
Free/Open Source Software Development: Recent
Research Results and Methods

Walt Scacchi
Institute for Software Research

Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3425 USA

+1-949-824-4130 (v), +1-949-824-1715 (f)
Wscacchi@uci.edu

27 August 2006
Revised version to appear in:

M.V. Zelkowitz (ed.), Advances in Computers, Vol. 69, 2007

Abstract
The focus of this chapter is to review what is known about free and open source
software development (FOSSD) work practices, development processes, project and
community dynamics, and other socio-technical relationships. It does not focus on
specific properties or technical attributes of different FOSS systems, but it does seek
to explore how FOSS is developed and evolved. The chapter provides a brief
background on what FOSS is and how free software and open source software
development efforts are similar and different. From there attention shifts to an
extensive review of a set of empirical studies of FOSSD that articulate different levels
of analysis. These characterize what has been analyzed in FOSSD studies across
levels that examine why individuals participate; resources and capabilities supporting
development activities; how cooperation, coordination, and control are realized in
projects; alliance formation and inter-project social networking; FOSS as a multi-
project software ecosystem, and FOSS as a social movement. Following this, the
chapter reviews how different research methods are employed to examine different
issues in FOSSD. These include reflective practice and industry polls, survey
research, ethnographic studies, mining FOSS repositories, and multi-modal modeling
and analysis of FOSSD processes and socio-technical networks. Finally, there is a
discussion of limitations and constraints in the FOSSD studies so far, attention to
emerging opportunities for future FOSSD studies, and then conclusions about what is
known about FOSSD through the empirical studies reviewed here.

Keywords: Free software, Open source software, empirical studies, socio-technical
relationships

1

mailto:Wscacchi@uci.edu

Introduction

This chapter examines and compares practices, patterns, and processes that emerge in

empirical studies of free/open source software development (FOSSD) projects. FOSSD is

a way for building, deploying, and sustaining large software systems on a global basis,

and differs in many interesting ways from the principles and practices traditionally

advocated for software engineering [Somerville 2004]. Hundreds of FOSS systems are

now in use by thousands to millions of end-users, and some of these FOSS systems entail

hundreds-of-thousands to millions of lines of source code. So what’s going on here, and

how are FOSSD processes that are being used to build and sustain these projects

different, and how might differences be employed to explain what's going on with

FOSSD, and why.

One of the more significant features of FOSSD is the formation and enactment of

complex software development processes and practices performed by loosely coordinated

software developers and contributors. These people may volunteer their time and skill to

such effort, and may only work at their personal discretion rather than as assigned and

scheduled. However, increasingly, software developers are being assigned as part of the

job to develop or support FOSS systems, and thus to become involved with FOSSD

efforts. Further, FOSS developers are generally expected (or prefer) to provide their own

computing resources (e.g., laptop computers on the go, or desktop computers at home),

and bring their own software development tools with them. Similarly, FOSS developers

work on software projects that do not typically have a corporate owner or management

staff to organize, direct, monitor, and improve the software development processes being

2

put into practice on such projects. But how are successful FOSSD projects and processes

possible without regularly employed and scheduled software development staff, or

without an explicit regime for software engineering project management? What motivates

software developers participate in FOSSD projects? Why and how are large FOSSD

projects sustained? How are large FOSSD projects coordinated, controlled or managed

without a traditional project management team? Why and how might these answers to

these questions change over time? These are the kinds of questions that will be addressed

in this article.

The remainder of this chapter is organized as follows. The next section provides a brief

background on what FOSS is and how free software and open source software

development efforts are similar and different. From there attention shifts to an extensive

review of a set of empirical studies of FOSSD that articulate different levels of analysis.

Following this, the chapter reviews how different research methods are employed to

examine different issues in FOSSD. Finally, there is a discussion of limitations and

constraints in the FOSSD studies so far, attention to emerging opportunities for future

FOSSD studies, and then conclusions about what is known about FOSSD through the

empirical studies reviewed here.

What is free/open source software development?

Free (as in freedom) software and open source software are often treated as the same

thing [Feller and Fitzgerald 2002, Feller, et al. 2005, Koch 2005]. However, there are

differences between them with regards to the licenses assigned to the respective software.

3

Free software generally appears licensed with the GNU General Public License (GPL),

while OSS may use either the GPL or some other license that allows for the integration of

software that may not be free software. Free software is a social movement [cf. Elliott

and Scacchi 2006], whereas OSSD is a software development methodology, according to

free software advocates like Richard Stallman and the Free Software Foundation [Gay

2002]. Yet some analysts also see OSS as a social movement distinct from but related to

the free software movement. The hallmark of free software and most OSS is that the

source code is available for remote access, open to study and modification, and available

for redistribution to other with few constraints, except the right to insure these freedoms.

OSS sometimes adds or removes similar freedoms or copyright privileges depending on

which OSS copyright and end-user license agreement is associated with a particular OSS

code base. More simply, free software is always available as OSS, but OSS is not always

free software1. This is why it often is appropriate to refer to FOSS or FLOSS (L for Libre,

where the alternative term “libre software” has popularity in some parts of the world) in

order to accommodate two similar or often indistinguishable approaches to software

development. Subsequently, for the purposes of this article, focus is directed at FOSSD

practices, processes, and dynamics, rather than to software licenses though such licenses

may impinge on them. However, when appropriate, particular studies examined in this

review may be framed in terms specific to either free software or OSS when such

differentiation is warranted.

FOSSD is mostly not about software engineering, at least not as SE is portrayed in

modern SE textbooks [cf. Sommerville 2004]. FOSSD is not SE done poorly. It is instead

1 Thus at times it may be appropriate to distinguish conditions or events that are generally associated or
specific to either free software development or OSSD, but not both.

4

a different approach to the development of software systems where much of the

development activity is openly visible, and development artifacts are publicly available

over the Web. Furthermore, substantial FOSSD effort is directed at enabling and

facilitating social interaction among developers (and sometimes also end-users), but

generally there is no traditional software engineering project management regime, budget

or schedule. FOSSD is also oriented towards the joint development of an ongoing

community of developers and users concomitant with the FOSS system of interest.

FOSS developers are typically also end-users of the FOSS they develop, and other end-

users often participate in and contribute to FOSSD efforts. There is also widespread

recognition that FOSSD projects can produce high quality and sustainable software

systems that can be used by thousands to millions of end-users [Mockus, Fielding,

Herbsleb 2002]. Thus, it is reasonable to assume that FOSSD processes are not

necessarily of the same type, kind, or form found in modern SE projects [cf. Sommerville

2004]. While such approaches might be used within an SE project, there is no basis found

in the principles of SE laid out in textbooks that would suggest SE projects typically

adopt or should practice FOSSD methods. Subsequently, what is known about SE

processes, or modeling and simulating SE processes, may not be equally applicable to

FOSSD processes without some explicit rationale or empirical justification. Thus, it is

appropriate to survey what is known so far about FOSSD.

Results from recent studies of FOSSD

There are a growing number of studies that offer some insight or findings on FOSSD

practices each in turn reflects on different kinds of processes that are not well understood

5

at this time. The focus in this chapter is directed to empirical studies of FOSSD projects

using small/large research samples and analytical methods drawn from different

academic disciplines. Many additional studies of FOSS can be found within a number of

Web portals for research papers that empirically or theoretically examine FOSSD

projects. Among them are those at MIT FOSS research community portal

(opensource.mit.edu) with 200 or so papers already contributed, and also at Cork College

in Ireland (opensource.ucc.ie) which features links to multiple special issue journals and

proceedings from international workshops of FOSS research. Rather than attempt to

survey the complete universe of studies in these collections, the choice instead is to

sample a smaller set of studies that raise interesting issues or challenging problems for

understanding what affects how FOSSD efforts are accomplished, as what kinds of socio-

technical relationships emerge along the way to facilitate these efforts.

One important qualifier to recognize is that the studies below generally examined

carefully identified FOSSD projects or a sample of projects, so the results presented

should not be assumed to apply to all FOSSD projects, or to projects that have not been

studied. Furthermore, it is important to recognize that FOSSD is no silver bullet that

resolves the software crisis. Instead it is fair to recognize that most of the nearly 130,000

FOSSD projects associated with Web portals like SourceForce.org have very small teams

of two or less developers [Madey et al. 2002, 2005], and many projects are inactive or

have yet to release any operational software. However, there are now at least a few

thousand FOSSD projects that are viable and ongoing. Thus, there is a sufficient universe

of diverse FOSSD projects to investigate, analyze, and compare in the course of moving

towards an articulate and empirically grounded theory or model of FOSSD.

6

Consequently, consider the research findings reported or studies cited below as starting

points for further investigation, rather than as defining characteristics of most or all

FOSSD projects or processes.

Attention now shifts to an extensive review of a sample of empirical studies of FOSSD

that are grouped according to different levels of analysis. These characterize what has

been analyzed in FOSSD studies across levels that examine why individuals participate in

FOSSD efforts; what resources and capabilities shared by individuals and groups

developing FOSS; projects as organizational form for cooperating, coordinating, and

controlling FOSS development effort; alliance formation and inter-project social

networking; FOSS as a multi-project software ecosystem, and FOSS as a social

movement. These levels thus span the study of FOSSD from individual participant to

social world. Each level is presented in turn. Along the way, figures from FOSSD studies

or data exhibits collected from FOSSD projects will be employed to help illustrate

concepts described in the studies under review.

Individual Participation in FOSSD Projects

One of the most common questions about FOSSD projects to date is why will software

developers join and participate in such efforts, often without pay for sustained periods of

time. A number of surveys of FOSS developers [FLOSS 2002, Ghosh and Prakash 2000,

Lakhani, et al. 2002, Hars and Ou 2002, Hann, et al. 2002, Hertel, et al. 2003] has posed

such questions, and the findings reveal the following.

7

There are complex motivations for why FOSS developers are willing to allocate their

time, skill, and effort by joining a FOSS project [Hars and Ou 2002, Hertel, et al. 2003

von Krogh, et al. 2003]. Sometimes they may simply see their effort as something that is

fun, personally rewarding, or provides a venue where they can exercise and improve their

technical competence in a manner that may not be possible within their current job or line

of work [Crowston and Scozzi 2002]. However, people who participate, contribute, and

join FOSS projects tend to act in ways where building trust and reputation [Stewart and

Gosain 2001], achieving “geek fame” [Pavlicek 2000], being creative [Fischer 2001], as

well as giving and being generous with one’s time, expertise, and source code [Bergquist

and Ljungberg 2001] are valued traits. In the case of FOSS for software engineering

design systems, participating in such a project is a viable way to maintain or improve

software development skills, as indicated in Exhibit 1 drawn from the Tigris.org open

source software engineering community portal.

Becoming a central actor (or node) in a social network of software developers that

interconnects multiple FOSS projects is also a way to accumulate social capital and

recognition from peers. One study reports that 60% or more FOSS developers participate

in two or more projects, and on the order of 5% participate in 10 or more FOSS projects

[Hars and Ou 2002]. However, the vast majority of source code that becomes part of

FOSS released by a project is typically developed by a small group of core developers

who control the architecture and direction of development [cf. Mockus, Fielding, and

Herbsleb 2002]. Subsequently, most participants typically contribute to just a single

module, though a small minority of modules may be include patches or modifications

contributed by hundreds of contributors [Ghosh and Prakash 2000]. In addition,

8

participation in FOSS projects as a core developer can realize financial rewards in terms

of higher salaries for conventional software development jobs [Hann 2002, Lerner 2002].

However, it also enables the merger of independent FOSS systems into larger composite

ones that gain the critical mass of core developers to grow more substantially and attract

ever larger user-developer communities [Madey, et al. 2005, Scacchi 2005].

People who participate in FOSS projects do so within one or more roles. Classifications

of the hierarchy of roles that people take and common tasks they perform when

participating in a FOSS project continue to appear [Crowston and Howison 2006, Gacek

and Arief 2004, Jensen and Scacchi 2006b, Ye and Kishida 2003] . Exhibit 2 from the

Object-Oriented Graphics Rendering Engine (OGRE) project provides a textual

description of the principal roles (or “levels”) in that project community.

9

Exhibit 1. An example in the bottom paragraph highlighting career/skill development
opportunities that encourage participation in FOSSD projects

(source: http://www.tigris.org, June 2006)

10

http://www.tigris.org/

Exhibit 2. Joining the OGRE FOSS development team by roles/level. (Source:
http://www.ogre3d.org/index.php?option=com_content&task=view&id=333&Itemid=87

June 2005)

Typically, it appears that people join a project and specialize in a role (or multiple roles)

they find personally comfortable and intrinsically motivating [von Krogh et al. 2004]. In

contrast to traditional software development projects, there is no explicit assignment of

developers to roles, though individual FOSSD projects often post guidelines or “help

wanted here” for what roles for potential contributors are in greatest need. Exhibit 3

provides an example drawn from popular FOSS mpeg-2 video player, the VideoLan

Client (VLC).

11

http://www.ogre3d.org/index.php?option=com_content&task=view&id=333&Itemid=87

VideoLAN needs your help
2006-06-19
There are many things that we would like to improve in VLC, but
that we don't, because we simply don't have enough time. That's
why we are currently looking for some help. We have identified
several small projects that prospective developers could work on.
Knowledge of C and/or C++ programming will certainly be useful,
but you don't need to be an expert, nor a video expert. Existing
VLC developers will be able to help you on these projects. You
can find the list and some instructions on the dedicated Wiki
page. Don't hesitate to join us on IRC or on the mailing-lists.
We are waiting for you!

Exhibit 3. An example request for new FOSS developers to come forward and contribute
their assistance to developing more functionality to the VLC system.
(source: http://www.videolan.org/, June 2006)

It is common in FOSS projects to find end-users becoming contributors or developers,

and developers acting as end-users [Mockus, Fielding and Herbsleb 2002, Nakakoji et al.

2002, Scacchi 2002, von Hippel and von Krogh 2003]. As most FOSS developers are

themselves end-users of the software systems they build, they may have an occupational

incentive and vested interest in making sure their systems are really useful. However the

vast majority of participants probably simply prefer to be users of FOSS systems, unless

or until their usage motivates them to act through some sort of contribution. Avid users

with sufficient technical skills may actually work their way up (or “level up”) through

each of the roles and eventually become a core developer (or “elder”), as suggested by

Figure 1. As a consequence, participants within FOSS project often participate in

different roles within both technical and social networks [Lopez-Fernandez, et al. 2004,

2006, Preece 2000, Scacchi 2005, Smith and Pollock1999] in the course of developing,

using, and evolving FOSS systems.

