly Media, Inc.

German, D.M., Hassan, A.E., 2009. License integration patterns: dealing with licenses
mismatches in component-based development. In: 28th International Confer-
ence on Software Engineering (ICSE ’09), pp. 188–198.

Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quan-
titative Biology 22 (2), 415–427.

Jansen, S., Brinkkemper, S., Finkelstein, A., 2009a. Business network management
as a survival strategy: a tale of two software ecosystems. In: First Workshop on
Software Ecosystems, pp. 34–48.

Jansen, S., Finkelstein, A., Brinkkemper, S., 2009b. A sense of community: a research
agenda for software ecosystems. In: 28th International Conference on Software
Engineering (ICSE ’09), Companion Volume, pp. 187–190.

Jensen, C., Scacchi, W., 2005. Process modeling across the web information infras-
tructure. Software Process: Improvement and Practice 10 (3), 255–272.

Jensen, C., Scacchi, W., 2011. License update and migration processes in open source
software projects. In: Hissam, S., Russo, B., de Mendonça Neto, M., Kon, F. (Eds.),
Open Source Systems: Grounding Research. IFIP Advances in Information and
Communication Technology, pp. 177–195.

Kuehnel, A.-K., 2008. Microsoft, open source and the software ecosystem: of preda-
tors and prey – the leopard can change its spots. Information & Communucation
Technology Law 17 (2), 107–124.

Kuhl, F., Weatherly, R., Dahmann, J., 1999. Creating Computer Simulation Systems:
An Introduction to the High Level Architecture. Prentice Hall.

Messerschmitt, D.G., Szyperski, C., 2003. Software Ecosystem: Understanding an
Indispensable Technology and Industry. MIT Press.

Meyers, B.C., Oberndorf, P., 2001. Managing Software Acquisition: Open Systems and
COTS Products. Addison-Wesley Professional.

Nelson, L., Churchill, E.F., 2006. Repurposing: techniques for reuse and integration
of interactive systems. In: International Conference on Information Reuse and
Integration (IRI-08), p. 490.

Noll, J., Scacchi, W., 1999. Supporting software development in virtual enterprises.
Journal of Digital Information 1 (4).

Noll, J., Scacchi, W., 2001. Specifying process-oriented hypertext for organizational
computing. Journal of Network and Computing Applications 24 (1), 39–61.

Open Source Initiative, 2011. Open Source Definition.
http://www.opensource.org/docs/osd.

Oreizy, P., 2000. Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD Thesis, University of California, Irvine.

Ovaska, P., Rossi, M., Marttiin, P., 2003. Architecture as a coordination tool in multi-
site software development. Software Process: Improvement and Practice 8 (4),
233–247.

Rosen, L., 2005. Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall.

Scacchi, W., 2007. Free/open source software development: recent research results
and emerging opportunities. In: 6th Joint European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 2007), pp. 459–468.

Scacchi, W., Alspaugh, T.A., 2008. Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In: 5th Annual Acquisition
Research Symposium, pp. 230–214.

Taylor, R.N., Medvidovic, N., Dashofy, E.M., 2009. Software Architecture: Founda-
tions, Theory, and Practice. Wiley.

Unity Technologies, December 2008. End User License Agreement.
http://unity3d.com/unity/unity-end-user-license-2.x.html.

van Gurp, J., Prehofer, C., Bosch, J., 2010. Comparing practices for reuse in integration-
oriented software product lines and large open source software projects.
Software – Practice & Experience 40 (4), 285–312.

Ven, K., Mannaert, H., 2008. Challenges and strategies in the use of open source soft-
ware by independent software vendors. Information and Software Technology
50 (9–10), 991–1002.

Walt Scacchi is a senior research scientist and research faculty member at the Insti-
tute for Software Research, University of California, Irvine. He received a Ph.D. in
Information and Computer Science from UC Irvine in 1981. From 1981–1998, he was
on the faculty at the University of Southern California. In 1999, he joined the Insti-
tute for Software Research at UC Irvine. He has published more than 150 research
papers, and has directed 60 externally funded research projects. Last, in 2012, he
serves as General Co-Chair of the 8th. IFIP International Conference on Open Source
Systems (OSS2012).

Thomas Alspaugh is a project scientist at the Institute for Software Research, Uni-
versity of California, Irvine, where he was on the faculty from 2002–2008. From
2008–2011 he served as an adjunct faculty member in Computer Science at George-
town University. His research interests are in software engineering, requirements,
and licensing. Before completing his Ph.D. in 2002 at North Carolina State University,
he worked as a software developer, team lead, and manager in industry, and as a
computer scientist at the Naval Research Laboratory on the Software Cost Reduction
(A-7) project.

