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ABSTRACT

Our goal is to identify and understand issues that arise in the
development and evolution processes for securing open ar-
chitecture (OA) software systems. OA software systems are
those developed with a mix of closed source and open source
software components that are configured via an explicit sys-
tem architectural specification. Such a specification may
serve as a reference model or product line model for a fam-
ily of concurrently sustained OA system versions/variants.
We employ a case study focusing on an OA software system
whose security must be continually sustained throughout its
ongoing development and evolution. We limit our focus to
software processes surrounding the architectural design, con-
tinuous integration, release deployment, and evolution found
in the OA system case study. We also focus on the role au-
tomated tools, software development support mechanisms,
and development practices play in facilitating or constrain-
ing these processes through the case study. Our purpose is
to identify issues that impinge on modeling (specification)
and integration of these processes, and how automated tools
mediate these processes, as emerging research problems ar-
eas for the software process research community. Finally,
our study is informed by related research found in the pre-
scriptive versus descriptive practice of these processes and
tool usage in studies of conventional and open source soft-
ware development projects.
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Figure 1: A software ecosystem of software com-
ponents that can be configured into a product line
indicating four functionally similar OA systems.

1. OVERVIEW

Our goal is to identify and understand issues that arise in
the development and evolution processes for securing open
architecture (OA) software systems. OA software systems
are those developed with a mix of closed source software
(CSS) components with open APIs, and open source soft-
ware (OSS) components, that are configured via an explicit
system architectural specification. Such a specification may
serve as a reference model or product line model for a fam-
ily of concurrently sustained OA system versions/variants.
We seek to research, develop, and refine new software pro-
cess concepts, techniques, and tools for continuously assur-
ing the security of large-scale OA software systems composed
from software components that include proprietary CSS and
non-proprietary /free OSS. In the U.S., Federal government
acquisition policy, as well as many leading enterprise I'T cen-
ters, now encourage the use of CSS and OSS in the devel-
opment, deployment, and evolution of complex, software-
intensive OA systems.

In this paper, we employ a case study focusing on an OA
software system whose security must be sustained through-
out its ongoing development and evolution. We limit our fo-
cus to software processes surrounding the architectural de-



sign, continuous integration, release deployment, and evo-
lution found in the OA system case study. To be clear,
these processes focus on activities that construct and up-
date configurations of software components, and are not the
processes for developing the components themselves. The
components involved in such OA systems have their own de-
velopment life cycle, often within development projects that
are independent or at arm’s length from the effort to develop
and evolve an OA system composed from such components.

In our case study, we examine a simple OA enterprise
computing system that configures a Web browser (Firefox,
Opera, etc.), word processor (AbiWord, Google Docs, etc.),
email and calendar component (Gnome Evolution, Gmail,
etc.), and operating system (RedHat Linux, RedHat Fedora
with SELinux, Microsoft Windows, Apple OSX, SEAndroid,
etc.) in conjunction with file, mail, and Web servers (which
may be on distributed network servers), in a loosely cou-
pled manner. However, even this simple OA system that
we study draws on an ecosystem of diverse software compo-
nent providers, whose software products can be configured
into alternative, functionally similar system configurations
that conform to an OA software product family, as indi-
cated in Figure 1. Such a OA system is also a core of
more complex, mission-critical command and control sys-
tems [10, 31]. Additionally, such a system can also be built
and deployed for use on a mobile computing platform like a
tablet or smartphone. Finally, our OA system can be encap-
sulated within security capability and enforcement mecha-
nisms (e.g., SELinux capabilities, virtual machine hypervi-
sors) in order to secure the OA system [5, 32, 35, 38].

We also use the case study to focus on the role automated
tools, software development support mechanisms, and de-
velopment practices play in facilitating or constraining OA
software processes. Our purpose is to identify issues imping-
ing on modeling (specifying) and integrating these processes,
and explore how automated tools mediate these processes,
as emerging research problems areas for the software process
research community. We also discuss how such issues affect
practical simulation and analysis of these processes.

In the remaining sections of this paper, we first exam-
ine related research found in the prescriptive versus descrip-
tive practice of software processes for architectural design,
continuous integration, release deployment, and evolution.
Next is our case study, describing an OA enterprise comput-
ing system that must remain continually secure as it evolves;
we use this to help identify issues arising in the specification
and integration of the four software processes when the goal
of the overall process effort is to continually secure an OA
system. We present examples throughout this case study.
We then investigate the software process modeling and pro-
cess integration issues that were observed in this study, as
well as how they further constrain efforts to simulate or com-
putationally analyze such processes, and conclude the paper.