12

http://www.tigris.org/
http://www.videolan.org/support/lists.html
http://www.videolan.org/support/
http://wiki.videolan.org/index.php/Mini_Projects
http://wiki.videolan.org/index.php/Mini_Projects

Figure 1. A visual depiction of role hierarchy within a project community
(source: Kim [2000]).

Making contributions is often a prerequisite for advancing technically and socially within

an ongoing project, as is being recognized by other project members as having made

substantive contributions [Fielding 1999, Kim 2000]. Most commonly, FOSS project

participants contribute their time, skill and effort to modify or create different types of

software representations or content (source code, bug reports, design diagrams, execution

scripts, code reviews, test case data, Web pages, email comments, online chat, etc.; also

collectively called “software informalisms” [Scacchi 2002]) to Web sites of the FOSS

projects they join. The contribution—the authoring, hypertext linking (when needed), and

posting/uploading—of different types of content helps to constitute an ecology of

document genres [Erickson 2000, Spinuzzi 2000] that is specific to a FOSS project,

though individual content types are widely used across most FOSS projects. Similarly,

the particular mix of online documents employed by participants on a FOSS project

articulates an information infrastructure for framing and solving problems that arise in the

13

ongoing development, deployment, use, and support of the FOSS system at the center of

a project.

Administrators of FOSS project Web sites and source code repositories serve as

gatekeepers in the choices they make for what information to post, when and where

within the site to post it, as well as what not to post [cf. Hakken 1999, Hine 2000, Smith

and Pollock 1999]. Similarly, they may choose to create a site map that constitutes a

classification of site and domain content, as well as outlining community structure and

boundaries.

Most frequently, participants in FOSS projects engage in online discussion forums or

threaded email messages as a central way to observe, participate in, and contribute to

public discussions of topics of interest to ongoing project participants [Yamauchi 2000].

However, these people also engage in private online or offline discussions that do not get

posted or publicly disclosed, due to their perceived sensitive content.

FOSS developers generally find the greatest benefit from participation is the opportunity

to learn and share what they know about software system functionality, design, methods,

tools, and practices associated with specific projects or project leaders [FLOSS 2002,

Ghosh and Prakash 2000, Lakhani et al. 2002]. FOSSD is a venue for learning for

individuals, project groups, and organizations, and learning organizations are ones which

can continuously improve or adapt their processes and practices [Huntley 2003, Ye and

Kishida 2003]. However, though much of the development work in FOSSD projects is

unpaid or volunteer, individual FOSS developers often benefit with higher average wages

14

and better employment opportunities (at present), compared to their peers lacking FOSSD

experience or skill [Hann et al. 2002, Lerner and Tirole 2002].

Consequently, how and why software developers will join, participate in, and contribute

to an FOSSD project seems to represent a new kind of process affecting how FOSS is

developed and maintained [cf. Bonaccorsi and Rossi 2006, Jensen and Scacchi 2006b,

Scacchi 2005, von Krogh, Spaeth and Lakhani 2003]. Subsequently, discovering,

observing, modeling, analyzing, and simulating what this process is, how it operates, and

how it affects software development is an open research challenge for the software

process research community.

Studies have also observed and identified the many roles that participants in an FOSSD

project perform [Gacek and Arief 2004, Jensen and Scacchi 2006b,Ye and Kishida 2003].

These roles are used to help explain who does what, which serves as a precursor to

explanations of how FOSSD practices or processes are accomplished and hierarchically

arrayed. However such a division of labor is dynamic, not static or fixed. This means that

participants can move through different roles throughout the course of a project over

time, depending on their interest, commitment, and technical skill (as suggested in Figure

1). Typically, participants start at the periphery of a project in the role of end-user by

downloading and using the FOSS associated with the project. They can then move into

roles like bug-reporter, code reviewer, code/patch contributor, module owner

(development coordinator), and eventually to core developer or project leader. Moving

through these roles requires effort, and the passage requires being recognized by other

participants as a trustworthy and accomplished contributor.

15

Role-task migration can and does arise within FOSSD projects, as well as across projects

[Jensen and Scacchi 2006b]. Social networking, software sharing, and project

internetworking enables this. But how do role-task migration processes or trajectories

facilitate or constrain how FOSSD occurs? Role-task migration does not appear as a topic

addressed in traditional SE textbooks or studies (see Sim and Holt [1998] for a notable

exception), yet it seems to be a common observation in FOSSD projects. Thus, it seems

that discovery, modeling, simulating or re-enacting [cf. Jensen and Scacchi 2006a] how

individual developers participate in a FOSSD effort while enacting the role-task

migration process, and how it affects or contributes to other software development or

quality assurance processes, is an area requiring further investigation.

Resources and Capabilities Supporting FOSSD

What kinds of resources or development capabilities are needed to help make FOSS

efforts more likely to succeed? Based on what has been observed and reported across

many empirical studies of FOSSD projects, the following kinds of socio-technical

resources enable the development of both FOSS software and ongoing project that is

sustaining its evolution, application and refinement, though other kinds of resources may

also be involved [Scacchi 2002, 2005, 2006b].

Personal software development tools and networking support

FOSS developers, end-users, and other volunteers often provide their own personal

computing resources in order to access or participate in a FOSS development project.

They similarly provide their own access to the Internet, and may even host personal Web

16

sites or information repositories. Furthermore, FOSS developers bring their own choice

of tools and development methods to a project. Sustained commitment of personal

resources helps subsidize the emergence and evolution of the ongoing project, its shared

(public) information artifacts, and resulting open source code. It spreads the cost for

creating and maintaining the information infrastructure of the virtual organization that

constitute a FOSSD project [Crowston and Scozzi 2002, Elliott and Scacchi 2005, Noll

and Scacchi 1999]. These in turn help create recognizable shares of the FOSS commons

[cf. Benkler 2006, Ghosh 2005, Lessig 2005, Ostrom, Calvert and Eggertsson 1990] that

are linked (via hardware, software, and Web) to the project's information infrastructure.

Beliefs supporting FOSS Development

Why do software developers and others contribute their skill, time, and effort to the

development of FOSS and related information resources? Though there are probably

many diverse answers to such a question, it seems that one such answer must account for

the belief in the freedom to access, study, modify, redistribute and share the evolving

results from a FOSS development project. Without such belief, it seems unlikely that

there could be "free" and "open source" software development projects [DiBona, et al.

1999, 2005, Fogel 2005, Gay 2002, Pavlicek 2000, Williams 2002]. However, one

important consideration that follows is what the consequences from such belief are, and

how these consequences are put into action.

In a longitudinal study of the free software project GNUenterprise.org, Elliott and

Scacchi [2003, 2005, 2006] identified many kinds of beliefs, values, and social norms

17

that shaped actions taken and choices made in the development of the GNUe software.

Primary among them were freedom of expression and freedom of choice. Neither of these

freedoms is explicitly declared, assured, or protected by free software copyright or

commons-based intellectual property rights, or end-user license agreements (EULAs)2.

However, they are central tenets free or open source modes of production and culture

[Benkler 2006, Ghosh 2005, Lessig 2005]. In particular, in FOSS projects like

GNUenterprise.org and others, these additional freedoms are expressed in choices for

what to develop or work on (e.g., choice of work subject or personal interest over work

assignment), how to develop it (choice of method to use instead of a corporate standard),

and what tools to employ (choice over which personal tools to employ versus only using

what is provided). They also are expressed in choices for when to release work products

(choice of satisfaction of work quality over schedule), determining what to review and

when (modulated by ongoing project ownership responsibility), and expressing what can

be said to whom with or without reservation (modulated by trust and accountability

mechanisms). Shared belief and practice in these freedoms of expression and choice are

part of the virtual organizational culture that characterizes a FOSSD project like

GNUenterprise.org [Elliott and Scacchi 2005]. Subsequently, putting these beliefs and

cultural resources into action continues to build and reproduce socio-technical interaction

networks that enabled sustained FOSSD projects and free software.

2 EULAs associated with probably all software often seek to declare “freedom from liability” from
people who want to use licensed software for intended or unintended purposes. But a belief in liability
freedom is not the focus here.

18

FOSSD informalisms

Software informalisms [Scacchi 2002] are the information resources and artifacts that

participants use to describe, proscribe, or prescribe what's happening in a FOSSD project.

They are informal narrative resources that coalesce into online document genres

(following Kwansik and Crowston 2005, Spinuzzi 2003) that are comparatively easy to

use, and publicly accessible to those who want to join the project, or just browse around.

Subsequently, Scacchi [2002] demonstrates how software informalisms can take the

place of formalisms, like “requirement specifications” or software design notations which

are seen as necessary to develop high quality software according to the software

engineering community [cf. Sommerville 2004]. Yet these software informalisms often

capture the detailed rationale and debates for why changes were made in particular

development activities, artifacts, or source code files. Nonetheless, the contents these

informalisms embody require extensive review and comprehension by a developer before

contributions can be made [cf. Lanzara and Morner 2005].

The most common informalisms used in FOSSD projects include (i) communications and

messages within project Email, (ii) threaded message discussion forums, bulletin boards,

or group blogs, (iii) news postings, (iv) project digests, and (v) instant messaging or

Internet relay chat. They also include (vi) scenarios of usage as linked Web pages, (vii)

how-to guides, (viii) to-do lists, (ix) FAQs, and other itemized lists, and (x) project

Wikis, as well as (xi) traditional system documentation and (xii) external publications.

FOSS (xiii) project property licenses are documents that also help to define what

software or related project content are protected resources that can subsequently be

19

shared, examined, modified, and redistributed. Finally, (xiv) open software architecture

diagrams, (xv) intra-application functionality realized via scripting languages like Perl

and PhP, and the ability to either (xvi) incorporate externally developed software

modules or “plug-ins”, or (xvii) integrate software modules from other OSSD efforts, are

all resources that are used informally, where or when needed according to the interests or

actions of project participants.

All of the software informalisms are found or accessed from (xix) project related Web

sites or portals. These Web environments where most FOSS software informalisms can

be found, accessed, studied, modified, and redistributed [Scacchi 2002].

A Web presence helps make visible the project's information infrastructure and the array

of information resources that populate it. These include FOSSD multi-project Web sites

(e.g., SourgeForge.net, Savanah.org, Freshment.org, Tigris.org, Apache.org,

Mozilla.org), community software Web sites (PhP-Nuke.org), and project-specific Web

sites (e.g., www.GNUenterprise.org), as well as (xx) embedded project source code Webs

(directories), (xxi) project repositories (CVS [Fogel 1999]), and (xxii) software bug

reports and (xxiii) issue tracking data base like Bugzilla (see http://www.bugzilla.org/).

Together, these two dozen or so types of software informalisms constitute a substantial

yet continually evolving web of informal, semi-structured, or processable information

resources. This web results from the hyperlinking and cross-referencing that interrelate

the contents of different informalisms together. Subsequently, these FOSS informalisms

are produced, used, consumed, or reused within and across FOSS development projects.

20

http://www.bugzilla.org/
http://www.GNUenterprise.org/

They also serve to act as both a distributed virtual repository of FOSS project assets, as

well as the continually adapted distributed knowledge base through which project

participants evolve what they know about the software systems they develop and use.

Competently skilled, self-organizing, and self-managed software

developers

Developing complex software modules for FOSS applications requires skill and expertise

in a target application domain. For example, contributing to a FOSSD project like

Filezilla3 requires knowledge and skill in handling file transfer conditions, events, and

protocols. Developing FOSS modules or applications in a way that enables an open

architecture requires a base of prior experience in constructing open systems. The skilled

use of project management tools for tracking and resolving open issues, and also for bug

reports contribute to the development of such system architecture. These are among the

valuable professional skills that are mobilized, brought to, or drawn to FOSS

development projects [cf. Crowston 2002, 2006]. These skills are resources that FOSS

developers bring to their projects.

FOSS developers organize their work as a virtual organizational form that seems to differ

from what is common to in-house, centrally managed software development projects,

which are commonly assumed in traditional software engineering textbooks. Within in-

house development projects, software application developers and end-users often are

juxtaposed in opposition to one another [cf. Curtis, Krasner and Iscoe 1988, Kling and

Scacchi 1982]. Historically, Danziger [1979] referred to this concentration of software

3 See http://filezilla.sourceforge.org.

21

http://filezilla.sourceforge.org/

development skills, and the collective ability of an in-house development organization to

control or mitigate the terms and conditions of system development as a "skill

bureaucracy". Such a software development skill bureaucracy would seem to be mostly

concerned with rule-following and rationalized decision-making, perhaps as guided by a

"software development methodology" and its corresponding computer-aided software

engineering tool suite.

In the decentralized virtual organization of a large ongoing FOSSD project like the

Apache.org or Mozilla.org, a "skill meritocracy" [cf. Fielding 1999] appears as an

alternative to the skill bureaucracy. In such a meritocracy, there is no proprietary

software development methodology or tool suite in use. Similarly, there are few explicit

rules about what development tasks should be performed, who should perform, when,

why, or how. However, this is not to say there are no rules that serve to govern the

project or collective action within it.

The rules of governance and control are informally articulated but readily recognized by

project participants. These rules serve to control the rights and privileges that developers

share or delegate to one another in areas such as who can commit source code to the

project’s shared repository for release and redistribution [cf. Fogel 1999, 2005].

Similarly, rules of control are expressed and incorporated into the open source code itself

in terms of how, where, and when to access system-managed data via application

program interfaces, end-user interfaces, or other features or depictions of overall system

architecture. But these rules may and do get changed through ongoing project

development.

22

Subsequently, FOSS project participants self-organize around the expertise, reputation,

and accomplishments of core developers, secondary contributors, and tertiary reviewers

and other peripheral volunteers [De Souza, Redmiles, and Dourish 2005, Lave and

Wenger 1991]. This in turn serves to help create an easily assimilated basis for their

collective action in developing FOSS [cf. Benkler 2006, Marwell and Oliver 1993, Olson

1971, Ostrom, Calvert, and Eggertsson 1993]. Thus, there is no assumption of a

communal or egalitarian authority or utopian spirit. Instead what can be seen is a

pragmatic, continuously negotiated order that tries to minimize the time and effort

expended in mitigating decision-making conflicts while encouraging cooperation through

reiterated and shared beliefs, values, norms, and other mental models [Elliott and Scacchi

2005, Espinosa, et al., 2002].