2. RELATED RESEARCH AND DEVELOP-
MENT EFFORTS

We choose to focus on the processes from architectural
design, continuous integration, and release deployment to
software evolution for OA systems. Such systems incorpo-
rate both CSS and OSS components. In particular, our in-
terest is to examine how these processes enable or constrain
how to produce a secure OA system. In particular, we rec-

ognized that processes for software architecture design and
software evolution [22] have received prior attention in the
software process community, but continuous integration and
release deployment have received much less attention. Sim-
ilarly, relatively little is known about how design processes
enable and constrain continuous integration and delivery,
nor how they in turn facilitate or constrain software evolu-
tion. Such an undertaking needs to go beyond prior efforts
to specify and identify issues that may arise in processes for
the development of component-based software systems [4,
27). Earlier process studies like these do not address, for
example, how new development technologies such as con-
tinuous integration systems mediate development processes
for component-based systems. They also do not identify
continuous integration, or software release delivery and in-
stallation, as salient development processes for component-
based software systems. This may be so as continuous inte-
gration and release management are relatively new software
development processes, and such processes seem to be vis-
ibly practiced in large OSS development projects. Finally,
these earlier studies offer little insight as to how functional
or non-functional requirements for securing an OA system
mediate its software development and evolution processes.
But we do know some things about these processes from
related efforts, especially for continuous integration.
Continuous integration (CI) systems support automated
processes for building, testing, and packaging a software sys-
tem for release [7, 8, 36]. Without a CI system, developers
must build, test, and integrate their software (component)
products using hand-crafted scripts, and it is common for
such scripts to have to rely on idiosyncratic dependencies on
tool chains and libraries versions for each deployment plat-
form targeted (e.g., [15]). In contrast, CI systems incorpo-
rate the capabilities of software build systems [33] that may
invoke sequential, distributed, or parallel builds across mul-
tiple build servers (cf. [34]) to produce singular builds (e.g.,
“nightly builds”), continuously updated agile development
builds [8], or diverse, functionally equivalent executable vari-
ants [17]. The build systems access and update software
code (version control) repositories via process automation
scripts. CI sub-processes take as input directories/folders
of source code files and produce software component exe-
cutables. The executables may also be organized as a struc-
tured collection (an information architecture) of binary files,
static data value and parameter setting files packaged in in-
terlinked directories, constituting releases for deployment.
Continuous delivery (CD) further extends CI to support au-
tomated release management and the creation of automated
deployment tools such as “installation wizards” to be used by
system administrators or end-users [14]. For the remainder
of our paper, we use the abbreviations CI and CD to refer
to these sets of automatable software development processes
As Fowler [8] observed about the need for continuous in-
tegration as an enabling mechanism for agile development,
“the key is to automate absolutely everything and run the
process so often that integration errors are found quickly. As
a result everyone is more prepared to change things when
they need to, because they know that if they do cause an in-
tegration error, it’s easy to find and fir” (emphasis added).
CI processes can therefore be viewed with the assumption
that errors resulting from process automation are normal,
expected, and not necessarily easily anticipated. But why
do these errors occur at all, and why do we need to run



the process often in order to identify and resolve integration
problems? We need to make closer, systematic observations
to determine why or how these errors occur, so that we can
advance our process engineering knowledge, as well as to en-
able practical process improvement. A case study can serve
as a starting point for this, and this is our strategy.

Automated CI systems comprise composed environments
of software tools, or sets of loosely coupled tools together by
automated process invocation scripts that guide and con-
strain their use. Often these tools are independently devel-
oped and evolved. For example, a CI system like Hudson
[13] includes source code build tools like Ant or Maven, an
issue tracking (or bug reporting) tool like Bugzilla [19] or
Jira, and a software revision control browser and search en-
gine like FishEye or ViewVC for viewing the contents of
software revision control code repositories like CVS or Sub-
version. All of these tools happen to be OSS associated with
active OSS development projects, so these tools are subject
to ongoing development and evolution that improve their ca-
pabilities and add/remove functionality. Other CI systems
may use different tools or locally developed capabilities in
place of external OSS tools such as these. Consequently, this
implies the process steps enacted by a CI system will vary
(and evolve) depending on the choice of CI system, and on
the external tools or locally embedded software functional-
ity that particular CI system uses. Whether such CI process
steps are equivalent, similar, or incongruent across CI sys-
tems thus remains an open issue. But it is an issue that
must be resolved when transitioning from one CI system,
or CI system version, to another. However, current CI sys-
tems do not appear to address this, nor do they identify it
as a concern in their recommended best practices (cf. [13,
34]). Similarly, when we add the need to address the CI and
CD of secure OA systems, we quickly finds gaps in the best
practices that point to shortfalls either on the CI/CD pro-
cess support side, the security capability side [35], or their
interdependencies.