Participants nearer the core have greater control and discretionary decision-making

authority, compared to those further from the core [cf. Crowston and Howison 2006, De

Souza, Redmiles, and Dourish 2005, Lave and Wenger 1991]. However, realizing such

authority comes at the price of higher commitment of personal resources described

above. Being able to make a decision stick or to convince other ongoing project

participants as to the viability of a decision, advocacy position, issue or bug report, also

requires time, effort, communication, and creation of project content to substantiate such

an action. This authority also reflects developer experience as an interested end-user of

the software modules being developed. Thus, developers possessing and exercising such

skill may be intrinsically motivated to sustain the evolutionary development of their

FOSS modules, so long as they are active participants in their project.

23

Discretionary time and effort of developers

Are FOSS developers working for "free" or for advancing their career and professional

development? Following the survey results of Hars and Ou [2002] and others [FLOSS

2002, Hann, et al. 2002, Hertel et al. 2003, Lakhani et al. 2002, Lerner and Tirole 2000],

there are many personal and professional career oriented reasons for why participants will

contribute their time and effort to the sometimes difficult and demanding tasks of

software development. Results from case studies in free software projects like

GNUenterprise.org appear consistent with these observations [Elliott and Scacchi 2003,

2005, 2006]. These include not only self-determination, peer recognition, project

affiliation or identification, and self-promotion, but also belief in the inherent value of

free software [cf. DiBona et al. 1999, 2005, Fogel 2005, Gay 2002, Pavlicek 2000,

Williams 2002].

In the practice of self-determination, no one has the administrative authority to tell a

project member what to do, when, how, or why. FOSS developers can choose to work on

what interests them personally. FOSS developers, in general, work on what they want,

when they want. However, they remain somewhat accountable to the inquiries, reviews,

and messages of others in the ongoing project, particularly with regard to software

modules or functions for which they have declared their responsibility to maintain or

manage as a core developer.

24

In the practice of peer recognition, a developer becomes recognized as an increasingly

valued project contributor as a growing number of their contributions make their way into

the core software modules [Benkler 2006, Bergquist and Ljundberg 2001]. In addition,

nearly two-thirds of OSS developers work on 1-10 additional OSSD projects [Hars and

Ou 2002, Madey, et al, 2005], which also reflect a growing social network of alliances

across multiple FOSS development projects [cf. Monge, et al. 1998, Scacchi 2005].

Project contributors who span multiple FOSS project communities serve as "social

gateways" that increase the ongoing project's social mass [cf. Marwell and Oliver 1993],

as well as affording opportunities for inter-project software composition and

interoperation [Jensen and Scacchi 2005]. It also enables and empowers their recognition

across multiple communities of FOSSD peers, which in turn reinforces their willingness

to contribute their time and effort to FOSSD project communities.

In self-promotion, project participants communicate and share their experiences, perhaps

from other application domains or work situations, about how to accomplish some task,

or how to develop and advance through one's career. Being able to move from the project

periphery towards the center or core of the development effort requires not only the time

and effort of a contributor, but also the ability to communicate, learn from, and convince

others as to the value or significance of the contributions [cf. Jensen and Scacchi 2006b,

Lave and Wegner 1991]. This is necessary when a participant's contribution is being

questioned in open project communications, not incorporated (or "committed") within a

new build version, or rejected by vote of those already recognized as core developers [cf.

Fielding 1999].

25

The last source of discretionary time and effort that has been reported is found in the

freedoms and beliefs in FOSSD that are shared, reiterated and put into observable

interactions. If a project participant fails to sustain or reiterate the freedoms and beliefs

codified in the GPL, then it is likely the person’s technical choice in the project may be

called into question [Elliott and Scacchi 2003, 2005], or the person will leave the project.

But understanding how these freedoms and beliefs are put into action points to another

class of resources (i.e., sentimental resources) that must be mobilized and brought to bear

in order to both develop FOSS systems and the global communities that surround and

empower them. Social values that reinforce and sustain the ongoing project and technical

norms regarding which software development tools and techniques to use (e.g., avoid the

use of “non-free” software), are among the sentimental resources that are employed when

participants seek to influence the choices that others in the project seek to uphold.

Trust and social accountability mechanisms

Developing complex FOSS source code and applications requires trust and accountability

among project participants. Though trust and accountability in a FOSSD project may be

invisible resources, ongoing software and project development work occur only when

these intangible resources and mechanisms for social control are present [cf. Gallivan

2001, Hertzum, et al. 2002].

These intangible resources (or “social capital”) arise in many forms. They include (a)

assuming ownership or responsibility of a community software module, (b) voting on the

approval of individual action or contribution to ongoing project software [Fielding 1999],

26

(c) shared peer reviewing [Benkler 2006, DiBona, et al. 1999, 2005], and (d) contributing

gifts [Bergquist and Ljundberg 2001] that are reusable and modifiable common goods

[Olson 1971, Ghosh 2005, Lessig 2005]. They also exist through the project's recognition

of a core developer's status, reputation, and geek fame [Pavlicek 2000]. Without these

attributions, developers may lack the credibility they need to bring conflicts over how

best to proceed to some accommodating resolution. Finally, as a FOSSD project grows in

terms of the number of contributing developers, end-users, and external sponsors, then

project's socio-technical mass (i.e., web of interacting resources) becomes sufficient to

insure that individual trust and accountability to the project are sustained and evolving

[Marwell and Oliver 1993].

Thus, FOSSD efforts rely on mechanisms and conditions for gentle but sufficient social

control that helps constrain the overall complexity of the project. These constraints act in

lieu of an explicit administrative authority or software project management regime that

would schedule, budget, staff, and control the project's development trajectory with

varying degrees of administrative authority and technical competence [cf. Sommerville

2004].

Cooperation, coordination, and control in FOSS projects

Getting software developers to work together, even when they desire to cooperate is not

without its challenges for coordinating and controlling who does what when, and to what

they do it to. Conflicts arise in both FOSSD [Elliott and Scacchi 2003,2005, Jensen and

Scacchi 2004] and traditional software development projects [Sawyer 2001], and finding

ways to resolve conflicts becomes part of the cost (in terms of social capital) that must be

27

incurred by FOSS developers for development progress to occur. Minimizing the

occurrence, duration, and invested effort in such conflicts quickly becomes a goal for the

core developers in an FOSSD project. Similarly, finding tools and project organizational

forms that minimize or mitigate recurring types of conflicts also becomes a goal for

experienced core developers.

Software version control tools such as the concurrent versions system, CVS--itself an

FOSS system and document base [Fogel 1999]--have been widely adopted for use within

FOSS projects [cf. DiBona et al. 1999, 2005, Feller et al. 2005, Fogel 2005, Pavelicek

2000]. Tools like CVS are being used as both (a) a centralized mechanism for

coordinating and synchronizing FOSS development, as well as (b) an online venue for

mediating control over what software enhancements, extensions, or architectural

revisions will be checked-in and made available for check-out throughout the

decentralized project as part of the publicly released version [cf. Ovaska, Rossi and

Martiin 2003].

Software version control, as part of a software configuration management activity, is a

recurring situation that requires coordination but enables stabilization and

synchronization of dispersed and somewhat invisible development work [Grinter 1996].

This coordination is required due to the potential tension between centralized decision-

making authority of a project's core developers and decentralized work activity of project

contributors when two or more autonomously contributed software source code/content

updates are made which overlap, conflict with one another, or generate unwanted side-

effects [Grinter 2003]. It is also practiced as a way to manage, track, and control both

28

desired and undesired dependencies within the source code [De Souza et al. 2005], as

well as among its surrounding informalisms [Scacchi 2002, 2004]. Tools like CVS thus

serve to help manage or mitigate conflicts over who gets to modify what, at least as far as

what changes or updates get included in the next software release from a project.

However, the CVS administrator or configuration control policies provide ultimate

authority and control mediated through such systems.

Each project team, or CVS repository administrator in it, must decide what can be

checked in, and who will or will not be able to check-in new or modified software source

code content. Sometimes these policies are made explicit through a voting scheme

[Fielding 1999], or by reference to coding or data representation standards [Iannacci

2005a], while in others they are left informal, implicit, and subject to negotiation as

needed. In either situation, version updates must be coordinated in order for a new system

build and release to take place. Subsequently, those developers who want to submit

updates to the project's shared repository rely extensively on online discussions that are

supported using "lean media" such as threaded messages (via discussion forum, bulletin

board, or similar) posted on a Web site [Yamauchi et al. 2000], rather than through

onerous system configuration control boards. Thus, software version control, system

build and release is a coordination and control process mediated by the joint use of

versioning, system building, and communication tools [Erenkrantz 2003].

FOSSD projects teams can take the organizational form of a layered or pyramid

meritocracy [cf. Fielding 1999, Kim 2000, Scacchi 2004] operating as a dynamically

organized virtual enterprise [Crowston 2002, Noll 1999]. A layered meritocracy is a

29

hierarchical organizational form that centralizes and concentrates certain kinds of

authority, trust, and respect for experience and accomplishment within the team [cf.

Crowston and Howison 2006]. Such an organizational form also makes administrative

governance more tractable and suitable, especially when a FOSS project seeks to legally

constitute a non-profit foundation to better address its legal concerns and property rights

[O'Mahony 2003]. However, it does not necessarily imply the concentration of universal

authority into a single individual or directorial board, since decision-making may be

shared among core developers who act as peers at the top layer, and they may be arrayed

into overlapping groups with other project contributors with different responsibilities and

interest areas.

As seen earlier in Figure 1, there is a layered or pyramidal form of a meritocracy

common to many FOSS projects. In this form, software development work appears to be

logically centralized, while being physically distributed in an autonomous and

decentralized manner [Noll and Scacchi 1999]. However, it is neither simply a

"cathedral" or a "bazaar", as these terms have been used to describe alternative ways of

organizing FOSSD projects. Instead, when layered meritocracy operates as a virtual

enterprise, it relies on virtual project management (VPM) to mobilize, coordinate,

control, build, and assure the quality of FOSS development activities. It may invite or

encourage system contributors to come forward and take a shared, individual

responsibility that will serve to benefit the FOSS collective of user-developers. VPM

requires multiple people to act in the roles of team leader, sub-system manager, or system

module owner in a manner that may be short-term or long-term, based on their skill,

accomplishments, availability and belief in ongoing project development.

30

Exhibit 4. Description of virtual project management skills implied for a “Team Leader”.
(source. Http://www.planeshift.it/main_01.html, October 2003; also in Scacchi [2004]).

This implied requirement for virtual project management can be seen within Exhibit 4,

from the FOSS project developing Planeshift, a free massively multiplayer online role-

playing game.

31

http://www.planeshift.it/main_01.html

 Project participants higher up in the meritocracy have greater perceived authority than

those lower down. But these relationships are only effective as long as everyone agrees to

their makeup and legitimacy. Administrative or coordination conflicts that cannot be

resolved may end up either by splitting or forking a new system version with the

attendant need to henceforth take responsibility for maintaining that version [cf. Iannacii

2005a], by reducing one’s stake in the ongoing project, or by simply conceding the

position in conflict.

Virtual project management exists within FOSS communities to enable control via

project decision-making, Web site administration, and CVS repository administration in

an effective manner. Similarly, VPM exists to mobilize and sustain the use of privately

owned resources (e.g., Web servers, network access, site administrator labor, skill and

effort) available for shared use or collective reuse by the ongoing project.

Traditional software project management stresses planning and control activities. In

contrast, Lessig [2000] and others [De Souza, Redmiles, and Dourish 2005, Hakken

1999, Lanzara and Morten 2005, Scacchi 2002] observe that source code and other online

artifacts are an institutional forum for collective action [O’Mahony 2003, Ostrom,

Calvert, and Eggertsson 1990] that intentionally or unintentionally realizes a mode of

social control on those people who develop or use it. In the case of FOSS development,

Lessig’s observation would suggest that the source code controls or constrains end-user

and developer interaction, while the code in software development tools, Web sites, and

project assets accessible for download controls, constrains, or facilitates developer

32

interaction with the evolving FOSS system code. CVS is a tool that enables some form of

social control. However, the fact that the source code to these systems is available in a

free and open source manner offers the opportunity to examine, revise, and redistribute

patterns of social control and interaction in ways that favor one form of project

organization, system configuration control, and user-developer interaction over others.

Many FOSSD project post guidelines for appropriate and inappropriate ways of reporting

and discussing bugs, unintended features, or flaws in the current FOSS system release.

These guidelines are embodied in online documents/artifacts that developers choose to

follow in ways that suggest these developers have elevated informalisms into community

standards that act to control appropriate behavior within FOSSD projects. Exhibit 5

provides an example of such guidelines and the rules it suggests for how to best report

bugs within Mozilla projects (like the Firefox Web browser or Thunderbird email client

projects) when using the Bugzilla bug reporting system.

Beyond this, the ability for the eyes of many developers to review or inspect source code,

system build and preliminary test results [Porter et al. 1997, 2006], as well as responses

to bug reports, also realizes peer review and the potential for embarrassment as a form of

indirect social control over the timely actions of contributing FOSS developers [cf.

Pavelicek 2000]. Thus, FOSSD allows for this dimension of VPM to be open for

manipulation by the core developers, so as to encourage certain patterns of software

development and social control, and to discourage others that may not advance the

collective needs of FOSSD project participants. Subsequently, FOSSD projects are

33

managed, coordinated and controlled, though without the roles for traditional software

engineering project managers [cf. Sommerville 2004].

Exhibit 5. Guidelines for appropriate behavior when reporting bugs in Mozilla.org FOSS
projects when using the Bugzilla bug reporting system.

(source: https://bugzilla.mozilla.org/page.cgi?id=etiquette.html, June 2006).