Automated CI systems are continuously being improved
or supplanted [18, 21] and different CI systems offer differ-
ent features, functional capabilities, and depend on different
software tools [34]. The same can be said for CD/release
deployment systems, especially with regard to ongoing ad-
vances and refinement of software packagers, file distribu-
tion and mirror (copy server) synchronization, installers, and
uninstallers [14]. So from a software process specification
or modeling viewpoint, there are many distinct CI process
instance types, and no single abstract CI or release deploy-
ment process prescription to follow and tailor to local devel-
opment organization needs. CI and CD process enactment
must therefore rely on manual best practices in addition to
tool-based automation, and these practices are specific to
each CI system and the tools therein [13]. CI and release
management system-based process automation thus is both
ad hoc and idiosyncratic, rather than easily standardized or
generalized, yet is a widespread software engineering process
and practice used to produce thousands of software compo-
nents (e.g., smartphone or tablet apps).

Software delivery and deployment suffer similar kinds of
process automation pathologies (e.g., [16]), to the extent
that a key advantage of automation is now thought to be
finding or process enactment errors, mistakes, or other ar-
ticulation problems [23] by running the enactment more
quickly. Software deployment errors, such as releasing and

installing a premature system release candidate into pro-
duction operations can have devastating technical or eco-
nomic consequences, as was demonstrated by the experience
of Knight Capital in Summer 2012 [6]. How to provide au-
tomated tools and practical techniques that provide (more)
robust acceptance/compliance checking prior to a new sys-
tem version being installed prior to going live in operation,
seems to be an underspecified process enactment problem.
Adding robust diversity mechanisms and capabilities for dra-
matically improving OA system security [11, 17, 30] remains
an open question for further study. Once again, a case study
can serve as a starting point for examining such issues and
concerns, and this is our strategy.

We see that part of the process challenge is how to un-
derstand and specify software processes that must interface
with emerging CI and CD systems. These CI systems en-
tail different kinds with different build, package, and release
deployment process automation capabilities, or that pro-
duce integrated systems that operate on different platforms
[34]. To us, this raises concerns for process specification—
determining what aspects of a software process are pertinent
for modeling and simulation, as well as contributory to im-
proving process effectiveness [26], and process integration—
integrating modeled process specifications with diverse au-
tomated process enactment mechanisms [24]. It also raises
issues for integration across multiple process representations
that are supported by independently developed, heteroge-
neous process enactment mechanisms [9].

3. CASE STUDY: A SECURE OA ENTER-
PRISE SYSTEM

We utilize a case study to explore and identify software
process issues that arise while producing a secure enterprise
computing software system. Such a system is produced us-
ing existing software applications as components, composing
and configuring them to realize the overall system. The pro-
cesses we examine are not those that develop such software
applications, but rather those that use them as components
of the system. However, this choice still highlights how the
ongoing, independent development and evolution of the com-
ponents motivates new versions/variants of the overall OA
system. In this regard, software component evolution is a
driving force that impinges on the development and evolu-
tion of OA systems incorporating such components.

Another aspect of our study is to recognize some software
processes, like architectural design and software evolution,
as having limited automated enactment, while others such
as continuous integration and release management are po-
tentially fully automated. This is not to say that no tools
are involved in design or evolution, far from it. Rather,
what is of interest is that software production and system
integration organizations employ a flow of software processes
that employ both fully and partially automated enactment.
Assuming a world where all software processes are fully au-
tomated may be another challenge, but it is not one that is
of practical use or consequence at this time. Our study thus
addresses software process challenges that are both reflec-
tive of understanding of emerging software process research
issues, and also may have practical application today and
beyond. As such, we turn to our case study to elaborate the
software processes of interest, and to the issues they raise
for software process research.



3.1 Architectural Design Process

The process for designing the configuration of an OA sys-
tem at the component level is our focus here. We start by
noting that we assume no pre-existing process model or stan-
dard for such a process, nor do we propose to provide such
a prescriptive process. As a review of the architectures of
dozens of OSS systems [3] makes clear, there is no common
prescriptive process, preferred set of tools, nor is there nota-
tional scheme for the architectural design of open software
systems. Instead, we describe aspects of a design process we
developed, practiced, and adapted that is supported in part
with automated design tools. One of our goals with this
process was to help identify situations, and practical non-
functional requirements, that arise with an OA design pro-
cess that constrains, and is constrained by, the other three
downstream software processes in our study.

We have used an OA tailored version of the UCI Arch-
Studio4 architecture design system (0AS4) as a locally de-
veloped plug-in to the Eclipse IDE to realize a partially auto-
mated system for architectural design activities [1, 2]. 0AS4
allows us to visually model the architectural configuration of
software components, component interfaces, and component
connectors as OA system elements. 0AS4 also produces out-
put in an architectural description language (ADL) as a per-
sistent artifact for external analysis, or for potential integra-
tion with CI systems with further processing (e.g., binding
component classes to their build-time instances). We fur-
ther focus our architectural design activities to produce an
abstract system architecture that serves to denote a product
line model of a family of alternative system configurations
composed from functionally similar components or compo-
nent versions [29]. 0AS4 can thus support our experimental
studies in OA system design and design evolution across
families of alternative system configurations (cf. an earlier
approach to such problems at [25]).

We annotate our OA system designs within 0AS4 using
formal constraint expressions on components interfaces, such
as intellectual property (IP) license obligations and rights [1,
2]. Security policy constraints for components, configured
sub-systems, or an overall system are expressed and ana-
lyzed in a similar manner [30]. The ability to model and au-
tomatically analyze such obligations and rights is needed at
build-time and release deployment-time. Automated analy-
sis mechanisms then allow us to determine whether the spec-
ified component interconnections entail matches or conflicts
in component-component license alignments [1, 2]. However,
we have also observed that design-time actions must accom-
modate build-time and deployment-time element bindings,
as well as accommodate the evolution of licenses, policies,
and system element versions [29]. For example, when con-
flicts are found between the licenses of interconnected build-
time component selections, we can then reconfigure our OA
system design to eliminate the conflicts, to constrain the
selection of components at build-time (within CI) to those
whose licenses will match or not conflict, or to wrap/shim a
component with an abstraction layer that does not transfer
IP license obligations.

Design of OA systems also raises issues for how to how best
to secure the designed system architecture [35]. Among the
recommended practices for designing secure system architec-
tures are to provide capability-based user/developer access
control that effectively limits access to input and output
data, internal program code representations (e.g., memory

[ Web Browser User ] Word Processor User] Email & Calendar
| Interface Interface User Interface
=

 Operating System Email Server

{_ Web App Server

Figure 2: Design configuration of a secure OA en-
terprise system, shown with security encapsulation
layout.

address and system name spaces), persistent data storage,
and to exposed I/O transaction processing interfaces. One
increasingly common approach is to provide encapsulation
mechanisms like virtual machines for software components
or (sub-)system configurations, along with encrypted inter-
component data/control flow connectors (e.g., HTTPS/SSL
data communication protocols). Of these, passively secure
connectors for networked components are widely available,
while dynamically secured connectors are a recent advance
[11]. In our case, we choose to incorporate virtual machines
to encapsulate our OA system, and we ignore alternative
security protection schemes for simplicity. However, we rec-
ognized that even a seemingly simple decision like this still
requires analyzing trade-offs about whether to encapsulate
the entire system as a single virtual machine (relatively easy
to address during deployment, though requiring deployment
and installation of virtual machine software (e.g., [38]) on
the target deployment computers) or to encapsulate each dif-
ferent component within its own virtual machine that would
then be interconnected using secure connectors (more chal-
lenging to address for deployment, but offering a more re-
silient OA system security [30]. We decided to design some-
thing in-between these two extremes, by taking into account
where different components might be hosted within a net-
worked, multi-server platform environment. What our OA
system design process produced is an abstract architectural
configuration of component types (each attributed with IP
license constraints—not shown but described elsewhere [1,
2, 30]), a minimal component interconnection scheme, and
what we call a hybrid virtual machine confinement scheme,
as shown in Figure 2.

Given that we have so far only examined the architec-
tural design process, we note that we are already beginning
to see that we need to anticipate non-functional require-
ments for the other downstream software processes that fol-
low, particularly in the form of process enactment directives
or constraints. We also begin to anticipate whether such in-
formation can be automatically propagated into the process
automation tools used in these downstream processes.