34

https://bugzilla.mozilla.org/page.cgi?id=etiquette.html

Alliance formation, inter-project social networking and

community development

How does the gathering of FOSS developers give rise to a more persistent self-sustaining

organization or project community? Through choices that developers make for their

participation and contribution to a FOSSD project, they find that there are like-minded

individuals who also choose to participate and contribute to a project. These software

developers find and connect with each other through FOSSD Web sites and online

discourse (e.g., threaded discussions on bulletin boards) [Monge et al.1998], and they

find they share many technical competencies, values, and beliefs in common [Crowston

and Scozzi 2002, Espinosa et al. 2002, Elliott and Scacchi 2005]. This manifests itself in

the emergence of an alliance of FOSSD projects that share either common interests or

development methods, like those for “open source software engineering” identified in the

left column in Exhibit 1, in external projects that adopt a given FOSS system (e.g.,

OGRE) as the core system for subsequent application development as seen in Exhibit 6,

or in a occupational network of FOSS developers [Elliott and Scacchi 2005].

Becoming a central node in a social network of software developers that interconnects

multiple FOSS projects is also a way to accumulate social capital and recognition from

peers. However, it also enables the merger of independent FOSS systems into larger

composite ones that gain the critical mass of core developers to grow more substantially

and attract ever larger user-developer communities [Madey et al. 2002, 2005, Scacchi

2005].

35

Exhibit 6. A partial view of an alliance of external FOSS game development projects that
use the OGRE system (cf. Exhibit 2). (source:

http://www.ogre3d.org/index.php?set_albumName=album07&option=com_gallery&Item
id=55&include=view_album.php, June 2006)

“Linchpin developers” [Madey et al. 2005] participate in or span multiple FOSSD

projects. In so doing, they create alliances between otherwise independent FOSSD

projects. Figure 2 depicts an example of a social network that clusters 24 FOSS

developers within 5 FOSSD projects interconnected through two linchpin developers

[Madey et al. 2005].

36

http://www.ogre3d.org/index.php?set_albumName=album07&option=com_gallery&Itemid=55&include=view_album.php
http://www.ogre3d.org/index.php?set_albumName=album07&option=com_gallery&Itemid=55&include=view_album.php

Figure 2. A social network that clusters 24 developers in five FOSS projects through two key
developers into a larger project community [source: Madey et al. 2002].

Multi-project clustering and interconnection enables small FOSS projects to come

together as a larger social network with the critical mass [Marwell and Oliver 1993]

needed for their independent systems to be merged and experience more growth in size,

functionality, and user base. It also enables shared architectural dependencies to arise

(perhaps unintentionally) in the software components or sub-systems that are used/reused

across projects [cf. DeSouza, Redmiles, and Dourish 2005, Iannacci 2005a, Ovaska,

Rossi and Martiin 2003]. FOSSD Web sites also serve as hubs that centralize attention

for what is happening with the development of the focal FOSS system, its status,

participants and contributors, discourse on pending/future needs, etc.

37

Sharing beliefs, values, communications, artifacts and tools among FOSS developers

enables not only cooperation, but also provides a basis for shared experience,

camaraderie, and learning [cf. Espinosa et al 2002, Fischer 2001, Huntley 2003, Lave and

Wenger 1991]. FOSS developers participate and contribute by choice, rather than by

assignment, since they find that conventional software development work provides the

experience of working with others who are assigned to a development effort, whether or

not they find that share technical approaches, skills, competencies, beliefs or values. As a

result, FOSS developers find they get to work with people that share their many values

and beliefs in common, at least as far as software development. Further, the values and

beliefs associated with free software or open source software are both signaled and

institutionalized in the choice of intellectual property licenses (e.g., GPL) that FOSSD

projects adopt and advocate. These licenses in turn help establish norms for developing

free software or open source software, as well as for an alliance with other FOSSD

projects that use the same licenses.

Almost half of the over 120K FOSS projects registered at SourceForce.net Web portal (as

of July 2006-see Exhibit 7 later) employ the GNU General Public License (GPL) for free

(as in freedom) software. The GPL seeks to preserve and reiterate the beliefs and

practices of sharing, examining, modifying and redistributing FOSS systems and assets as

common property rights for collective freedom [Gay 2002, Lessig 2005, Williams 2002].

A few large FOSSD project that seek to further protect the collective free/open

intellectual property rights do so through the formation of legally constituted non-profit

organizations or foundations (e.g., Free Software Foundation, Apache Software

Foundation, GNOME Foundation) [O’Mahony 2003]. Other OSS projects, because of the

38

co-mingling of assets that were not created as free property, have adopted variants that

relax or strengthen the rights and conditions laid out in the GPL. Dozens of these licenses

now exist, with new ones continuing to appear (cf. www.opensource.org). Finally, when

OSSD projects seek to engage or receive corporate sponsorship, and the possible co-

mingling of corporate/proprietary intellectual property, then some variation of a non-GPL

open source license is employed, as a way to signal a “business friendly” OSSD project,

and thus to encourage participation by developers who want to work in such a business

friendly and career enhancing project [Hann et al. 2002, Sharma et al. 2002, West and

O'Mahony 2005].

Community development and system development

Developing FOSS systems is a project team building process that must be

institutionalized within a community [Sharma et al. 2002, Smith and Pollock 1999,

Preece 2000, Ye et al. 2005] for its software informalisms (artifacts) and tools to

flourish. Downloading, installing, and using FOSS systems acquired from other FOSS

Web sites is also part of a community building process [Kim 2000], while Exhibit 6

reiterates that many external game development project use the OGRE free software.

Adoption and use of FOSS project Web sites are a community wide practice for how to

publicize and share FOSS project assets. These Web sites can be built using FOSS Web

site content management systems (e.g., PhP-Nuke) to host project contents that can be

served using FOSS Web servers (Apache), database systems (MySQL) or application

servers (JBoss), and increasingly accessed via FOSS Web browsers (Mozilla).

Furthermore, ongoing FOSS projects may employ dozens of FOSS development tools,

whether as standalone systems like the software version control system CVS, as

39

http://www.opensource.org/

integrated development environments like NetBeans or Eclipse, or as sub-system

components of their own FOSS application in development. These projects similarly

employ asynchronous systems for project communications that are persistent, searchable,

traceable, public and globally accessible [Yamauchi et al. 2000].

FOSS systems, hyperlinked artifacts and tools, and project Web sites serve as venues for

socializing, building relationships and trust, sharing and learning with others. “Linchpin

developers” [Madey et al. 2005] act as community forming hubs that enable independent

small FOSS projects to come together as a larger social network with the critical mass

[Marwell and Oliver 1993] needed for their independent systems to be merged and

experience more growth in size, functionality, and user base. Whether this trend is found

in traditional or closed source software projects is unclear. Multi-project FOSS Web sites

(e.g., Tigris.org in Exhibit 1 or SourceForge.org in Exhibit 7) also serve as hubs or

“community cores” that centralize attention for what is happening with the development

of focal FOSS systems, their status, participants and contributors, discourse on

pending/future needs, etc. Furthermore, by their very nature, these Web sites are

generally global in reach and publicly accessible. This means the potential exists for

contributors to come from multiple remote sites (geographic dispersion) at different times

(24/7), from multiple nations, representing the interests of multiple cultures or ethnicity.

Thus, multi-project FOSS Web sites help to make visible online virtual organizations,

inter-project alliances, community and social networks that can share resources, artifacts,

interests, and source code [cf. Fischer 2001].

40

All of these conditions point to new kinds of requirements for software development

projects—for example, community building requirements, community software

requirements, and community information sharing system (Web site and interlinked

communication channels for email, forums, and chat) requirements [Scacchi 2002, Truex,

Baskerville and Klien 1999]. These requirements may entail both functional and non-

functional requirements, but they will most typically be expressed using FOSS

informalisms, rather than using formal notations based on some system of mathematical

logic known by few.

Community building, alliance forming, and participatory contributing are essential and

recurring activities that enable FOSSD projects to persist without central corporate

authority. Thus, linking people, systems, and projects together through shared artifacts

and sustained online discourse enables a sustained social network [Lopez-Fernandez et

al. 2006, Madey et al ,2002, 2005] and socio-technical community, Web-based

information infrastructure [Jensen and Scacchi 2005], and network of alliances [Iannacci

2005b, Monge et al. 1998] to emerge.

Therefore interesting problems arise when investigating how best to model or simulate

the FOSSD processes that facilitate and constrain the co-development and co-evolution

of FOSS project communities and the software systems they produce. The point is not to

separate the development and evolution processes of the software system from its

community, since each is co-dependent on the other, and the success of one depends on

the success of the other. Thus, it appears that FOSSD processes and practices should be

modeled and simulated as integrating and intertwining processes.

41

FOSS as a multi-project software ecosystem
As noted above, many FOSSD projects have become interdependent through the

networking of software developers, development artifacts, common tools, shared Web

sites, and computer-mediated communications. What emerges from this is a kind of

multi-project software ecosystem, whereby ongoing development and evolution of one

FOSS system gives rise to propagated effects, architectural dependencies, or

vulnerabilities in one or more of the projects linked to it [Jensen and Scacchi 2005]. For

example, Figure 3 depicts a software ecosystem primarily consisting of FOSS projects

(each project denoted by a cloud-like shape, and the interrelationship of these project

clouds denoting the ecosystem).

Figure 3: Visualizing cooperative integrations and conflicts among an ecosystem of
interrelated FOSS projects (source: Jensen and Scacchi 2005).

This particular software ecosystem highlights relationships between three large FOSS

projects, the Mozilla.org Web Browser, the Apache.org Web server, and the

42

Tigris

Mozilla

NetBeans
Bugzilla

IssueZilla

Conflict

Integration

JCP

Mozilla
Apache

NetBeans

Conflict

Conflict

Conflict

Integration

Integration Integration

Internet
Explorer

W3C

Conflict

Integration

Integration

Conflict

Integration

Conflict

Integration

Conflict

Changes in: HTTP,
CCS, DOM,

URI/URL, XML
standards

Bugzilla, compliance with W3C standard
protocols/data formats, compressed HTTP

module support, Javascript support

Browser-specific
actions, browser-error

workarounds

Tomcat integration into
NetBeans, compliance with
W3C standards, Apache Ant

integration into NetBeans

NetBeans workarounds
for Mozilla shortcuts,
Bugzilla inefficiencies

NetBeans and Mozilla
developers collaborate on
spell-checking module,

NetBeans adopts Mozilla
super review process

Apache releases new
version of Tomcat

NetBeans.org interactive development environment for Web-based Java applications. It

also collectively forms a central part of the software infrastructure for the Web4, along

with other FOSS projects that support each of these three focal projects. It further

highlights examples of integration and conflict issues that have emerged as these three

core Web systems as each has evolved on its own, as well as co-evolved with the others.

Details on the integration and conflict issues are further described in Jensen and Scacchi

[2005].

Interdependencies are most apparent when FOSSD project share source code modules,

components, or sub-systems. In such situations, the volume of source code of an

individual FOSSD project may appear to grow at a super-linear or exponential rate

[Scacchi 2006a, Schach et al. 2002, Smith et al. 2004] when modules, components, or

sub-systems are integrated in whole into an existing FOSS system [Scacchi 2006a]. Such

an outcome, which economists and political scientists refer to as a “network externality”

[Ostrom, Calvert and Eggertssons 1990], may be due to the import or integration of

shared components, or the replication and tailoring of device, platform, or

internationalization specific code modules. Such system growth patterns therefore seem

to challenge the well-established laws of software evolution [Lehman 1980, 2002]. Thus,

software evolution in a multi-project FOSS ecosystem is a process of co-evolution of

interrelated and interdependent FOSSD projects, people, artifacts, tools, code, and

project-specific processes.

4 Figure 3 also indicates the non-FOSS like Microsoft’s Internet Explorer Web browser is part of the
software ecosystem for the Web software infrastructure. The Java Community Process (JCP) and
World Wide Web Committee (W3C) respectively denote a software application coding compatibility
assessment process, and a committee of diverse parties who collectively act to define Web standards
for markup languages (HTML) and data communication protocols (http), which are central to the
interoperation of Web browsers, Web servers, and Web applications.

43

It seems reasonable to observe that the world FOSSD is not the only place where multi-

project software ecosystems emerge, as software sharing or reuse within traditional

software development enterprises is common. However, the process of the co-evolution

of software ecosystems found in either traditional or FOSSD projects in mostly unknown.

Thus, co-evolution of interdependent software systems and standards for interoperation

within an FOSS ecosystem represents an opportunity for research that investigates

understanding such a software evolution process through studies supported by modeling

and simulation techniques [e.g., Antoniades, et al. 2005, Smith et al. 2004].

Co-evolving socio-technical systems for FOSS

Software maintenance, in the form of the addition/subtraction of system functionality,

debugging, restructuring, tuning, conversion (e.g., internationalization), and migration

across platforms, is a widespread, recurring process in FOSS development communities.

Perhaps this is not surprising since maintenance is generally viewed as the major cost

activity associated with a software system across its life cycle [cf. Sommerville 2004].

However, this traditional characterization of software maintenance does not do justice for

what can be observed to occur within different FOSS communities. Instead, it may be

better to characterize a key evolutionary dynamic of FOSS as reinvention [cf. Scacchi

2004]. Reinvention is enabled through the sharing, examination, modification, and

redistribution of concepts and techniques that have appeared in closed source systems,

research and textbook publications, conferences, and the interaction and discourse

between developers and users across multiple FOSS projects. Thus, reinvention is a

continually emerging source of improvement in FOSS functionality and quality, as well

44

as also a collective approach to organizational learning in FOSS projects [Fischer 2001,

Huntley 2003, Lave and Wenger 1991].

Many of the largest and most popular FOSS systems like the Linux Kernel [Schach et al.

2002], GNU/Linux distributions [Iannacci 2005a, O’Mahony 2003], GNOME user

interface [German 2003] and others are growing at an exponential rate, as is their internal

architectural complexity [Schach et al. 2002]. On the other hand the vast majority of

FOSS projects are small, short-lived, exhibit little/no growth, and often only involve the

effort of one developer [Capiluppi et al. 2003, Madey et al. 2005]. In this way, the

overall trend derived from samples of 400-40K FOSS projects registered at the

SourceForge.net Web portal reveals a power law distribution common to large self-

organizing systems. This means a few large projects have a critical mass of at least 5-15

core FOSS developers [Mockus, Fielding and Herbsleb 2002] that act in or share project

leadership roles [Fielding 1999] that are surrounded by dozens to hundreds of other

contributors in secondary or tertiary roles, and hundreds to millions of end users in the

distant periphery. The FOSS projects that attain and sustain such critical mass are those

that inevitably garner the most attention, software downloads, and usage. On the other

hand, the vast majority of FOSS projects are small, lacking in critical mass, and thus

unlikely to thrive and grow.