3.2 Continuous Integration Process

In our study, one of the first activities in moving from ar-
chitectural design to continuous integration is to identify
specific software component versions that can be instan-
tiated within the current architectural configuration (Fig-
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Figure 3: A build-time configuration of a secure OA
enterprise computing system.

ure 2). While at first it might seem that this is a simple
task, we have found that component and version selection
are subject to the obligations and rights stipulated with a
component’s associated IP license [1]. For example, common
architectural design languages do not specify annotations
for IP licenses, so as noted above, we extended our ADL
within the 0AS4 with IP obligation and right constraints
[1, 2]. This meant we could now analyze whether or how
IP obligations and rights for each component-component in-
terconnection match, conflict, or propagate. For example,
reciprocal licenses like GPL can propagate their IP regime
by design, though some enterprises seek to avoid this. By
conceptually filling in selected component licenses, we can
tell, prior to integration, whether the resulting release can-
didate may suffer from licensing problems or not. When
conflicts or mis-matches are discovered, again prior to fur-
ther build-time process actions, alternative components with
the similar functional capabilities and interfaces but differ-
ent licenses may be substituted. Alternatively, the architec-
tural configuration can be modified, for example, wrapping a
component in a way that mitigates license conflicts (e.g., re-
placing a direct API-API interconnection which propagates
license restrictions with an networked data communications
link, as few licenses propagate IP across network connec-
tions).

What we end up with from our build sub-process is a con-
crete OA system configuration with a specific selection of
software components specified using 0AS4, whose output is
intended for a manual build system or for entry into an au-
tomated CI system. A concrete configuration is seen in Fig-
ure 3. So our build sub-process can now instantiate compo-
nents into a reusable OA software product line design, as we
can determine families of component version instances that
can be substituted within the OA system. For example, the
Firefox Web browser may be replaced by Google Chrome in
this configuration, because both are under permissive OSS li-
censes. However, a license match/conflict assessment would
be required before replacing Firefox with Microsoft Internet
Explorer (IE) or Opera, each of which is under a proprietary
license. But in the abstract and concrete architectural con-
figuration we have, we could substitute a Linux-based Opera
browser without issue, but not IE, unless we add a library
wrapper such as Wine [37], in order to run IE on Fedora
Linux.

So far, so good. But now we must consider how to trans-
fer this component selection specification into the build sys-

tem arises. An ideal solution might involve an automated
hand-off. However, the specifics of such a hand-off will vary
depending on the build system and the CI system we se-
lect. A more general solution would likely require (or ben-
efit from) another abstraction layer for integration between
the architectural design and build/CI process enactment
mechanisms, which is an already recognized problem with a
demonstrable solution (cf. [9]). We see that software process
research may demonstrate solutions to messy process inte-
gration issues, but integration of process flows across tool-
specific process enactment representations and automated
mechanisms remains a lingering, practical problem that is
not yet addressed by current CI or CD systems.

A similar problem arises when we consider how to se-
cure the concrete OA system configuration. For example,
we can choose to include secure data communication con-
nectors (e.g. secure protocols like HTTPS and TLS/SSL)
in our configuration, but such capabilities are not instan-
tiated at build-time. Instead, they depend on mechanisms
and data (e.g., certificates) that are accessed at run-time
once an integrated system release candidate is available. An
OA system, or OA system components, can also be secured
using virtual machine hypervisors [38] that confine and iso-
late deployed system/component within a virtual machine
run-time environment. In addition, it should be possible to
specify operating system access control and type enforce-
ment capabilities (e.g., using SELinux libraries on Fedora),
but again, these are not available for use until there is a
deployable integrated system release candidate. Thus, these
forms of security are most likely invisible to current CI sys-
tems, and must be addressed through other means.

3.3 Release Deployment Process

The software system you release and deploy depends on
what (and how) you build and package for release and instal-
lation. For example, in our enterprise system, we want our
software integration process to produce a run-time version
of our designed software configuration for our target plat-
form (e.g., local personal computer). Figure 4 displays a
run-time instantiation in operation, based on the build-time
configuration in Figure 3, hosted on a Fedora Linux oper-
ating system that utilizes the SELinux library to set access
control and run-time capabilities for files and programs.

However, what we build and what we release may not be
the same, though they need to be functionally equivalent.
For example, when we select one or more CSS components
(an already compiled and integrated executable binary im-
age) with a common restrictive IP license (i.e, one that pro-
hibits copying or redistribution) for inclusion in our build-
time architectural configuration, during the build process,
we must link it as an executable binary for inclusion in a re-
lease candidate for deployment (or deployment testing) (cf.
[19]) on a local computer. Such inclusion is a prerequisite for
overall integrated system testing processes required by CI.
However, we cannot distribute such a release candidate to
others, as it is common for CSS to not allow duplication or
distribution of licensed copies of software binaries. Instead,
we need to specify and configure a deployment-platform spe-
cific automated software installation mechanism (e.g., in-
stallation wizard) that needs to search for and find a local
licensed copy of the CSS executable binary, and link it to
the result of the build sub-process that provides a run-time
linkage mechanism in expectation. A similar effort is needed
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Figure 4: A screenshot view of a deployed release configuration of our OA enterprise computing system.

to enable user acceptance testing or certification testing on
their local platform. These release deployment process steps
can be accomplished with some effort, but this effort could
also be anticipated at design-time or build-time, when de-
velopers make their selection for which component instances
to include in the system build.