The layered meritocracies that arise in FOSS projects tend to embrace incremental

innovations such as evolutionary mutations to an existing software code base over radical

innovations. Radical change involves the exploration or adoption of untried or

sufficiently different system functionality, architecture, or development methods. Radical

45

software system changes might be advocated by a minority of code contributors who

challenge the status quo of the core developers. However, their success in such advocacy

usually implies creating and maintaining a separate version of the system, and the

potential loss of a critical mass of other FOSS developers. Thus, incremental mutations

tend to win out over time [cf. Scacchi 2004].

FOSS systems seem to evolve through minor improvements or mutations that are

expressed, recombined, and redistributed across many releases with short duration life

cycles. End-users of FOSS systems who act as contributing developers or maintainers

continually produce these mutations. These mutations appear to coalesce in daily system

builds. These modifications or updates are then expressed as a tentative alpha, beta,

release candidate, or stable release versions that may survive redistribution and review,

then subsequently be recombined and re-expressed with other new mutations in

producing a new stable release version. As a result, these mutations articulate and adapt

an FOSS system to what its developer-users want it to do in the course of evolving and

continually reinventing the system.

Last, closed source software systems that were thought to be dead or beyond their useful

product life or maintenance period may be revitalized through the redistribution and

opening of their source code. However, this may only succeed in application domains

where there is a devoted collective of enthusiastic user-developers who are willing to

invest their time and skill to keep the cultural heritage of their former experience with

such systems alive. Scacchi [2004] provides an example for vintage arcade games now

46

numbering in the thousands that are being revitalized and evolved using the FOSS-based

Multi-Arcade Machine Emulator (MAME).

Overall, FOSS systems co-evolve with their development communities. This means the

evolution of one depends on the evolution of the other. Said differently, a FOSS project

with a small number of developers (most typically one) will not produce and sustain a

viable system unless/until the team reaches a larger critical mass of 5-15 core developers.

However, if and when critical mass is achieved, then it may be possible for the FOSS

system to grow in size and complexity at a sustained exponential rate, defying the laws of

software evolution that have held for decades [Lehman 1980, 2002, Scacchi 2006a].

Furthermore, user-developer communities co-evolve with their systems in a mutually

dependent manner [Elliott and Scacchi 2005, Nakakoji et al. 2002, O’Mahony 2003,

Scacchi 2002], and system architectures and functionality grow in discontinuous jumps as

independent FOSS projects decide to join forces [e.g., Nakakoji et al 2002, Scacchi

2006]. Whether this trend is found in traditional or closed source software projects is

unclear. But what these findings and trends do indicate is that it appears that the practice

of FOSS development processes is different from the processes traditionally advocated

for software engineering.

FOSS as a Social Movement

Social movements reflect sustained and recurring large-scale collective activities within a

society. Social movements can be characterized by (a) their recurring structural forms

(e.g., boundaries around movement sub-segments, multiple centers of activity, and social

47

networks that link the segments and centers) and venues for action, (b) ideological

beliefs, and (c) organizations whose purpose is to advance and mobilize broader interest

in the movement [Snow et al 2004]. The OSS movement arose in the 1990’s [DiBona, et

al., 1999, Ljungberg 2000, Scacchi 2006b, West and Dedrick 2006] from the smaller,

more fervent “free software” movement [Gay 2002] started in the mid 1980’s.

The OSS movement is populated with thousands of OSS development projects, each with

its own Web site. Whether the OSS movement is just another computerization movement

[cf. Iacono and Kling 2001], or is better recognized as a counter-movement to the

proprietary or closed source world of commercial software development is unclear. For

example, executives from proprietary software firms have asserted that (a) OSS is a

national security threat to the U.S. [O’Dowd 2004], or (b) that OSS (specifically that

covered by the GNU Public License or “GPL”) is a cancer that attaches itself to

intellectual property [Greene 2001]. However, other business sources seem to clearly

disagree with such characterizations and see OSS as an area for strategic investment

[Gomes 2001, OSBC 2006], and there is growing support for recognizing that FOSS has

become a matter of national security in the U.S. Department of Defense [MITRE 2003,

Payton et al. 2006]. Nonetheless, more than 120K projects are registered at OSS portals

like SourceForge.org, as seen in Exhibit 7, while other OSS portals like Freshment.org,

and Tigris.org contain thousands more.

48

Exhibit 7. Home page of the SourceForge.net OSS Web portal, indicating more than 120K
registered projects, and more than 1.3M registered user
(source: http://sourceforge.net/, visited 7 June 2006).

The vast majority of the OSS projects at SourceForge appear to be inactive, with less than

two contributing developers, as well as no software available for download, evaluation, or

enhancement. However, at least a few thousand OSS projects seem to garner most of the

attention and community participation, but no one project defines or leads the OSS

49

http://sourceforge.net/

movement. The Linux Kernel project is perhaps the most widely known OSS project, with its

celebrity leaders, like Linus Torvalds. Ironically, it is also the most studied OSS project.

However, there is no basis to indicate that how things work in this project prescribe or

predict what might be found in other successful OSS projects. Thus, the OSS movement is

segmented about the boundaries of each OSS project, though some of the larger project

communities have emerged as a result of smaller OSS projects coming together. Finally, a

small set of studies [cf. Hars and Ou 2002, Koch 2005] indicate that upwards of 2/3 OSS

developers contributes to two or more OSS projects, and perhaps as many as 5% contribute

to 10 or more OSS projects. The density and interconnectedness of this social networking

characterizes the membership and in-breeding of the OSS movement, but at the same time,

the multiplicity of projects reflects its segmentation.

According to advocates [Gay 2002], Richard M. Stallman initiated the free software

movement [Elliott 2006, Elliott and Scacchi 2006]. Its participants or advocates identify their

affiliation and commitment by openly developing and sharing their software following the

digital civil liberties expressed in the GPL. The GPL is a license agreement that promotes

and protects software source code using the GPL copyright to always be available (always

assuring a “copy left”), and that the code is open for study, modification, and redistribution,

with these rights preserved indefinitely. Furthermore, any software system that incorporates

or integrates free software covered by the GPL, is asserted henceforth to also be treated as

free software. This so-called “viral” nature of the GPL is seen by some to be an “anti-

business” position, which is the most commonly cited reason for why other projects have

since chose to identify them as open source software [Fink 2003]. However, new/pre-

existing software that does not integrate GPL source code is not infected by the GPL, even if

50

both kinds of software co-exist on the same computer or operating system, or that access one

another through open or standards-based application program interfaces.

Surveys of OSS projects reveal that about 50% or more of all OSS projects (including the

Linux Kernel project) employ the GPL [FLOSS 2002], even though there are only a few

thousand of self-declared free software projects. Large OSS projects, such as the Apache

Web server, KDE user interface package, Mozilla/Firefox Web browser, have chosen to not

use the GPL, but to use a less restrictive, open source license. As before, free software is

always open source, but open source software is not always free software. So the free

software movement has emerged on its own, but increasingly it has effectively become

subsumed as a segment within the larger, faster growing and faster spreading OSS

movement. Subsequently, OSS licenses have become the hallmark carrier of the ideological

beliefs that helps distinguish members of the free software movement, from those who share

free software beliefs but prefer to be seen as open source or business-friendly developers

(e.g., the Linux Kernel project). Furthermore, the use of non-GPL OSS licenses by

corporate-sponsored projects [cf. O’Mahony 2003] also distinguishes those who identify

themselves as OSS developers, but not practitioners or affiliates of the free software

movement.

A variety of organizations, enterprises, and foundations participate in encouraging the

advancement and success of OSS [Weber 2004]. Non-profit foundations have become one of

the most prominent organizational forms founded to protect the common property rights of

OSS projects. The Open Source Initiative (www.opensource.org) is one such foundation that

51

http://www.opensource.org/

seeks to maintain the definition of what “open source software” is, and what software

licenses satisfy such a definition. OSI presents its definition of OSS in a manner that is

considered business friendly [Fink 2003], as opposed to “free software” which is cast by its

advocates as a social movement that expresses civil liberties through software (e.g., source

code as a form of free speech) [Gay 2002]. The OSI’s Bruce Perens who advocates that OSS

is a viable economic and innovative alternative to proprietary software, often is juxtaposed or

compared to Richard M. Stallman, who seeks to “put back the free in free enterprise” [Gay

2002]. Beyond this, a sign of success of the largest OSS projects is the establishment of a

non-profit foundation or a not-for-profit consortium that serve as the organizational locus

and legal entity that can engage in contracts and intellectual property rights agreements that

benefit the project. A small but growing number of corporations in the IT, Financial

Services, and other industries have taken on sponsorship of OSS projects, either as an

external competitive strategy (e.g., IBM’s Eclipse project and SUN’s NetBeans project

compete against Microsoft .NET products) or internal cost-reduction strategy [West and

O’Mahony 2005].

Overall, recognizing that free software and OSS have facilitated the emergence of global-

scale social (or computerization) movements, indicates that FOSS is increasingly permeating

society at an industrial, governmental, and international level, and is doing so in ways that no

prior software technology or development method has come close to achieving. Why this has

come about, what consequences it portends for the future of FOSS, and whether corporate or

public (government) policy initiatives will increasingly address the development, adoption,

deployment, usage, and support of FOSS applications and projects, all require further study.

52

But is also in clear that it is increasingly unlikely the any company, government, or nation

can successfully inhibit the near-term and mid-term societal dispersion of FOSS or the FOSS

movements.

Research Methods for Studying FOSS

Based on the survey of studies and results emerging from empirical studies of FOSSD

projects, it becomes clear that there are many promising opportunities in studying,

modeling, analyzing, and comparing FOSS development processes, work practices, and

community dynamics, as well as project development artifacts and source code. New

sources of data associated with FOSSD participants, artifacts, tools used, and

development processes are available, and new systematic samples of FOSSD projects can

be articulated. Empirical studies of FOSSD can therefore be examined of the research

methods employed, and that is the purpose of the following section of this chapter.

In this chapter, different studies of FOSS development were organized and characterized

according to subjects grouped into different level of analysis. Subsequently, this raises

questions about what kinds of research methods have been used in these studies, or might

be used in future studies of FOSS. To answer such questions, it is necessary and

beneficial to review what kinds of research methods and strategies have appeared in

FOSS studies, in order to identify possible categories of FOSS research methods that can

be practiced by or taught to future FOSS scholars. The purpose is not to endure a treatise

on how to do research or how to conduct an empirical study of FOSS, but instead to

highlight which studies of FOSSD used what research methods to investigate issues at

one of more levels of analysis.

53

As research studies of FOSS can be organized in many ways, level of analysis can be

construed as a constructive element when articulating a research method. A given study

may explore a single or multiple levels of analysis by research study design. Other

elements include the unit of analysis, terms of analysis, and mode of analysis. The unit of

analysis focuses on what or who is being studied, across some spatio-temporal extent

within some work setting. Common foci include FOSS developer motivations, project

teams or workgroup effort, source code, development or communication artifacts, or

development processes enacted within a project's Web Site(s) across some period of time.

The choice of the unit of analysis often determines or reflects the researcher's choice for

the level, terms, and mode of analysis. The terms of analysis refer to the choice of

analytical variables and rhetorical framings that are employed to identify and describe

salient features or aspects of the unit of analysis. When focusing of FOSS development

processes, for example, conceptual variables like process structure or process control

flow may be used to associate the partially ordered sequence of workflow activities,

performed by participants acting in different roles, using tools to perform different

activities that access and update shared resources or artifacts, may be used to describe

observed or discovered FOSS processes. The mode of analysis identifies what kind of

qualitative, quantitative, or triangulated schemes are employed to collect and analyze data

associated with the unit of analysis.

Common FOSS research data collection and analysis modes include reflective practice

and industry polls, surveys, ethnographic study, mining FOSS artifact repositories, and

multi-modal modeling. As mode of analysis is core to research method, that becomes the

54

focus here. However, as will become clear, different research methods involve trade-offs

when compared to one another, so that no single research method will be best in all

situations or studies.

Reflective practice and industry poll methods

FOSS research studies often focus on the interests, motivations, perceptions, and

experiences of developers or end-user organizations. Typically, the unit of analysis is the

individual agent (most commonly a person, unitary group, or firm, but sometimes a

software system, tool, or artifact type) acting within a larger actor group or community.

Individual behavior, personal choices, or insider views might best be analyzed,

categorized, and explained in terms of volunteered or elicited statements of their interests,

motivations, perceptions, or experiences. Most of the popular treatments of OSS

development [e.g., DiBona, et al. 1999, 2005, Fogel 1999, Pavlivcek 1999] and Free

software development [e.g., Fogel 2005, Gay 2002, Williams 2002], provide insight and

guidance for how FOSS development occurs, based on the first-hand experiences of those

authors.

Other authors informed by such practitioner studies and informal industry/government

polls (like those reported in CIO Magazine, MITRE [2003], OSBC [2006], Wheeler

[2005], and elsewhere) seek to condense and package the experience and wisdom of these

FOSS practices into practical advice that may be offered to business executives

considering when and why to adopt FOSS options [e.g, Fink 2003, Goldman and Gabriel

2005].

55

As a FOSS research method, reflective practice often tends to (a) be uncritical with

respect to prior scholarship or theoretical interpretation, or (b) employ unsystematic

collection of data to substantiate pithy anecdotes or proffered conclusions. Thus, by

themselves such studies offer a limited basis for further research or comparative analysis.

Nonetheless, they can (and often do) offer keen insights and experience reports that may

help sensitize future FOSS researchers to interesting starting points or problems to further

explore.

Survey research methods

A focus on perceptions or motivations of individual participants also suggests possible

attention to cognitive dimensions of FOSS development or end-user adoption. Here the

quantitative survey studies of Bonaccorsi and Rossi [2006], FLOSS [2002, Ghosh and

Prakash 2000], Hars and Ou [2002], Hertel, et al. [2003], and Lakhani, et al. [2002], for

example, have been key in providing broad international coverage (and descriptive

statistics) of why software developers of different ages, skill bases, employment status in

different countries seek to join, participate in, and help sustain FOSS development

projects and their surrounding communities.