Automated software installation is an increasingly com-
mon expectation. Software installers run automated pro-
cess enactment scripts crafted by developers. Once again,
the process being enacted is not explicitly specified, nor is it
separate from the internally coded software utility’s action
invocation scripts. This means that it is not surprising to
discover errors that arise during installation but are not eas-
ily anticipated without extensive prior experience in working
with the installer on known target platforms. For example,
an informal aid from IBM for guiding system administra-
tors who enact software installation processes [16] notes in-
stallation problems like: (a) insufficient free space on disk
storage prior to or during software executable installation;
(b) software installations across a network that are “hung”
or stuck due to lack of robust installation protocols that can
time-out (abort) and/or re-initiate then re-validate process
script commands already invoked; (c) installations that fail
due to underspecified all/nothing installation transactions
(cf. [12]) that do not completely update the information ar-
chitecture of a multi-part software configuration (e.g., pro-
gram registry update and reversible roll-back to prior reg-
istry; and/or setup of user configuration files); (d) failure
to include a software uninstaller (or uninstallation process
scripts) that allows conditional roll-back to previously in-
stalled software versions to be retrieved and activated; or (e)
file/directory name collisions that arise at build-time versus
deployment-time.

Our observation is that if there is a sufficiently detailed,
informing process specification or model for how best to in-
stall a software release, it is well hidden. We all rely on

the correct operation and outcome on software installation
processes on our networked personal computers and wireless
mobile devices, but such processes often are problematic or
fail. This situation is not inevitable, but it is widespread.
There is a missed opportunity to improve the quality of re-
lease deployment process outcomes by some means other
than the costly software installation trial and error learning
experiences that afflict software release deployment person-
nel and system administrators. We should be able to do
much better than this. The provision of explicit software
installation process models that can guide the targeting of
different deployment platforms in specific organizations or
for remote users begs for research and development atten-
tion.

3.4 Evolution Process

An OA system can evolve by a number of distinct mech-
anisms or process enactment pathways, some of which are
common to all systems, but others of which arise only in OA
systems or where components in a single system are hetero-
geneously licensed [2]. Figure 5 provides a summary of some
of the various paths, further explained below.

Component version evolution— One or more compo-
nents can evolve, altering the overall system’s characteris-
tics. An example is upgrading the Firefox Web browser from
version 17.0 to 17.1. Such minor versions changes generally
have no effect on system architecture. However, many large
enterprises choose to sustain their software systems by rely-
ing on “long-term support” (LTS) versions of software com-
ponents, rather than automatically updating to each release
from software component producers. Instead, LTS compo-
nents are replaced with new versions only over long time
frames, where the new LTS version for installation may skip
many intervening release versions. Such enterprises rely on
local patches and workarounds between the LTS versions,
under the belief that such an approach provides increased
system stability and allows more comprehensive regression
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Figure 5: A variety of paths and activities account-
ing for the evolution of OA systems [29].
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Figure 6: An alternative OA system configuration
resulting from replacement of selected components
shown in Figure 4 during system evolution [29].

testing prior to deployment. But in these days of relentless
attacks on system security, using LTS components entails lo-
cally sustaining system component or configuration versions
with known vulnerabilities, often without code repositories
that match those employed for CI. The vulnerabilities must
then be defended using separate, orthogonal system security
mechanisms, such as virtual machines or hypervisors from
VMWare or Xen [38]. Once again, we can do better than this
through the use of explicit process specifications that model
and provide process integration support across CI and CD
systems, along with code repositories.

Component replacement— One or more components
may be replaced, each by one or more others with similar
functionality and similar interfaces. An example is replacing
the AbiWord word processor with either OpenOffice Writer
or MS Word, each of which provides roughly the same be-
havior as a word processor. Other alternative may entail a
component with a different user interface plus shim code to
make it match its predecessor component, but in different

ways. For example, if we replace the AbiWord word proces-
sor component, with the Google Docs service, the new word
processor’s component is now external to the OA system,
and in fact could be viewed as now existing within the Web
browser component. What these examples reveal is that
changes in the format or structure of a component’s intercon-
nections, or its APIs, necessitate updates to the build-time
and release deployment-time configuration of the component
connectors.

Architectural configuration evolution— The OA can
evolve by changing the kinds of connectors between compo-
nents, rearranging connectors in a different configuration, or
changing the interface through which a connector accesses
a component, altering the system characteristics. Revising
or refactoring the configuration in which a component is
connected can change how its license affects the rights and
obligations for the overall system. An example is the re-
placement of components for word processing, calendaring,
and email with Web-browser-based services such as Google
Docs, Google Calendar, and Google Mail. The replacement
would eliminate the legacy components and relocate the de-
sired application functionality; it would operate remotely,
but interact from within the local Web browser component.
The resulting system architecture might be considered sim-
pler and easier to maintain, but is also less open and now
subject to a proprietary Terms of Service license. Ongo-
ing evolution and support of this subsystem is now beyond
the control and responsibility of the local system develop-
ers. System consumer preferences for one kind of license
over another, and the consequences of subsequent partici-
pation in a different OA system evolution regime, may thus
determine whether such an alternative system architecture
is desirable or not. Figures 6 and 7 show examples of such
evolutions in architectural configuration at release deploy-
ment time. These figures can be compared to the system
deployment in Figure 4, but now where the build-time ar-
chitecture now reconfigures the word processor, email and
calendaring into the single Web browser component, thus
refactoring the build-time and release deployment-time sys-
tem configurations, while remaining within the design-time
product family indicated in Figures 2 and 6.

Component license evolution—The license under which
a component is available may change, as for example when
the Mozilla core components changed from dual licensing to
the tri-license (MPL, GPL, LGPL). Similarly, when Oracle
Corporation took ownership of the Hudson CI system [21],
the changes in intellectual property ownership and branding
precipitated a major code fork, and instigated parallel inde-
pendent projects for sustaining development of this OSS CI
system [13, 18]. Such evolutionary changes, which are com-
mon to OSS components, may require reconfiguring an OA
system to migrate to a new (re-licensed) component version,
or to an alternative system configuration [29].

In response to different desired rights or acceptable
obligations— The OA system’s integrator or consumers
may desire additional license rights (for example the right
to sublicense in addition to the right to distribute), or no
longer desire specific rights; or the set of license obligations
they find acceptable may change. In either case the OA sys-
tem evolves in response, whether by changing components,
evolving the architecture, or other means, to provide the de-
sired rights within the scope of the acceptable obligations.

Rapid dynamic system reconfiguration— More ad-
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Figure 7: A screenshot view of a deployed release configuration of the alternative OA system configuration

resulting from system evolution [29].

vanced evolution scenarios entail support for building and
releasing of multi-variant system deployment configurations
that substitute functionally equivalent software component
compilations that produce multiple, diverse executable bi-
nary images, each of which may execute in its own processor
core, in a multi-threaded, multi-core processor [17]. Pur-
suing this new path requires a new compilation and build
system regime, that in turn anticipates a new generation of
CI and CD systems as future research subjects.

As should be clear, our purpose is not to provide a pre-
scriptive model of the OA system evolution process, but in-
stead to illuminate how different OA system evolution paths
and activities point to issues in process specification, process
integration, and the integration of different process enact-
ment representations and mechanisms that must span/link
manual-to-automated process hand-offs.

4. OVERALL OA DEVELOPMENT AND
EVOLUTION PROCESS ISSUES

Following from the software processes we examined in our
case study and our review of related efforts, we see a number
of issues for new software process research emerging. At
least six such issues can be identified as follows.

First, we find that a central goal of process automation
with widely available software integration and release de-
ployment tools is to find enactment errors and articulation
problems more quickly, rather than to provide prescriptive
process guidance. Such process enactment details cannot
be easily anticipated in general, so process specification and
enactment must rely on trial and error, as well as process dis-
covery [20] to surface where additional/new process knowl-
edge is to be found. Consequently, it is not surprising to
observe the rise of a new class of software developer role,
as “buildmeisters”—developers who specialize in addressing
the intricacies, quirks, and problems that arise during soft-

ware integration processes, since such processes remain ad
hoc, undefined, and difficult to model or improve.

Second, current continuous software development systems
embody process specifications that are opaque, lack general-
ity, and rely on the processing capabilities of specific incor-
porated tools to structure process enactment actions, deci-
sions, and outcomes. Different CI systems embody different
versions or variants of software build, test, and package pro-
cesses. This implies that merely having a “defined” process
model for processes like continuous integration and release
deployment means that such a model will either be insuf-
ficiently detailed to provide anything beyond introductory
level guidance, or more completely detailed but idiosyncratic
because it is bound to specific process automation tools.
This in turn makes the process specification problematic to
adapt and evolve. There is a basic need for richer process
models that represent both the idiosyncratic details of pro-
cess automation tools for continuous integration and release
management, and the generalized abstractions of such pro-
cesses that can be reused for process (design) guidance and
tailoring in specific software development organization set-
tings (cf. [26]).