The survey research studies cited above (a) critically reflect on the data and offer

alternative explanations relative to established scholarship, and (b) rely on reasonably

articulated questionnaire design, survey samples, and statistical analysis to plausibly

substantiate their findings and conclusions. However, these surveys typically involve

hundreds of individual respondents, and thus require a significant commitment of

research staff expertise, time, effort, and budget to administer the survey and process the

56

data in the study. Furthermore, most such surveys are standalone studies, though

Bonaccorsi and Rossi are one of the first to incorporate a comparative analysis of prior

survey studies of motivations of FOSS developers and end-user firms who elect to join

FOSS projects, while the Ghosh/FLOSS studies are the most international in their

coverage and cross-cultural generalization of findings.

Finally, quantitative data and analyses arising from survey research of FOSS efforts are

best suited for describing frequency and distribution of univariate data, as well as

correlation associations among multi-variate data that characterize FOSSD. However,

these data and analyses are often comparatively weak when used to characterize the

structure and performance of complex socio-technical processes whose activities,

participant roles, and resources are highly situated and interdependent, yet occur in

relatively low frequency and evolve over time.

Ethnographically informed methods

While survey research methods stress collection and analysis of data that is usually easy

to quantify, not all phenomena operating within or around FOSS work practices,

development processes, or community dynamics are readily captured or characterized in

quantitative form. Thus, qualitative research methods are needed and often better suited

to such discovery-oriented or participant-observer studies of FOSS development efforts

[cf. Seaman 1999, Viller and Sommerville 2000]. Central to such studies are

ethnographic or ethnographically informed research methods that are intended for studies

where face-to-face interviews or co-located observation are central, whereas most of the

action and interactions of interest in FOSSD efforts take place online across the

57

Internet/Web [cf. Hakken 1999, Hine 2000, Smith and Pollock 1999] in virtual

organizations represented by Web sites or portals.

Qualitative ethnographic methods are better suited to the study of the structure and

performance of complex work practices, community dynamics, or socio-technical

development processes whose activities and participant roles are highly situated and

interdependent, yet occur in relatively low frequency and evolve over time. Here there are

studies by Scacchi [2002], Iannacci [2005], Elliott and Scacchi [2003, 2005, 2006], Reis

and Fortes [2002], Jensen and Scacchi [2005, 2006a,b], Lanzara and Morner [2005],

Longchamp [2005], Duchenaunt [2005], and Sack et al. [2006]. A common limitation of

such studies is that they tend to focus attention to a single FOSS project setting, though

this is not inherent in the method. For example, Scacchi [2002, 2004] and Jensen and

Scacchi [2005] examine multiple independent FOSS project settings in order to perform

comparative, cross case analyses [cf. Seaman 1999]. Similarly, these ethnographic studies

tend to entail longitudinal data collection and devote particular attention to collection of

FOSS development and communication artifacts, and thus employ methods for discourse

and document genre analyses [cf. Kwansik and Crowston 2005, Spinuzzi 2003], as well

as computational or ethnographic hypermedia analyses [Duchenaunt 2005, Jensen and

Scacchi 2005, Sack et al. 2006, Scacchi, Jensen, et al. 2006]. As a result, (virtual)

ethnographic studies are well-suited to small research groups who are also equipped and

competent with Web-based data mining tools for searching, crawling, indexing, coding

and cross-coding textual data [cf. Seaman 1999] found in FOSSD project Web sites (e.g,

development artifacts or informalisms).

58

Mining FOSS artifact repositories and artifact analysis methods

Reflective practice, surveys, and ethnographic studies have been long employed in

empirical studies of software development of all kinds. The world of FOSS does however

provide a new opportunity for study that previously was unavailable or at least

uncommon in the software research community. One such opportunity arises from the

public accessibility of the source code and related development and communication

artifacts associated with FOSS project Web sites or FOSS community repositories or

portals like SourceForge.org and others [cf. Harrison 2001].

The accessibility of the source code and artifacts means that they can be directly

subjected to various kinds of automated or semi-automated processing techniques,

including text data mining, crawling and indexing, statistical analyses, and machine

learning. These processing techniques give rise to not only new ways and means for

analyzing large textual FOSS data sets, but also to investigate research questions or

problems that heretofore could not be addressed with the established research methods for

studying software development. For example, there are now studies of FOSS source code

that reveal patterns of the growth and evolution of different FOSS systems over time,

[Capiluppi et al. 2003, Schach, et al. 2002, Paulson, et al 2004, Smith, et al. 2004].

Common among the findings in these studies is growing evidence for sustained

exponential growth rates for large, highly successful FOSS systems [cf. Scacchi 2006a],

though the majority of FOSS projects fail to grow at all [cf. Madey et al. 2002, 2005]

Such findings stand in contrast to the established wisdom from long-standing studies of

software evolution in the world of traditional (closed-source) software, where inverse-

square growth rates are more common observed [cf. Lehman 1980, 2002].

59

Other studies of FOSS repositories have focused attention to (textual) artifacts associated

with different FOSS projects. For example, in a widely cited study of the development of

the Apache Web server and Mozilla Web browser, Mockus, Fielding and Herbsleb [2002]

reported that they were able to investigate, extract, and quantify modification requests

captured in change logs and bug reporting repositories associated with each of these two

projects. They analyzed and compared their findings on bug frequency and severity over

time identified in modification requests for the browser and server, with those found in

commercial (proprietary) telecommunications systems software. Subsequently, they

found these FOSS projects produce comparable or higher quality software, but without

the software project management regimen used in industry.

Elsewhere, Madey, et al. [2002, 2005] and Lopez-Fernandez, et al. [2004, 2006] employ

data mining techniques to extract and analyzing social network relationships between

developers who communicate with each other in the course of modifying or updating

FOSS project source code in stored in common transactional repositories like CVS [Fogel

1999]. Figure 3 from Madey and colleagues displays how a small number of FOSS

developer can establish social network links through computer-mediated messaging that

connect developers spanning multiple FOSS projects together. This helps create critical

mass [Marwell and Oliver 1993] that sustains their collective FOSS development efforts.

However, if the linchpin developers were missing, then the multi-project cluster may

dissociate or fail to link up, resulting in an insufficient collective social mass needed to go

critical and enable network externalities like exponential growth of community source

code. Crowston and Howison [2006] similarly demonstrate how FOSS development

teams often self-organize into a team hierarchy, where a small number of core developers

60

serve as the critical center of gravity for a larger community of contributors and end-

users.

Last, Ripoche and Gasser [2003] demonstrate how automated mining of textual and

transaction data entered into a FOSS bug tracking system (e.g., Bugzilla) can be used to

extract and generate a model of the bug management process, and how it serves to help

maintain and evolve the design of a FOSS system like the Mozilla Web browser.

Overall, FOSS source code and artifact repositories offer a vast array of textual and

transactional data that is just beginning to be explored. For example, FOSS project meta-

data is now being collected with new Web sites emerging (e.g., FLOSSmole [Howison et

al. 2006] at ossmole.sourceforge.net; also see www.ohloh.net) that organize and provide

access these data. This contributes to an open, shared research infrastructure for studying

FOSS socio-technical characteristics, structures, and dynamics across potentially a very

large sample of FOSS projects that can be analyzed quantitatively and textually. Further,

as these studies employ automated tools for data collection, coding, and analysis, then

these methods for mining FOSS repositories become increasingly accessible to small

research groups or individual FOSS scholars. However, data in FOSS repositories like

change logs [Chen et al. 2004] or modification requests associated with source code

updates entered into CVS repositories [German 2006] require careful review, cleaning,

and normalization (e.g., dealing with missing or overloaded data records). Thus, mining

FOSS repositories does require care and attention to both the data and their analysis,

since (a) data quality problems abound which require explicit attention (especially in

publication), (b) researchers may not have first-hand experience in using these

61

repositories as FOSSD project participants, and (c) these repositories were not conceived

or intended to be used for collecting data on FOSSD practices or processes.

Methods for mining FOSS repositories also offer the potential for either/both in-depth

(e.g., project specific) and in-breadth (scalable to large samples of projects) empirical

studies of FOSS development efforts. Thus, expect to see analysis of FOSS project source

or artifacts increasingly dominating large-scale quantitative studies of software

development of any kind, by research groups that include experts and emerging scholars

(e.g., graduate or post-doctoral students) who are motivated to develop and apply new

textual data or Web mining tools/techniques to established FOSSD repositories of various

kinds supporting different kinds of development activities or communities.

Multi-modal modeling and analysis of FOSS socio-technical

interaction networks

One other research method being used to study FOSS projects that is starting to gain

some traction involves use of hybrid schemes involving multiple research methods. Two

such efforts are those of Duchenaunt, Sack and colleagues [Duchenaunt 2005, Sack et al.

2006], and Scacchi and associates [Jensen and Scacchi 2005, Scacchi, Jensen, et al.

2006]. Both of these respective efforts focus on collection of ethnographic data of socio-

technical interaction networks or processes [cf. Duchenaunt 2005, Scacchi 2005] they

discover in the FOSS projects identified in their studies, using virtual ethnographic

techniques and computational data mining, modeling, and visualization tools. In a sense,

these multi-modal research methods seek to pull together the robust qualitative field study

methods used in ethnographic studies together with techniques employing automated or

62

semi-automated data mining and validation tools in ways that can be put into action by a

small research group. However, these multi-modal methods have not yet been applied to

large samples of FOSS projects, and thus it is unclear whether such methods can scale up

to such challenge, or whether some other mix of research methods will be needed.

Discussion

One of the defining characteristics of data about the FOSSD projects is that in general it

is publicly available on a global basis [Harrison 2001, Scacchi 2006a]. Data about

FOSSD products, artifacts, and other resources is kept in repositories associated with a

project's Web site. This may include the site's content management system, computer

mediated communication systems (email, persistent chat facilities, and discussion

forums), software versioning or configuration management systems, and networked file

systems. FOSSD process data is generally either extractable or derivable from

data/content in these artifact repositories. First-person data may also be available to those

who participate in a project, even if just to remotely observe (“lurk”) or to electronically

interview other participants about development activities, tools being used, the status of

certain artifacts, and the like. The availability of such data perhaps suggest the a growing

share of empirical software engineering research will be performed in the domain of

FOSSD projects, rather than using traditional sources of data from in-house or

proprietary software development projects. These traditional non-FOSS projects will

continue to have constraints on access and publication. FOSSD process data collection

from publicly accessible artifact repositories may also be found to be more cost-effective

compared to studies of traditional closed-source, proprietary, and in-house software

development repositories [cf. Cook 1998].

63

Limitations and Constraints for FOSS Research

FOSSD is certainly not a panacea for developing complex software systems, nor is it

simply software engineering done poorly. Instead, it represents an alternative community-

intensive socio-technical approach to develop software systems, artifacts, and social

relationships. However, it is not without its limitations and constraints. Thus, we should

be able to help see these limits as manifest within the level of analysis or research for

empirical FOSSD studies examined above.

First, in terms of participating, joining, and contributing to FOSS projects, an individual

developer’s interest, motivation, and commitment to a project and its contributors is

dynamic and not indefinite. FOSS developers are loathe to find themselves contributing

to a project that is realizing commercial or financial benefits that are not available to all

contributors, or that are concentrated to benefit a particular company, again without some

share going to the contributors. Some form of reciprocity seems necessary to sustain

participation, whereas a perception of exploitation by others can quickly dissolve a

participant’s commitment to further contribute, or worse to dissuade other participants to

abandon an open source project that has gone astray. If linchpin developers lose interest,

then unless another contributor comes forward to fill in or take over role and

responsibility for the communication and coordination activities of such key developers,

then the FOSS system may quickly become brittle, fragile, and difficult to maintain.

Thus, participation, joining, and contributing must become sustained activities on an

ongoing basis within FOSS projects for them to succeed.

64

Second, in terms of cooperation, coordination, and control, FOSS projects do not escape

conflicts in technical decision-making, or in choices of who gets to work on what, or who

gets to modify and update what. As FOSS projects generally lack traditional project

managers, then they must become self-reliant in their ability to mitigate and resolve

outstanding conflicts and disagreements. Beliefs and values that shape system design

choices, as well as choices over which software tools to use, and which software artifacts

to produce or use, are determined through negotiation rather than administrative

assignment. Negotiation and conflict management then become part of the cost that

FOSS developers must bear in order for them to have their beliefs and values fulfilled. It

is also part of the cost they bear in convincing and negotiating with others often through

electronic communications to adopt their beliefs and values. Time, effort, and attention

spent in negotiation and conflict management are not spent building and improving

source code, but they do represent an investment in building and sustaining a negotiated

socio-technical network of dependencies.

Third, in terms of forming alliances and building community through participation,

artifacts, and tools points to a growing dependence on other FOSS projects. The

emergence of non-profit foundations that were established to protect the property rights

of large multi-component FOSS projects create a demand to sustain and protect such

foundations. If a foundation becomes too bureaucratic as a result to streamline its

operations, then this may drive contributors away from a project. So, these foundations

need to stay lean, and not become a source of occupational careers, in order to survive

and evolve. Similarly, as FOSS projects give rise to new types of requirements for

community building, community software, and community information sharing systems,

65

these requirements need to be addressed and managed by FOSS project contributors in

roles above and beyond those involved in enhancing the source code of a FOSS project.

FOSS alliances and communities depend on a rich and growing web of socio-technical

relations. Thus, if such a web begins to come apart, or if the new requirements cannot be

embraced and satisfied, then the FOSS project community and its alliances will begin to

come apart.

Fourth, in terms of the co-evolution of FOSS systems and community, as already noted,

individual and shared resources of people’s time, effort, attention, skill, sentiment (beliefs

and values), and computing resources are part of the socio-technical web of FOSS.

Reinventing existing software systems as FOSS coincides with the emergence or

reinvention of a community who seeks to make such system reinvention occur. FOSS

systems are common pool resources [Ostrom, Calvert, and Eggerston 1990] that require

collective action for their development, mobilization, use, and evolution. Without the

collective action of the FOSS project community, the common pool will dry up, and

without the common pool, the community begins to fragment and disappear, perhaps to

search for another pool elsewhere.