Third, a recurring challenge from a process research stand-
point is how to specify, model, analyze, or simulate software
processes that span from mostly manual to mostly auto-
mated process enactment activities.

Fourth, automated process enactment systems are them-
selves subject to continuous improvement and evolution.
This means the processes being supported are potentially
evolving. However, if their process specifi

cation or model is tacit, or is encoded in implementation
details, then the process may be opaque to all except the
tool’s developers. Thus, trying to specify, model, or sim-
ulate software processes that employ automated enactment
systems, requires the ability to address processes that are co-



evolving: i.e., how tool evolution drives development process
evolution, and how development process evolution precipi-
tates tool evolution (cf. [28]). So choosing to only attend
to one, misses observation or specification of activities that
enable or constrain the other. Such a dilemma points to
another challenge for new software process research.

Fifth, process guidance specification and enactment au-
tomation are easily conflated in continuous integration and
release deployment systems. As a result, developers of OA
systems rely on informal best practices to get continuously-
integrated software products out the door. Separating the
specification of such processes from their implementation
within the automated system would be an important con-
tribution to the advancement of such systems. Similarly,
providing guidance for how to specify processes more ab-
stractly than as low-level process execution script commands
(cf. [15]), would also contribute to the advancement of au-
tomated continuous software development systems.

Sixth, the development and evolution of component-based
OA systems is both an interesting and a challenging prob-
lem for the software process research community. Such sys-
tems are likely to follow continuous software processes—
processes that are repeatedly enacted hundreds to thou-
sands of times during the sustained life of the system. Such
processes are thus appropriate for careful empirical study,
simulation, and analysis. The need to address how to con-
tinuously secure OA systems further complicates the chal-
lenges for software process research. Process streamlining
optimizations, opportunities, and guidelines are likely sub-
jects for further research and practical application. Simi-
larly, when the software processes for securing an OA system
involve automated process enactment, it appears that com-
pliance testing—checking whether an automated enactment
produced a system configuration that is compliant with the
system’s security policy—will increase in importance. Such
compliance is likely to be ad hoc, unless the security policy
is formalized into a computational model [30] that can be
cross-checked with the enactment results.

Last, empirical study of the software processes of inter-
est, especially as they are observed in different OSS devel-
opment projects, provides many insights and best practices
that can help in the specification (modeling) and integration
of processes for developing and evolving secure OA software
systems.

5. CONCLUSION

Process models provide a valuable means for specifying
complex software production processes. Such models may
have their greatest impact for project and process manage-
ment, and for coordinating disparate software production
processes together with automated enactment tools spread
across an ecosystem of software producers. Explicit, open,
and sharable process specifications are key to realizing these
potential benefits, while the absence of such specifications
means lost opportunities to reduce overall software produc-
tion costs, improve software quality and security, and to
streamline and continuously improve such explicit processes.

Managing and coordinating the development and evolu-
tion processes for producing secure open architecture soft-
ware systems is challenging as we have shown in our case
study. But as we have observed in our case study, widely
available automated technologies for continuous integration
and release deployment obscure or hide what these pro-

cesses are. Further, we find that frequent errors and ar-
ticulation problems in automated process enactment are ex-
pected, since process enactment details are ad hoc and id-
iosyncratic, while enactment processes are underspecified,
not explicit, and encoded in an enactment system’s imple-
mentation. However, automated process enactment systems
may offer the potential to be extended to support (par-
tially) automated process discovery and computational re-
enactment (cf. [20]), rather than just traditional process
modeling and simulation. Thus, software producers of con-
temporary component-based OA systems are working against
their self interests, assuming their interests are to improve
their productivity and software quality, while reducing avoid-
able rework and other software production cost drivers.

Our study in this paper sought to identify a range of
emerging issues in software process research, especially for
process specification/modeling, as well as for process design,
automation and integration. Similarly, our case study high-
lights a number of ways how the need to continually secure
an evolving OA system further complicates challenges for
software process research. Finally, assuring that software
development and evolution processes comply with extant
system (or enterprise) security policies—which are presently
informal requirements specification documents—means that
process compliance checking arises as a practical need unmet
by available software process tools.

Overall, our goal in this paper was to employ a case study
and related research to help identify and articulate an emerg-
ing set of challenges for further software process research and
development, Through both a review of related efforts and
our case study, we identified a number of challenges for soft-
ware process research whose investigation and resolution can
lead to more streamlined and easier to continuously improve
software development and evolution practices that are con-
figured for specific organizations, different development tool
chains, alternative target system platforms, and secure OA
software product families, as well as for their evolutionary
reconfiguration.
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