Last, empirical studies of FOSSD are expanding the scope of what we can observer,

discover, analyze, or learn about how large software systems can be or have been

developed. In addition to traditional methods used to investigate FOSSD like reflective

practice, industry polls, survey research, and ethnographic studies, comparatively new

techniques for mining software repositories and multi-modal modeling and analysis of

the socio-technical processes and networks found in sustained FOSSD projects show that

66

the empirical study of FOSSD is growing and expanding. This in turn will contribute to

and help advance the empirical science in fields like software engineering, which

previously were limited by restricted access to data characterizing large, proprietary

software development projects. Thus, the future of empirical studies of software

development practices, processes, and projects will increasingly be cast as studies of

FOSSD efforts.

Conclusions

Free and open source software development is emerging as an alternative approach for

how to develop large software systems. FOSSD employs new types and new kinds of

socio-technical work practices, development processes, and community networking when

compared to those found in industrial software projects, and those portrayed in software

engineering textbooks [Sommerville 2004]. As a result, FOSSD offer new types and new

kinds of practices, processes, and organizational forms to discover, observe, analyze,

model, and simulate. Similarly, understanding how FOSSD practices, processes, and

projects are similar to or different from traditional software engineering counterparts is an

area ripe for further research and comparative study. Many new research opportunities

exist in the empirical examination, modeling, and simulation of FOSSD activities, efforts,

and communities.

FOSSD project source code, artifacts, and online repositories represent and offer new

publicly available data sources of a size, diversity, and complexity not previously

available for research, on a global basis. For example, software process modeling and

simulation research and application has traditionally relied on an empirical basis in real-

67

world processes for analysis and validation. However, such data has often been scarce,

costly to acquire, and is often not available for sharing or independent re-analysis for

reasons including confidentiality or non-disclosure agreements. FOSSD projects and

project artifact repositories contain process data and product artifacts that can be

collected, analyzed, shared, and be re-analyzed in a free and open source manner. FOSS

poses the opportunity to favorably alter the costs and constraints of accessing, analyzing,

and sharing software process and product data, metrics, and data collection instruments.

FOSSD is thus poised to alter the calculus of empirical software engineering [Cook, et al.

1998, Harrison 2001, Scacchi 2006a]. Software process discovery, modeling, and

simulation research [e.g., Jensen and Scacchi 2006a] is one arena that can take advantage

of such a historically new opportunity. Another would be examining the effectiveness

and efficiency of traditional face-to-face-to-artifact software engineering approaches or

processes for software inspections [e.g., Ebenau and Strauss 1994, Seaman and Basili

1998] compared to the online peer reviews prevalent in FOSSD efforts.

Last, through a survey of empirical studies of FOSSD projects and other analyses

presented in this article, it should be clear there are an exciting variety and diversity of

opportunities for new research into software development processes, work practices,

project/community dynamics, and related socio-technical interaction networks. Thus, you

are encouraged to consider how your efforts to research or apply FOSSD concepts,

techniques, or tools can be advanced through studies that examine FOSSD activities,

artifacts, and projects.

68

Acknowledgments

The research described in this chapter has been supported by grants #0083075, #0205679,

#0205724, #0350754, and #0534771 from the U.S. National Science Foundation. No

endorsement implied. Mark Ackerman at University of Michigan, Ann Arbor; Les Gasser at

University of Illinois, Urbana-Champaign; John Noll at Santa Clara University; Margaret

Elliott, Chris Jensen, and others at the UCI Institute for Software Research are collaborators

on the research described here.

References
Antoniades, I.P., Samoladas, I., Stamelos, I., Angelis, L., and Bleris, G.L., (2005).
Dynamic Simulation Models of the Open Source Development Process, in S. Koch (ed.),
Free/Open Source Software Development, 174-202, Idea Group Publishing, Hershey, PA.

Benkler, Y. (2006). The Wealth of Networks: How Social Production Transforms
Markets and Freedom, Yale University Press, New Haven, CT.

Bergquist, M. and Ljungberg, J., (2001). The power of gifts: organizing social
relationships in open source communities, Info. Systems J., 11, 305-320.

Beyer, H. and Holtzblatt, K., (1997). Contextual Design: A Customer-Centered
Approach to Systems Designs, Morgan Kaufmann Publishers, San Francisco, CA.

Bonaccorsi, A. and Rossi, C., (2006). Comparing motivations of individual programmers
and firms to take part in the open source movement: From community to business.
Knowledge Technology & Policy, 18(4), Winter, 40-64.

Capilupppi, A., Lago, P. and Morisio, M., (2003). Evidences in the Evolution of OS
projects through Changelog Analyses, Proc. 3rd Workshop on Open Source Software
Engineering, Portland, OR.

Chen, K., Schach, S.R., Yu, L., Offutt, J., and Heller, G. (2004). Open Source Change
Logs, Empirical Software Engineering, 9(2), 197-210.

Ciborra, C. (2004). The Labyrinths of Information: Challenging the Wisdom of Systems,
Oxford University Press, Oxford, UK.

Cook, J.E., Votta, L.G., and Wolf, A.L., (1998). Cost-Effective Analysis of In-Place
Software Processes, IEEE Trans. Software Engineering, 24(8), 650-663.

69

Crowston, K. and Howison, J., (2006). Hierarchy and centralization in free and open
source software team communications, Knowledge Technology & Policy, 18(4), Winter,
65-85.

Crowston, K., Howison, J., and Annabi, H., (2006). Information systems success in free
and open source software development: theory and measures, Software Process—
Improvement and Practice, 11(2), 123-148.

Crowston, K., and Scozzi, B., (2002). Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software Development, IEE Proceedings--
Software, 149(1), 3-17.

Curtis, B., Krasner, H., and Iscoe, N., (1988). A Field Study of the Software Design
Process for Large Systems, Communications ACM, 31(11), 1268-1287.

Danziger, J., (1979). The Skill Bureaucracy and Intraorganizational Control: The Case of
the Data-Processing Unit, Sociology of Work and Occupations, 21(3), 206-218.

De Souza, C. R. B., Froehlich, J., and Dourish, P. (2005) Seeking the Source: Software
Source Code as a Social and Technical Artifact. Proc. ACM Intern. Conf. Supporting
Group Work (GROUP 2005), 197-206, Sanibel Island, Florida,

DiBona, C., Cooper, D., and Stone, M., (2005). Open Sources 2.0, O’Reilly Media,
Sebastopol, CA.

DiBona, C., Ockman, and Stone, M., (1999). Open Sources: Voices from the Open
Source Revolution, O’Reilly Media, Sebastopol, CA.

Ducheneaut, N. (2005). Socialization in an Open Source software community: A socio-
technical analysis. Computer Supported Cooperative Work, 14(4), 323-368.

Ebenau, R.G. and Strauss, S.H. (1994). Software Inspection Process. McGraw-Hill, New
York.

Elliott, M.S., (2006). Examining The Success of Computerization Movements in the
Ubiquitous Computing Era: Free and Open Source Software Movements, in K.L.
Kraemer and M. Elliott (eds.), Computerization Movements and Technology Diffusion:
From Mainframes to Ubiquitous Computing, Information Today, Inc., to appear.

Elliott, M. and Scacchi, W., (2003). Free Software Developers as an Occupational
Community: Resolving Conflicts and Fostering Collaboration, Proc. ACM Intern. Conf.
Supporting Group Work, 21-30, Sanibel Island, FL, November.

Elliott, M. and Scacchi, W., (2005). Free Software Development: Cooperation and
Conflict in A Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source
Software Development, 152-172, Idea Group Publishing, Hershey, PA.

70

Elliott, M. and Scacchi, W., (2006), Mobilization of Software Developers: The Free
Software Movement, (submitted for publication).

Erenkrantz, J., (2003). Release Management within Open Source Projects, Proc. 3rd.
Workshop on Open Source Software Engineering, 25th. Intern. Conf. Software
Engineering, Portland, OR, May.

Erickson, T., (2000). Making Sense of Computer-Mediated Communication (CMC):
CMC Systems as Genre Ecologies, Proc. 33rd Hawaii Intern. Conf. Systems Sciences,
IEEE Press, 1-10, January.

Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F., Herbsleb, J. D., Mockus, A.
(2002). Shared Mental Models, Familiarity, and Coordination: A Multi-method Study of
Distributed Software Teams. Intern. Conf. Information Systems, 425-433, Barcelona,
Spain, December.

Feller, J., and Fitzgerald, B., (2002). Understanding Open Source Software
Development, Addison-Wesley, NY.

Feller, J., Fiztgerald, B., Hissam, S. and Lakhani, K. (eds.), (2005). Perspectives on Free
and Open Source Software, MIT Press, Cambridge, MA.

Fielding, R.T., (1999). Shared Leadership in the Apache Project. Communications ACM,
42(4), 42-43.

Fink, M., (2003). The Business and Economics of Linux and Open Source, Prentice Hall
PTR, Upper Saddle, NJ.

Fischer, G., (2001). External and shareable artifacts as opportunities for social creativity
in communities of interest, in J. S. Gero and M. L. Maher (eds), Proc. Computational
and Cognitive Models of Creative Design, 67-89, Heron Island, Australia, December.

FLOSS (2002). Free/Libre and Open Source Software: Survey and Study, FLOSS Final
Report, http://www.flossproject.org/report/ (accessed July 2006).

Fogel, K., (1999). Open Source Development with CVS, Coriolis Press, Scottsdale, AZ.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project, O'Reilly Press, Sebastopol, CA.

Gay, J. (ed.), (2002). Free Software Free Society: Selected Essays of Richard M.
Stallman, GNU Press, Free Software Foundation, Boston, MA.

Gacek, C. and Arief, B., (2004). The Many Meanings of Open Source, IEEE Software,
21(1), 34-40, January/February.

71

http://www.flossproject.org/report/

Gallivan, M., (2001). Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies, Information
Systems J., 11(4), 277-304.

German, D., (2003). The GNOME Project: A case study of open source, global software
development, Software Process—Improvement and Practice, 8(4), 201-215.

German, D. (2006). An Empirical Study of Fine-Grained Software Modifications,
Empirical Software Engineering, 11(3), 369-393, 2006.

Ghosh, R., (ed.), (2005). CODE: Collaborative Ownership and the Digital Economy,
MIT Press, Cambridge, MA.

Ghosh, R. and Prakash, V.V., (2000). The Orbiten Free Software Survey, First Monday,
5(7), July, http://www.firstmonday.org/issues/issue5_7/ghosh/index.html accessed 1 June
2006.

Goldman, R. and Gabriel, R.P., (2005). Innovation Happens Elsewhere: Open Source as
Business Strategy, Morgan Kaufmann Publishers, San Francisco, CA.

Greene, T.C., (2001). Ballmer: “Linux is a Cancer”, The Register,
http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/, 2 June 2001.

Grinter, R. E. (1996). Supporting Articulation Work Using Configuration Management
Systems, Computer Supported Cooperative Work: The Journal of Collaborative
Computing. 5(4): 447-465.

Hann, I-H., Roberts, J., Slaughter, S., and Fielding, R., (2002). Economic Incentives for
Participating in Open Source Software Projects, in Proc. Twenty-Third Intern. Conf.
Information Systems, 365-372, December.

Hars, A. and Ou, S., (2002). Working for Free? Motivations for participating in open source
projects, Intern. J. Electronic Commerce, 6(3).

Hakken, D. (1999). Cyborgs@Cyberspace? An Ethnographer Looks at the Future,
Routledge, London.

Harrison, W., (2001). Editorial: Open Source and Empirical Software Engineering,
Empirical Software Engineering, 6(2), 193-194.

Hertel, G., Neidner, S., and Hermann, S., (2003). Motivation of software developers in
Open Source projects: an Internet-based survey of contributors to the Linux kernel,
Research Policy, 32(7), 1159-1177, July.

Hertzum, M. (2002). The importance of trust in software engineers' assessment and
choice of information sources, Information and Organization, 12(1), 1-18.

72

http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/
http://www.firstmonday.org/issues/issue5_7/ghosh/index.html

Hine, C.M. (2000). Virtual Ethnography, Sage Publications, Newbury Park, CA.

Howison, J., Conklin, M., and Crowston, K. (2006). FLOSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses. Intern. J. Info. Tech. And Web
Engineering, 1(3), 17-26.

Huntley, C.L., (2003). Organizational Learning in Open-Source Software Projects: An
Analysis of Debugging Data, IEEE Trans. Engineering Management, 50(4), 485-493.

Iacono, C.S. and Kling, R., (2001). Computerization Movements: The Rise of the Internet
and Distant Forms of Work, in Yates, J.A., and Van Maanen, J. (Eds.), Information
Technology and Organizational Transformation: History, Rhetoric, and Practice, Sage
Publications, Newbury Park, CA.

Iannacci, F. (2005a). Coordination Processes in Open Source Software Development:
The Linux Case Study, Emergence: Complexity & Organization (E:CO) , 7(2), 21-31.

Iannacci, F. (2005b). Beyond Markets and Firms: The Emergence of Open Source
Networks, First Monday, 10(5).

Jensen, C. and Scacchi, W., (2004). Collaboration, Leadership, and Conflict Negotiation
in the NetBeans.org Community, Proc. 4th Workshop on Open Source Software
Engineering, Edinburgh, UK, May.

Jensen, C. and Scacchi, W., (2005). Process Modeling Across the Web Information
Infrastructure, Software Process—Improvement and Practice, 10(3), 255-272, July-
September.

Jensen, C. and Scacchi, W. (2006a). Discovering, Modeling, and Reenacting Open
Source Software Development Processes, in S.T. Acuna and M.I. Sanchez-Segura (eds.),
New Trends in Software Process Modeling, Series in Software Engineering and
Knowledge Engineering, Vol. 18, 1-20, World Scientific Publishing, Singapore.

Jensen, C. and Scacchi, W., (2006b). Modeling Recruitment and Role Migration
Processes in Open Source Software Development Projects, submitted for publication,
April.

Kim, A.J., (2000). Community-Building on the Web: Secret Strategies for Successful
Online Communities, Peachpit Press.

Kling, R., and Scacchi, W. (1982). The Web of Computing: Computer Technology as
Social Organization, in M.C. Yovits (ed.), Advances in Computers, 21, 1-90.

Koch, S. (Ed.), (2005). Free/Open Source Software Development, Idea Group Publishing,

Hershey, PA.

73

Kwansik, B. and Crowston, K., (2005). Introduction to the special issue: Genres of digital
documents, Information, Technology and People, 18(2).

Lakhani, K.R., Wolf, B., Bates, J., DiBona, C., (2002). The Boston Consulting Group
Hacker Survey, July.
http://www.bcg.com/opensource/BCGHackerSurveyOSCON24July02v073.pdf.

Lanzara, G.F. and Morner, M., (2005). Artifacts rule! How organizing happens in open
source software projects, in B. Czarniawska and T. Hernes (eds.), Actor-Network Theory
and Organizing, pp. 67-90, Liber & Copenhagen Business School Press, Malmo,
Sweden.

Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation,
Cambridge University Press, Cambridge, UK.

Lehman, M.M., (1980). Programs, Life Cycles, and Laws of Software Evolution, Proc.
IEEE, 68, 1060-1078.

Lehman, M.M., (2002). Software Evolution, in J. Marciniak (ed.), Encyclopedia of
Software Engineering, 2nd Edition, John Wiley and Sons, Inc., New York, 1507-1513,
2002. Also see “Software Evolution and Software Evolution Processes,” Annals of
Software Engineering, 12, 275-309, 2002.

Lerner, J. and Tirole, J., (2002). Some Simple Economics of Open Source, J. Industrial
Economics, 50(2), 197-234.

Lessig, L. (2000). Code and other Laws of Cyberspace, Basic Books, New York.

Lessig, L. (2005). Free Culture: The Nature and Future of Creativity, Penguin, New
York.

Longman, J. (2005). Open Source Software Development Process Modeling, in in S.T.
Acuña and N. Juristo (eds.), Software Process Modeling, 29-64, Springer
Science+Business Media Inc., New York.

Ljungberg, J., (2000). Open Source Movements as a Model for Organizing, European J.
Info. Sys., 9(4), 208-216.

Lopez-Fernandez, L., Robles, G., and Gonzalez-Barahona, J.M., (2004). Applying Social
Network Analysis to the Information in CVS Repositories, Proc. First Intern. Workshop
on Mining Software Repositories, 101-105, Edinburgh, UK, May.

Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., and Herraiz, I. (2006).
Applying Social Network Analysis to Community-Drive Libre Software Projects, Intern.
J. Info. Tech. and Web Engineering, 1(3), 27-28.

74

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=5835&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.bcg.com%252Fopensource%252FBCGHackerSurveyOSCON24July02v073.pdf

Madey, G., Freeh, V., and Tynan, R., (2002). The Open Source Development
Phenomenon: An Analysis Based on Social Network Theory, Proc. Americas Conf. Info.
Systems (AMCIS2002), 1806-1813, Dallas, TX.

Madey, G., Freeh, V., and Tynan, R., (2005). Modeling the F/OSS Community: A
Quantitative Investigation, in S. Koch (ed.), Free/Open Source Software Development,
203-221, Idea Group Publishing, Hershey, PA.

Marwell, G. and Oliver, P., (1993). The Critical Mass in Collective Action: A Micro-
Social Theory. Cambridge University Press, Cambridge, England.

MITRE Corporation, (2003). Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense, January, http://www.egovos.org/pdf/dodfoss.pdf.

Mockus, A., Fielding, R., & Herbsleb, J.D., (2002). Two Case Studies of Open Source
Software Development: Apache and Mozilla, ACM Transactions on Software
Engineering and Methodology, 11(3), 309-346.

Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa, C., and Rumsey, S.,
(1998). Production of Collective Action in Alliance-Based Interorganizational
Communication and Information Systems, Organization Science, 9(3), 411-433.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye,Y., (2002). Evolution
Patterns of Open-Source Software Systems and Communities, Proc. 2002 Intern.
Workshop Principles of Software Evolution, 76-85.

Noll, J. and Scacchi, W., (1999). Supporting Software Development in Virtual
Enterprises, J. Digital Information, 1(4), February,
http://jodi.tamu.edu/Articles/v01/i04/Noll/.

O’Dowd, D. (2004). No Defense for Linux: Inadequate Security Poses National Security
Threat, Design News, 19 July 2004. http://www.designnews.com/article/CA435615.html

Olson, M., (1971). The Logic of Collective Action, Harvard University Press, Cambridge,
MA.

O'Mahony, S. (2003). Guarding the Commons: How Community Managed Software
Projects Protect their Work, Research Policy 32(7), July, 1179-1198.

OSBC, (2006). Open Source Business Conference, http://www.osbc.com. (accessed 15
July 2006).

Ostrom, E., Calvert, R., and T. Eggertsson (eds.), (1990). Governing the Commons: The
Evolution of Institutions for Collective Action, Cambridge University Press, Cambridge,
England.

75

http://www.osbc.com/
http://www.designnews.com/article/CA435615.html
http://jodi.tamu.edu/Articles/v01/i04/Noll/
http://www.egovos.org/pdf/dodfoss.pdf

Ovaska, P., Rossi, M. and Marttiin, P. (2003). Architecture as a Coordination Tool in
Multi-Site Software Development, Software Process—Improvement and Practice, 8(3),
233-247.

Paulson, J.W., Succi, G., and Eberlein, A., (2004). An Empirical Study of Open-Source
and Closed-Source Software Products, IEEE Trans. Software Engineering, 30(4), 246-
256, April.

Pavelicek, R., (2000). Embracing Insanity: Open Source Software Development, SAMS
Publishing, Indianapolis, IN.

Payton, S., Herz, J.C., Lucas, M. and Scott, J. (2006). Open Technology Development:
Roadmap Plan, Final Report, Advanced Systems & Concepts, Deputy Undersecretary of
Defense, http://www.acq.osd.mil/asc, April 2006. (accessed 15 August 2006).

Porter, A.A., Siy, H.P., Toman, C.A. & Votta, L.G., (1997). An Experiment to Assess the
Cost-Benefits of Code Inspections in Large Scale Software Development. IEEE Trans.
on Software Engineering, 23, 329-346.

Porter, A.A., Yilmaz, C., Memon, A.M., Krishna, A.S., Schmidt, D.C., and Gokhale, A.,
(2006). Techniques and Processes for Improving the Quality and Performance of Open-
Source Software, Software Process—Improvement and Practice, 11(2), 163-176.

Preece, J., (2000). Online Communities: Designing Usability, Supporting Sociability.
Chichester, UK: John Wiley & Sons, New York.

Reis, C.R. & Fortes, R.P.M., (2002). An Overview of the Software Engineering Process
and Tools in the Mozilla Project, Proc. Workshop on Open Source Software
Development, Newcastle, UK, February.

Ripoche, G. and Gasser, L., (2003). Scalable Automatic Extraction of Process Models for
Understanding F/OSS Bug Repair, Proc. 16th Intern. Conf. Software Engineering & its
Applications (ICSSEA-03), Paris, France, December, 2003.

Sack, W., Detienne, F., Ducheneaut, Burkhardt, Mahendran, D., and Barcellini, F.,
(2006). A Methodological Framework for Socio-Cognitive Analyses of Collaborative
Design of Open Source Software, Computer Supported Cooperative Work, (to appear).

Sawyer, S., (2001). Effects of intra-group conflict on packaged software development
team performance, Information Systems J., 11, 155-178, 2001.

Scacchi, W., (2002). Understanding the Requirements for Developing Open Source
Software Systems, IEE Proceedings--Software, 149(1), 24-39, February.

Scacchi, W., (2004). Free/Open Source Software Development Practices in the
Computer Game Community, IEEE Software, 21(1), 59-67, January/February.

76

http://www.acq.osd.mil/asc

Scacchi, W., (2005). Socio-Technical Interaction Networks in Free/Open Source
Software Development Processes, in S.T. Acuña and N. Juristo (eds.), Software Process
Modeling, 1-27, Springer Science+Business Media Inc., New York.

Scacchi, W., (2006a). Understanding Free/Open Source Software Evolution, in N.H.
Madhavji, M.M. Lehman, J.F. Ramil and D. Perry (eds.), Software Evolution, John Wiley
and Sons Inc, New York, to appear.

Scacchi, W., (2006b). Emerging Patterns of Intersection and Segmentation when
Computerization Movements Interact, in K.L. Kraemer and M. Elliott (eds.),
Computerization Movements and Technology Diffusion: From Mainframes to Ubiquitous
Computing, Information Today, Inc., to appear.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. and Lakhani, K. (2006). Understanding
Free/Open Source Software Development Processes, Software Process--Improvement
and Practice, 11(2), 95-105, March/April.

Scacchi, W., Jensen, C., Noll, J., and Elliott, M., (2006), Multimodal Modeling, Analysis,
and Validation of Open Source Software Development Processes, Intern. J. Information
Technology and Web Engineering, 1(3), 49-63.

Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., and Offutt, A.J., (2002).
Maintainability of the Linux Kernel, IEE Proceedings – Software, 149(1), 18-23,
February.

Seaman, C.B., (1999). Qualitative Methods in Empirical Studies of Software
Engineering, IEEE Trans. Software Engineering, 25(4), 557-572, July/August.

Seaman, C.B. and Basili, V. (1998). Communication and Organization: An Empirical
Study of Discussion in Inspection Meetings, IEEE Trans. Software Engineering, 24(6),
559-572, July.

Sharma, S., Sugumaran, and Rajagopalan, B., (2002). A Framework for Creating Hybrid
Open-Source Software Communities, Information Systems J., 12(1), 7-25.

Sim, S.E. and Holt, R.C., (1998). The Ramp-Up Problem in Software Projects: A Case
Study of How Software Immigrants Naturalize, Proc. 20th Intern. Conf. Software
Engineering, Kyoto, Japan, 361-370, 19-25 April.

Smith, M. and Kollock, P. (eds.), (1999). Communities in Cyberspace, Routledge,
London.

Smith, N., Capiluppi, A. and Ramil, J.F., (2004). Qualitative Analysis and Simulation of
Open Source Software Evolution, Proc. 5th Software Process Simulation and Modeling
Workshop (ProSim’04), Edinburgh, Scotland, UK, May.

77

Snow, D.A., Soule, S.A., and Kriesi, H., (2004), The Blackwell Companion to Social
Movements, Blackwell Publishers Ltd., Victoria, Australia.

Spinuzzi, C., (2003). Tracing Genres through Organizations: A Sociocultural Approach
to Information Design, MIT Press, Cambridge, MA.

Sommerville, I., (2004). Software Engineering, 7th Edition, Addison-Wesley, New York.

Stewart, K.J. and Gosain, S., (2001). An Exploratory Study of Ideology and Trust in
Open Source Development Groups, Proc. 22nd Intern. Conf. Information Systems (ICIS-
2001), in New Orleans, LA.

Truex, D., Baskerville, R., and Klein, H., (1999). Growing Systems in an Emergent
Organization, Communications ACM, 42(8), 117-123.

Viller, S. and Sommerville, I., (2000). Ethnographically informed analysis for software
engineers, Intern. J. Human-Computer Studies, 53, 169-196.

von Hippel, E., and von Krogh, G., (2003). Open Source Software and the “Private-
Collective” Innovation Model: Issues for Organization Science, Organization Science,
14(2), 209-223.

von Krogh, G., Spaeth, S., and Lakhani, K., (2003). Community, Joining, and
Specialization in Open Source Software Innovation: A Case Study, Research Policy,
32(7), 1217-1241, July.

Weber, S., (2004), The Success of Open Source, Harvard University Press, Cambridge,
MA.

West, J. and O’Mahony, S., (2005). Contrasting Community Building in Sponsored and
Community Founded Open Source Projects, Proc. 38th. Hawaii Intern. Conf. Systems
Sciences, Waikola Village, HI.

West, J. and Dedrick, J., (2006). The Effect of Computerization Movements Upon
Organizational Adoption of Open Source, tin K.L. Kraemer and M. Elliott (eds.),
Computerization Movements and Technology Diffusion: From Mainframes to Ubiquitous
Computing, Information Today, Inc., to appear.

Wheeler, D.A., (2005). Why Open Source Software / Free Software (OSS/FS, FLOSS or
FOSS)? Look at the Numbers, http://www.dwheeler.com/oss_fs_why.html , Accessed 15
November 2005.

Williams, S., (2002). Free as in Freedom: Richard Stallman's Crusade for Free
Software, O'Reilly Books, Sebastopol, CA.

78

http://www.dwheeler.com/oss_fs_why.html

Yamauchi, Y., Yokozawa, M., Shinohara, T., and Ishida, T., (2000). Collaboration with
Lean Media: How Open-Source Software Succeeds, Proc. Computer Supported
Cooperative Work Conf. (CSCW'00), 329-338, Philadelphia, PA, ACM Press, December.

Ye, Y., Nakajoki, K., Yamamoto, Y., and Kishida, K., (2005). The Co-Evolution of
Systems and Communities in Free and Open Source Software Development, in S. Koch
(ed.), Free/Open Source Software Development, 59-82, Idea Group Publishing, Hershey,
PA.

Ye, Y. & Kishida, K., (2003). Towards an understanding of the motivation of open source
software developers, Proc. 25th Intern. Conf. Software Engineering, Portland, OR, 419-429,
IEEE Computer Society, May.

79

	Free/Open Source Software Development: Recent Research Results and Methods
	Abstract
	What is free/open source software development?
	Results from recent studies of FOSSD

	Individual Participation in FOSSD Projects
	Resources and Capabilities Supporting FOSSD
	Personal software development tools and networking support
	Beliefs supporting FOSS Development
	FOSSD informalisms
	Competently skilled, self-organizing, and self-managed software developers
	Discretionary time and effort of developers
	Trust and social accountability mechanisms

	Cooperation, coordination, and control in FOSS projects
	Alliance formation, inter-project social networking and community development
	Community development and system development

	FOSS as a multi-project software ecosystem
	Co-evolving socio-technical systems for FOSS

	FOSS as a Social Movement
	Research Methods for Studying FOSS
	Reflective practice and industry poll methods
	Survey research methods
	Ethnographically informed methods
	Mining FOSS artifact repositories and artifact analysis methods
	Multi-modal modeling and analysis of FOSS socio-technical interaction networks
	Discussion
	Limitations and Constraints for FOSS Research

	Conclusions
	Acknowledgments
	References

